Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2015, Vol. 9 Issue (2) : 154-162    https://doi.org/10.1007/s11709-015-0296-8
RESEARCH ARTICLE
Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube wrapped by FRP
Abdelmadjid SI SALEM(),Souad AIT TALEB,Kamal AIT TAHAR
Laboratory LaMoMS, the University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
 Download: PDF(4405 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new concrete-composite beam with high mechanical performances to weight ratio is developed in this study. The proposed design technique consists to embed a cylindrical polymer tube wrapped by a GFRP Jacket in the mechanically ineffective concrete tensile zone. An experimental investigation is carried out on composite beams under bending loads until failure to evaluate the flexural capacity and the corresponding failure mechanisms. Based on the experimental results, statistical and preliminary reliability analyses using the FORM method are performed to assess the safety margin of the new beam. The confrontation between test and simulation results shows a satisfactory agreement, and represents a promising revelation regarding the improvement in terms of strength and ductility of such design compared to conventional reinforced concrete beams with traditional one.

Keywords design      GFRP-Jacket      polymer tube      test      reliability analysis     
Corresponding Author(s): Abdelmadjid SI SALEM   
Online First Date: 16 June 2015    Issue Date: 30 June 2015
 Cite this article:   
Abdelmadjid SI SALEM,Souad AIT TALEB,Kamal AIT TAHAR. Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube wrapped by FRP[J]. Front. Struct. Civ. Eng., 2015, 9(2): 154-162.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-015-0296-8
https://academic.hep.com.cn/fsce/EN/Y2015/V9/I2/154
Fig.1  Developed beam specimen. (a) Longitudinal view; (b) composite cross section (unit: mm)
Fig.2  Used composite materials for the experimental procedure. (a) GRFP fabric; (b) polymer tube wrapped by a GFRP Jacket
component amount/(kg·m–3)
cement CPJ 42.5 350
fine aggregate 824,36
course aggregate 1024,23
water/cement ratio 0,57
super plasticizer 5 L
Tab.1  Mix proportions of the used concrete
composite materials thickness /mm Young modulus/MPa tensile stress /MPa ultimate tensile strain/‰
GFRP fabric 1.00 82 000 1400 5.6
E-glass sheet 1.12 62 000 140 4.9
epoxy resin STR 0.97 2 800-3 200 35 2.2
polymer tube 2.00 2 400 21 10.4
steel bar / 210 000 235 10
Tab.2  Composite materials properties
Fig.3  Average stress–strain curves for various used composites
Fig.4  Experimental behavior of the polymer tube
specimens type initial crack load/kN ultimate load/kN initial crack load deflection/mm ultimate load deflection/mm failure mechanisms
mean standard mean standard mean standard mean standard
C-B 7.54 0.21 8.89 0.28 1.65 0.06 1.91 0.08 Brittle failure
C-T-B 5.32 0.83 7.23 0.33 1.34 0.09 1.67 0.11 Brittle failure a)
R-C-B 13.37 0.43 14.12 0.93 1.53 0.11 3.12 0.21 Flexural failure b)
C-C-B 20.51 0.95 21.41 0.74 1.81 0.13 5.32 0.13 Flexural & shear failure c)
Tab.3  Average test results of all specimens
Fig.5  Rupture loads and deflections for all tested beams
Fig.6  Confrontation of Load- mid-span deflection curves
Fig.7  Failure mechanisms of the concrete composite beams (C-C-Bs)
Fig.8  Failure mechanisms of the reference beams. (a) R-C-B; (b) C-T-B
tested specimens mean value /kN coefficient of variation/% associated P-value range of COV for a 95% of confidence interval/%
C-B 8.89 3.14% 0.98 ±4.47
C-T-B 7.23 4.56% 0.85 ±5.25
R-C-B 14.12 6.58% 0.48 ±14.01
C-C-B 21.41 3.45% 0.88 ±11.81
Tab.4  Random variables modeling of resisting loads
Fig.9  Superimposed Normal distribution of the generated sample for the resisting and acting load, corresponding to the C-C-B
Fig.10  Reliability index evolution as function the flexural capacity
Fig.11  Reliability index versus loads ratio
1 Bentayeb F, Ait Tahar K, Chateauneuf A. New technique for reinforcement of concrete columns confined by embedded composite grid. Construction & Building Materials, 2008, 22(8): 1624-1633
2 Ait Tahar K, Taouche F, Bouamra Y. Parametric analysis of the models of confinement of the concrete column. Key Engineering Materials, Trans Tech Publications, Switzerland, 2012, 498: 1-14
3 Vasudevan G, Kothandaraman S, Azhagarsamy S. Study on non-linear flexural behavior of reinforced concrete beams using ansys by discrete reinforcement modeling. Strength of Materials, 2013, 45(2): 231-241
4 Hassaine Daouadji T. Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates. Strength of Materials, 2013, 45(5): 587-597
5 Prachasaree W. Structural performance of light weight multi cellular FRP composite bridge deck using finite element analysis. Journal of Wuhan University of Technology-Mater. Science Editor, 2012
6 Wang S, Wang Z. Mechanism of improving ductility of high strength concrete T-section beam confined by CFRP sheet subjected to flexural loading. J. Cent. South Univ, 2013, 20(1): 246-255
7 Sundarraja M C, Prabhu G G. Experimental investigation on strengthening of CFST members under flexure using CFRP fabric. Arabian Journal for Science and Engineering, 2014, 39(2): 659-668
8 Kang T H K, Ary M I. Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part II – experimental investigation. International Journal of Concrete Structures and Materials, 2012, 6(1): 49-57
9 Hajipour A, Maheri M R. A high performance fibre reinforced cement based plaster for retrofitting RC members. Materials and Structures, 2013, 46(1-2): 277-288
10 Mufi A A, Erki M A, Jaeger L G. Advanced composite materials with application to bridges. Canadian Society for Civil Engineering, 1991, 297
11 Garden H N. An experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates. Composites Part B, 1998, 411-424
12 Wu Z, Li W, Sakuma N. Innovative externally bonded FRP/concrete hybrid flexural members. Composite Structures, 2006, 72(3): 289-300
13 Wang J, Zhang C. Nonlinear fracture mechanics of flexural–shear crack induced debonding of FRP strengthened concrete beams. International Journal of Solids and Structures, 2008, 45(10): 2916-2936
14 Ahmed A, Kodur V K R. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Composites. Part B, Engineering, 2011, 42(2): 226-237
15 Berthelot J M. Matériaux composites, comportement mécanique et analyse des structures. Lavoisier 2005, 172, 245
16 Pimenta R J, Diniz S M C, Queiroz G, Fakury R H, Galv?o A, Rodrigues F C. Reliability-based design recommendations for composite corrugated-web beams. Probabilistic Engineering Mechanics, 2012, 28: 185-193
17 Ribeiro S E C. Análise da confiabilidade de vigas de concreto armado com plástico refor?ado por fibras. PhD thesis, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil; 2009
18 Dehmous H, Welemane H. Multi-scale reliability analysis of composite structures – Application to the Laroin footbridge. Engineering Failure Analysis, 2011, 18(3): 988-998
19 He Z, Qiu F. Probabilistic assessment on flexural capacity of GFRP-reinforced concrete beams designed by guideline ACI 440.1R-06. Construction & Building Materials, 2011, 25(4): 1663-1670
20 Frangopol D M, Ide Y, Iwaki I. Effects of load path and load correlation on the reliability of concrete columns. Probabilistic mechanics and structural reliability. In: Proceedings of the seventh specialty conference. Worcester, Massachusetts, USA, 1996, 206-219
21 Frangopol D M, Ide Y, Spacone E, Iwaki I. A new look at reliability of reinforced concrete columns. J Struct Saf, 1996, 2(18): 123-150
22 Milton de Araújo J. Milton de araujo J. Probabilistic analysis of reinforced concrete columns. Advances in Engineering Software, 2001, 32(12): 871-879
23 Triantafillou T C, Plevris N. Strengthening of RC beams with epoxy-bonded fibre-composite materials. Materials and Structures, 1992, 25(4): 201-211
24 Cattaneo S, Giussani F, Mola F. Flexural behaviour of reinforced, prestressed and composite self-consolidating concrete beams. Construction & Building Materials, 2012, 36: 826-837
25 Yan L, Chouw N. Compressive and flexural behaviour and theoretical analysis of flax fibre reinforced polymer tube encased coir fibre reinforced concrete composite. Materials & Design, 2013, 52: 801-811
26 Yang D S, Park S K, Neale K W. Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites. Composite Structures, 2009, 88(4): 497-508
27 Promis G, Gabor A, Hamelin P. Analytical modeling of the bending behavior of textile reinforced mineral matrix composite beams. Composite Structures, 2011, 93(2): 792-801
28 Al-Rousan R, Haddad R. NLFEA sulfate-damage reinforced concrete beams strengthened with FRP composites. Composite Structures, 2013, 96: 433-445
29 El Batanouny M K, Larosche A, Mazzoleni P, Ziehl P H, Matta F, Zappa E. M. K. Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission. Experimental Mechanics, 2014, 54(1): 69-82
30 Neves R A, Chateauneuf A, Venturini W S, Lemaire M, 0. Reliability analysis of reinforced concrete grids with nonlinear material behavior. Reliability Engineering & System Safety, 2006, 91(6): 735-744
31 Liu P L, Der Kiureghian A. Multivariate distribution models with pre described marginal and covariances. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112
32 Croston T. Etude expérimentale du comportement d’une poutre en béton arme en flexion 3 points réparée par matériaux composites (Approche probabiliste). Dissertation for the Doctoral Degree. Ecole Nationale Supérieure d’Arts et Métiers, Centre de Bordeaux, 2006
33 Lemaire M. Fiabilité des structures: couplage mécano-fiabiliste statique. Hermès- Lavoisier, Paris, 2005
34 Ribeiro S E C, Diniz S M C. Reliability-based design recommendations for FRP-reinforced concrete beams. Engineering Structures, 2013, 52: 273-283
[1] Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU. A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1476-1491.
[2] Nabarun DEY, Aniruddha SENGUPTA. Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1462-1475.
[3] Sadegh ETEDALI. Ranking of design scenarios of TMD for seismically excited structures using TOPSIS[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1372-1386.
[4] Wengang ZHANG, Libin TANG, Hongrui LI, Lin WANG, Longfei CHENG, Tingqiang ZHOU, Xiang CHEN. Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1247-1261.
[5] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[6] Wei HUANG, Minshan PEI, Xiaodong LIU, Ya WEI. Design and construction of super-long span bridges in China: Review and future perspectives[J]. Front. Struct. Civ. Eng., 2020, 14(4): 803-838.
[7] Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB. Seismic behavior of cantilever wall embedded in dry and saturated sand[J]. Front. Struct. Civ. Eng., 2020, 14(3): 690-705.
[8] Guoqiang LI, Yifan LYU, Yanbo WANG. State-of-the-art on resistance of bearing-type bolted connections in high strength steel[J]. Front. Struct. Civ. Eng., 2020, 14(3): 569-585.
[9] Xiao-Yong WANG. Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride ingress[J]. Front. Struct. Civ. Eng., 2020, 14(2): 473-486.
[10] Hassan YOUSEFI, Alireza TAGHAVI KANI, Iradj MAHMOUDZADEH KANI, Soheil MOHAMMADI. Wavelet-based iterative data enhancement for implementation in purification of modal frequency for extremely noisy ambient vibration tests in Shiraz-Iran[J]. Front. Struct. Civ. Eng., 2020, 14(2): 446-472.
[11] Zhuang CHENG, Jianfeng WANG, Matthew Richard COOP, Guanlin YE. A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning[J]. Front. Struct. Civ. Eng., 2020, 14(2): 357-373.
[12] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[13] Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA. Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections[J]. Front. Struct. Civ. Eng., 2020, 14(1): 169-184.
[14] Meisam RABIEI, Asskar Janalizadeh CHOOBBASTI. Innovative piled raft foundations design using artificial neural network[J]. Front. Struct. Civ. Eng., 2020, 14(1): 138-146.
[15] Serdar KOLTUK, Jie SONG, Recep IYISAN, Rafig AZZAM. Seepage failure by heave in sheeted excavation pits constructed in stratified cohesionless soils[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1415-1431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed