Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 51205    https://doi.org/10.1007/s11467-024-1405-8
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits
Xiao-Le Li1,2, Ziyu Tao2,3, Kangyuan Yi2,3, Kai Luo2,3, Libo Zhang3,4, Yuxuan Zhou2,3, Song Liu3,4,5, Tongxing Yan3,4,5(), Yuanzhen Chen2,3,5(), Dapeng Yu2,3,4,5
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
2. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
3. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4. Shenzhen International Quantum Academy (SIQA), Shenzhen 518048, China
5. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(3181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of 86.0% and 81.1% for the control qubit being prepared in |0 and |1, respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.

Keywords quantum computation      quantum gate      superconducting circuit     
Corresponding Author(s): Tongxing Yan,Yuanzhen Chen   
About author:

Issue Date: 14 May 2024
 Cite this article:   
Xiao-Le Li,Ziyu Tao,Kangyuan Yi, et al. Hardware-efficient and fast three-qubit gate in superconducting quantum circuits[J]. Front. Phys. , 2024, 19(5): 51205.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1405-8
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/51205
Fig.1  Schematics of the superconducting qubits and circuit diagram used in this work for a Controlled-CPHASE-SWAP (CCZS) gate. (a) Sketch of the device with three transmon qubits of tunable frequencies. Eeach qubit contains a SQUID (superconducting quantum interference device) ring whose magnetic flux can be varied by a current flowing on a on-chip flux line nearby (not shown), which in turn changes the qubit’s frequency. Each qubit is equipped with its own flux line, control line, and readout resonator (not shown) as widely used in the transmon-based superconducting quantum circuits. Adjacent qubits are coupled and share a common feedline for dispersive readout. (b) Schematics of our scheme decomposing a Fredkin-like CCZS gate into a sequence of three iSWAP operations (marked as ×) between adjacent qubits. Each iSWAP operation represents a coherent π rotation realized by tuning the |11? state of the involved two qubits into resonance with the |20? state. The overall operation is then a Fredkin-like CCZS gate: a controlled-iSWAP operation between two target qubits QB and QC upon the status of the control qubit QA. If QA is in its excited states (·), an controlled-iSWAP occurs between QB and QC. (c) Pulse sequence for benchmarking the CCZS gate. Single-qubit gates, marked as R, are used for preparing different initial states and rotating the three-qubit state for projection measurements.
Initial state After first UAB(π) After UAC(π) After last UAB(π)
|000? |000? |000? |000?
|001? |001? |001? |001?
|010? |010? |010? |010?
|011? |011? |011? |011?
|100? |100? |100? |100?
|101? |101? ?i|200? ?|110?
|110? ?i|200? ?|101? ?|101?
|111? ?i|201? ?i|201? ?|111?
Tab.1  List of states after each step of the iSWAP gate.
Fig.2  Measured truth table for our three-qubit CCZS gate. This truth table is to be compared with UF in Eq. (2). The truth table fidelity is calculated as F=(1/8)Tr(|Uexp|?|UF|)=91.2%.
Fig.3  Experimental (left column) and ideal (right column) quantum process tomography matrices χexp and χideal for the two target qubits. The control qubit QA is prepared in (a) |0? and (b) |1?, respectively.
Fig.4  Generation and benchmarking of a three-qubit GHZ state using our Fredkin-like CCZS gate. (a) The measured populations associated with the state of cos?(θ/4)|001??sin?(θ/4)|110? when a CCZS gate is applied to a direct product state of cos?(θ/4)|001??sin?(θ/4)|101?. When θ=π, the GHZ state 12(|001?+|110?) is produced. (b?e) The reconstructed density matrix for the GHZ state 12(|001?+|110?) using QST. (b) and (c) are real and imaginary parts for the case of applying the CCZS to generate the GHZ state, respectively. (d) and (e) are real and imaginary parts for the case of using traditional CZ gate and single-qubit gates, respectively.
