|
|
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits |
Xiao-Le Li1,2, Ziyu Tao2,3, Kangyuan Yi2,3, Kai Luo2,3, Libo Zhang3,4, Yuxuan Zhou2,3, Song Liu3,4,5, Tongxing Yan3,4,5( ), Yuanzhen Chen2,3,5( ), Dapeng Yu2,3,4,5 |
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China 2. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 3. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 4. Shenzhen International Quantum Academy (SIQA), Shenzhen 518048, China 5. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of and for the control qubit being prepared in and , respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.
|
Keywords
quantum computation
quantum gate
superconducting circuit
|
Corresponding Author(s):
Tongxing Yan,Yuanzhen Chen
|
About author: |
Issue Date: 14 May 2024
|
|
1 |
Krinner S. , Lacroix N. , Remm A. , Di Paolo A. , Genois E. , Leroux C. , Hellings C. , Lazar S. , Swiadek F. , Herrmann J. , J. Norris G. , K. Andersen C. , Müller M. , Blais A. , Eichler C. , Wallraff A. . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
https://doi.org/10.1038/s41586-022-04566-8
|
2 |
Zhao Y. , Ye Y. , L. Huang H. , Zhang Y. , Wu D. , Guan H. , Zhu Q. , Wei Z. , He T. , Cao S. , Chen F. , H. Chung T. , Deng H. , Fan D. , Gong M. , Guo C. , Guo S. , Han L. , Li N. , Li S. , Li Y. , Liang F. , Lin J. , Qian H. , Rong H. , Su H. , Sun L. , Wang S. , Wu Y. , Xu Y. , Ying C. , Yu J. , Zha C. , Zhang K. , H. Huo Y. , Y. Lu C. , Z. Peng C. , Zhu X. , W. Pan J. . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
https://doi.org/10.1103/PhysRevLett.129.030501
|
3 |
Ni Z. , Li S. , Deng X. , Cai Y. , Zhang L. , Wang W. , B. Yang Z. , Yu H. , Yan F. , Liu S. , L. Zou C. , Sun L. , B. Zheng S. , Xu Y. , Yu D. . Beating the break-even point with a discrete-variable-encoded logical qubit. Nature, 2023, 616(7955): 56
https://doi.org/10.1038/s41586-023-05784-4
|
4 |
Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
|
5 |
Bharti K. , Cervera-Lierta A. , H. Kyaw T. , Haug T. , Alperin-Lea S. , Anand A. , Degroote M. , Heimonen H. , S. Kottmann J. , Menke T. , K. Mok W. , Sim S. , C. Kwek L. , Aspuru-Guzik A. . Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
https://doi.org/10.1103/RevModPhys.94.015004
|
6 |
Cheng B. , H. Deng X. , Gu X. , He Y. , Hu G. , Huang P. , Li J. , C. Lin B. , Lu D. , Lu Y. , Qiu C. , Wang H. , Xin T. , Yu S. , H. Yung M. , Zeng J. , Zhang S. , Zhong Y. , Peng X. , Nori F. , Yu D. . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
https://doi.org/10.1007/s11467-022-1249-z
|
7 |
Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’Brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
|
8 |
Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
|
9 |
I. Colless J. , V. Ramasesh V. , Dahlen D. , S. Blok M. , E. Kimchi-Schwartz M. , R. McClean J. , Carter J. , A. de Jong W. , Siddiqi I. . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
https://doi.org/10.1103/PhysRevX.8.011021
|
10 |
Petiziol F. , Sameti M. , Carretta S. , Wimberger S. , Mintert F. . Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 2021, 126(25): 250504
https://doi.org/10.1103/PhysRevLett.126.250504
|
11 |
Wang Z. , Y. Ge Z. , Xiang Z. , Song X. , Z. Huang R. , Song P. , Y. Guo X. , Su L. , Xu K. , Zheng D. , Fan H. . Observation of emergent Z2 gauge invariance in a superconducting circuit. Phys. Rev. Res., 2022, 4(2): L022060
https://doi.org/10.1103/PhysRevResearch.4.L022060
|
12 |
Zhang X. , Jiang W. , Deng J. , Wang K. , Chen J. , Zhang P. , Ren W. , Dong H. , Xu S. , Gao Y. , Jin F. , Zhu X. , Guo Q. , Li H. , Song C. , V. Gorshkov A. , Iadecola T. , Liu F. , X. Gong Z. , Wang Z. , L. Deng D. , Wang H. . Digital quantum simulation of floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
https://doi.org/10.1038/s41586-022-04854-3
|
13 |
S. Kang M. , Heo J. , G. Choi S. , Moon S. , W. Han S. . Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep., 2020, 10(1): 5123
https://doi.org/10.1038/s41598-020-61938-8
|
14 |
G. Cory D. , D. Price M. , Maas W. , Knill E. , Laflamme R. , H. Zurek W. , F. Havel T. , S. Somaroo S. . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
https://doi.org/10.1103/PhysRevLett.81.2152
|
15 |
P. Lanyon B. , Barbieri M. , P. Almeida M. , Jennewein T. , C. Ralph T. , J. Resch K. , J. Pryde G. , L. O’Brien J. , Gilchrist A. , G. White A. . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
https://doi.org/10.1038/nphys1150
|
16 |
Monz T. , Kim K. , Hänsel W. , Riebe M. , S. Villar A. , Schindler P. , Chwalla M. , Hennrich M. , Blatt R. . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102(4): 040501
https://doi.org/10.1103/PhysRevLett.102.040501
|
17 |
Fedorov A. , Steffen L. , Baur M. , P. da Silva M. , Wallraff A. . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481(7380): 170
https://doi.org/10.1038/nature10713
|
18 |
Roy T. , Hazra S. , Kundu S. , Chand M. , P. Patankar M. , Vijay R. . Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl., 2020, 14(1): 014072
https://doi.org/10.1103/PhysRevApplied.14.014072
|
19 |
Gu X. , Fernández-Pendás J. , Vikstål P. , Abad T. , Warren C. , Bengtsson A. , Tancredi G. , Shumeiko V. , Bylander J. , Johansson G. , F. Kockum A. . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
https://doi.org/10.1103/PRXQuantum.2.040348
|
20 |
J. Baker A. , B. P. Huber G. , J. Glaser N. , Roy F. , Tsitsilin I. , Filipp S. , J. Hartmann M. . Single shot i-Toffoli gate in dispersively coupled superconducting qubits. Appl. Phys. Lett., 2022, 120(5): 054002
https://doi.org/10.1063/5.0077443
|
21 |
Kim Y. , Morvan A. , B. Nguyen L. , K. Naik R. , Junger C. , Chen L. , M. Kreikebaum J. , I. Santiago D. , Siddiqi I. . High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
https://doi.org/10.1038/s41567-022-01590-3
|
22 |
W. Warren C. , Fernández-Pendás J. , Ahmed S. , Abad T. , Bengtsson A. , Biznárová J. , Debnath K. , Gu X. , Križan C. , Osman A. , F. Roudsari A. , Delsing P. , Johansson G. , F. Kockum A. , Tancredi G. , Bylander J. . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit. npj Quantum Inf., 2023, 9: 44
https://doi.org/10.1038/s41534-023-00711-x
|
23 |
B. Nguyen L. , Kim Y. , Hashim A. , Goss N. , Marinelli B. , Bhandari B. , Das D. , K. Naik R. , M. Kreikebaum J. , N. Jordan A. , I. Santiago D. , Siddiqi I. . Programmable Heisenberg interactions between floquet qubits. Nat. Phys., 2024, 20(2): 240
https://doi.org/10.1038/s41567-023-02326-7
|
24 |
B. Patel R. , Ho J. , Ferreyrol F. , C. Ralph T. , J. Pryde G. . A quantum Fredkin gate. Sci. Adv., 2016, 2(3): e1501531
https://doi.org/10.1126/sciadv.1501531
|
25 |
Feng W. , Wang D. . Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 2020, 101(6): 062312
https://doi.org/10.1103/PhysRevA.101.062312
|
26 |
Maity P. , Purkait M. . Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus, 2022, 137(12): 1299
https://doi.org/10.1140/epjp/s13360-022-03460-6
|
27 |
Li Y. , Wan L. , Zhang H. , Zhu H. , Shi Y. , K. Chin L. , Zhou X. , C. Kwek L. , Q. Liu A. . Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip. npj Quantum Inf., 2022, 8: 112
https://doi.org/10.1038/s41534-022-00627-y
|
28 |
Koch J. , M. Yu T. , Gambetta J. , A. Houck A. , I. Schuster D. , Majer J. , Blais A. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
https://doi.org/10.1103/PhysRevA.76.042319
|
29 |
Xu Y. , Chu J. , Yuan J. , Qiu J. , Zhou Y. , Zhang L. , Tan X. , Yu Y. , Liu S. , Li J. , Yan F. , Yu D. . High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
https://doi.org/10.1103/PhysRevLett.125.240503
|
30 |
Song C. , Xu K. , Liu W. , Yang C. , B. Zheng S. , Deng H. , Xie Q. , Huang K. , Guo Q. , Zhang L. , Zhang P. , Xu D. , Zheng D. , Zhu X. , Wang H. , A. Chen Y. , Y. Lu C. , Han S. , W. Pan J. . 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 2017, 119(18): 180511
https://doi.org/10.1103/PhysRevLett.119.180511
|
31 |
Krantz P. , Kjaergaard M. , Yan F. , P. Orlando T. , Gustavsson S. , D. Oliver W. . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
https://doi.org/10.1063/1.5089550
|
32 |
Chu J. , He X. , Zhou Y. , Yuan J. , Zhang L. , Guo Q. , Hai Y. , Han Z. , K. Hu C. , Huang W. , Jia H. , Jiao D. , Li S. , Liu Y. , Ni Z. , Nie L. , Pan X. , Qiu J. , Wei W. , Nuerbolati W. , Yang Z. , Zhang J. , Zhang Z. , Zou W. , Chen Y. , Deng X. , Deng X. , Hu L. , Li J. , Liu S. , Lu Y. , Niu J. , Tan D. , Xu Y. , Yan T. , Zhong Y. , Yan F. , Sun X. , Yu D. . Scalable algorithm simplification using quantum AND logic. Nat. Phys., 2023, 19(1): 126
https://doi.org/10.1038/s41567-022-01813-7
|
33 |
K. Hu C. , Yuan J. , A. Veloso B. , Qiu J. , Zhou Y. , Zhang L. , Chu J. , Nurbolat O. , Hu L. , Li J. , Xu Y. , Zhong Y. , Liu S. , Yan F. , Tan D. , Bachelard R. , C. Santos A. , Villas-Boas C. , Yu D. . Native conditional iSWAP operation with superconducting artificial atoms. Phys. Rev. Appl., 2023, 20(3): 034072
https://doi.org/10.1103/PhysRevApplied.20.034072
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|