Fig.5  Demonstration of a controlled three-qubit iSWAP operation with an arbitrary angle. The populations of the |101? state (blue dots) and |110? state (red triangles) are measured as a function of θAC in UF(θAC)=UAB(π)UAC(θAC)UAB(π). When θAC=π, |101? is completely transferred into |110?. Lines are a guide to the eye representing the theoretical prediction without decoherence and leakage errors.
1 Krinner S. , Lacroix N. , Remm A. , Di Paolo A. , Genois E. , Leroux C. , Hellings C. , Lazar S. , Swiadek F. , Herrmann J. , J. Norris G. , K. Andersen C. , Müller M. , Blais A. , Eichler C. , Wallraff A. . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
https://doi.org/10.1038/s41586-022-04566-8
2 Zhao Y. , Ye Y. , L. Huang H. , Zhang Y. , Wu D. , Guan H. , Zhu Q. , Wei Z. , He T. , Cao S. , Chen F. , H. Chung T. , Deng H. , Fan D. , Gong M. , Guo C. , Guo S. , Han L. , Li N. , Li S. , Li Y. , Liang F. , Lin J. , Qian H. , Rong H. , Su H. , Sun L. , Wang S. , Wu Y. , Xu Y. , Ying C. , Yu J. , Zha C. , Zhang K. , H. Huo Y. , Y. Lu C. , Z. Peng C. , Zhu X. , W. Pan J. . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
https://doi.org/10.1103/PhysRevLett.129.030501
3 Ni Z. , Li S. , Deng X. , Cai Y. , Zhang L. , Wang W. , B. Yang Z. , Yu H. , Yan F. , Liu S. , L. Zou C. , Sun L. , B. Zheng S. , Xu Y. , Yu D. . Beating the break-even point with a discrete-variable-encoded logical qubit. Nature, 2023, 616(7955): 56
https://doi.org/10.1038/s41586-023-05784-4
4 Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
5 Bharti K. , Cervera-Lierta A. , H. Kyaw T. , Haug T. , Alperin-Lea S. , Anand A. , Degroote M. , Heimonen H. , S. Kottmann J. , Menke T. , K. Mok W. , Sim S. , C. Kwek L. , Aspuru-Guzik A. . Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
https://doi.org/10.1103/RevModPhys.94.015004
6 Cheng B. , H. Deng X. , Gu X. , He Y. , Hu G. , Huang P. , Li J. , C. Lin B. , Lu D. , Lu Y. , Qiu C. , Wang H. , Xin T. , Yu S. , H. Yung M. , Zeng J. , Zhang S. , Zhong Y. , Peng X. , Nori F. , Yu D. . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
https://doi.org/10.1007/s11467-022-1249-z
7 Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’Brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
8 Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
9 I. Colless J. , V. Ramasesh V. , Dahlen D. , S. Blok M. , E. Kimchi-Schwartz M. , R. McClean J. , Carter J. , A. de Jong W. , Siddiqi I. . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
https://doi.org/10.1103/PhysRevX.8.011021
10 Petiziol F. , Sameti M. , Carretta S. , Wimberger S. , Mintert F. . Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 2021, 126(25): 250504
https://doi.org/10.1103/PhysRevLett.126.250504
11 Wang Z. , Y. Ge Z. , Xiang Z. , Song X. , Z. Huang R. , Song P. , Y. Guo X. , Su L. , Xu K. , Zheng D. , Fan H. . Observation of emergent Z2 gauge invariance in a superconducting circuit. Phys. Rev. Res., 2022, 4(2): L022060
https://doi.org/10.1103/PhysRevResearch.4.L022060
12 Zhang X. , Jiang W. , Deng J. , Wang K. , Chen J. , Zhang P. , Ren W. , Dong H. , Xu S. , Gao Y. , Jin F. , Zhu X. , Guo Q. , Li H. , Song C. , V. Gorshkov A. , Iadecola T. , Liu F. , X. Gong Z. , Wang Z. , L. Deng D. , Wang H. . Digital quantum simulation of floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
https://doi.org/10.1038/s41586-022-04854-3
13 S. Kang M. , Heo J. , G. Choi S. , Moon S. , W. Han S. . Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep., 2020, 10(1): 5123
https://doi.org/10.1038/s41598-020-61938-8
14 G. Cory D. , D. Price M. , Maas W. , Knill E. , Laflamme R. , H. Zurek W. , F. Havel T. , S. Somaroo S. . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
https://doi.org/10.1103/PhysRevLett.81.2152
15 P. Lanyon B. , Barbieri M. , P. Almeida M. , Jennewein T. , C. Ralph T. , J. Resch K. , J. Pryde G. , L. O’Brien J. , Gilchrist A. , G. White A. . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
https://doi.org/10.1038/nphys1150
16 Monz T. , Kim K. , Hänsel W. , Riebe M. , S. Villar A. , Schindler P. , Chwalla M. , Hennrich M. , Blatt R. . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102(4): 040501
https://doi.org/10.1103/PhysRevLett.102.040501
17 Fedorov A. , Steffen L. , Baur M. , P. da Silva M. , Wallraff A. . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481(7380): 170
https://doi.org/10.1038/nature10713
18 Roy T. , Hazra S. , Kundu S. , Chand M. , P. Patankar M. , Vijay R. . Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl., 2020, 14(1): 014072
https://doi.org/10.1103/PhysRevApplied.14.014072
19 Gu X. , Fernández-Pendás J. , Vikstål P. , Abad T. , Warren C. , Bengtsson A. , Tancredi G. , Shumeiko V. , Bylander J. , Johansson G. , F. Kockum A. . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
https://doi.org/10.1103/PRXQuantum.2.040348
20 J. Baker A. , B. P. Huber G. , J. Glaser N. , Roy F. , Tsitsilin I. , Filipp S. , J. Hartmann M. . Single shot i-Toffoli gate in dispersively coupled superconducting qubits. Appl. Phys. Lett., 2022, 120(5): 054002
https://doi.org/10.1063/5.0077443
21 Kim Y. , Morvan A. , B. Nguyen L. , K. Naik R. , Junger C. , Chen L. , M. Kreikebaum J. , I. Santiago D. , Siddiqi I. . High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
https://doi.org/10.1038/s41567-022-01590-3
22 W. Warren C. , Fernández-Pendás J. , Ahmed S. , Abad T. , Bengtsson A. , Biznárová J. , Debnath K. , Gu X. , Križan C. , Osman A. , F. Roudsari A. , Delsing P. , Johansson G. , F. Kockum A. , Tancredi G. , Bylander J. . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit. npj Quantum Inf., 2023, 9: 44
https://doi.org/10.1038/s41534-023-00711-x
23 B. Nguyen L. , Kim Y. , Hashim A. , Goss N. , Marinelli B. , Bhandari B. , Das D. , K. Naik R. , M. Kreikebaum J. , N. Jordan A. , I. Santiago D. , Siddiqi I. . Programmable Heisenberg interactions between floquet qubits. Nat. Phys., 2024, 20(2): 240
https://doi.org/10.1038/s41567-023-02326-7
24 B. Patel R. , Ho J. , Ferreyrol F. , C. Ralph T. , J. Pryde G. . A quantum Fredkin gate. Sci. Adv., 2016, 2(3): e1501531
https://doi.org/10.1126/sciadv.1501531
25 Feng W. , Wang D. . Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 2020, 101(6): 062312
https://doi.org/10.1103/PhysRevA.101.062312
26 Maity P. , Purkait M. . Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus, 2022, 137(12): 1299
https://doi.org/10.1140/epjp/s13360-022-03460-6
27 Li Y. , Wan L. , Zhang H. , Zhu H. , Shi Y. , K. Chin L. , Zhou X. , C. Kwek L. , Q. Liu A. . Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip. npj Quantum Inf., 2022, 8: 112
https://doi.org/10.1038/s41534-022-00627-y
28 Koch J. , M. Yu T. , Gambetta J. , A. Houck A. , I. Schuster D. , Majer J. , Blais A. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
https://doi.org/10.1103/PhysRevA.76.042319
29 Xu Y. , Chu J. , Yuan J. , Qiu J. , Zhou Y. , Zhang L. , Tan X. , Yu Y. , Liu S. , Li J. , Yan F. , Yu D. . High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
https://doi.org/10.1103/PhysRevLett.125.240503
30 Song C. , Xu K. , Liu W. , Yang C. , B. Zheng S. , Deng H. , Xie Q. , Huang K. , Guo Q. , Zhang L. , Zhang P. , Xu D. , Zheng D. , Zhu X. , Wang H. , A. Chen Y. , Y. Lu C. , Han S. , W. Pan J. . 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 2017, 119(18): 180511
https://doi.org/10.1103/PhysRevLett.119.180511
31 Krantz P. , Kjaergaard M. , Yan F. , P. Orlando T. , Gustavsson S. , D. Oliver W. . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
https://doi.org/10.1063/1.5089550
32 Chu J. , He X. , Zhou Y. , Yuan J. , Zhang L. , Guo Q. , Hai Y. , Han Z. , K. Hu C. , Huang W. , Jia H. , Jiao D. , Li S. , Liu Y. , Ni Z. , Nie L. , Pan X. , Qiu J. , Wei W. , Nuerbolati W. , Yang Z. , Zhang J. , Zhang Z. , Zou W. , Chen Y. , Deng X. , Deng X. , Hu L. , Li J. , Liu S. , Lu Y. , Niu J. , Tan D. , Xu Y. , Yan T. , Zhong Y. , Yan F. , Sun X. , Yu D. . Scalable algorithm simplification using quantum AND logic. Nat. Phys., 2023, 19(1): 126
https://doi.org/10.1038/s41567-022-01813-7
33 K. Hu C. , Yuan J. , A. Veloso B. , Qiu J. , Zhou Y. , Zhang L. , Chu J. , Nurbolat O. , Hu L. , Li J. , Xu Y. , Zhong Y. , Liu S. , Yan F. , Tan D. , Bachelard R. , C. Santos A. , Villas-Boas C. , Yu D. . Native conditional iSWAP operation with superconducting artificial atoms. Phys. Rev. Appl., 2023, 20(3): 034072
https://doi.org/10.1103/PhysRevApplied.20.034072
[1] Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue. Dynamical-corrected nonadiabatic geometric quantum computation[J]. Front. Phys. , 2023, 18(6): 61304-.
[2] Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices[J]. Front. Phys. , 2023, 18(6): 61302-.
[3] Xu Zhou, Daowen Qiu, Le Luo. Distributed exact Grover’s algorithm[J]. Front. Phys. , 2023, 18(5): 51305-.
[4] Liang Kong, Hao Zheng. Categorical computation[J]. Front. Phys. , 2023, 18(2): 21302-.
[5] X. Wu, P. Z. Zhao. Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian[J]. Front. Phys. , 2022, 17(3): 31502-.
[6] Shuai Liu, Jun-Hui Shen, Ri-Hua Zheng, Yi-Hao Kang, Zhi-Cheng Shi, Jie Song, Yan Xia. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms[J]. Front. Phys. , 2022, 17(2): 21502-.
[7] Sai Li, Pu Shen, Tao Chen, Zheng-Yuan Xue. Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity[J]. Front. Phys. , 2021, 16(5): 51502-.
[8] Xiao-Feng Shi. Rydberg quantum computation with nuclear spins in two-electron neutral atoms[J]. Front. Phys. , 2021, 16(5): 52501-.
[9] Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits[J]. Front. Phys. , 2020, 15(4): 41503-.
[10] M. AbuGhanem, A. H. Homid, M. Abdel-Aty. Cavity control as a new quantum algorithms implementation treatment[J]. Front. Phys. , 2018, 13(1): 130303-.
[11] Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng. Demonstration of eight-partite two-diamond shape cluster state for continuous variables[J]. Front. Phys. , 2013, 8(1): 20-26.
[12] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
[13] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): 0-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed