Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (10) : 769-780    https://doi.org/10.1007/s13238-012-2040-7      PMID: 23055041
RESEARCH ARTICLE
An octamer of enolase from Streptococcus suis
Qiong Lu1,2, Hao Lu1, Jianxun Qi1, Guangwen Lu1(), George F Gao1,2,3,4()
1. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University, Chinese Academy of Sciences, Beijing 100049, China; 3. Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; 4. Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
 Download: PDF(1099 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Enolase is a conserved cytoplasmic metalloenzyme existing universally in both eukaryotic and prokaryotic cells. The enzyme can also locate on the cell surface and bind to plasminogen, via which contributing to the mucosal surface localization of the bacterial pathogens and assisting the invasion into the host cells. The functions of the eukaryotic enzymes on the cell surface expression (including T cells, B cells, neutrophils, monocytoes, neuronal cells and epithelial cells) are not known. Streptococcus suis serotype 2 (S. suis 2, SS2) is an important zoonotic pathogen which has recently caused two large-scale outbreaks in southern China with severe streptococcal toxic shock syndrome (STSS) never seen before in human sufferers. We recently identified the SS2 enolase as an important protective antigen which could protect mice from fatal S.suis 2 infection. In this study, a 2.4-angstrom structure of the SS2 enolase is solved, revealing an octameric arrangement in the crystal. We further demonstrated that the enzyme exists exclusively as an octamer in solution via a sedimentation assay. These results indicate that the octamer is the biological unit of SS2 enolase at least in vitro and most likely in vivo as well. This is, to our knowledge, the first comprehensive characterization of the SS2 enolase octamer both structurally and biophysically, and the second octamer enolase structure in addition to that of Streptococcus pneumoniae. We also investigated the plasminogen binding property of the SS2 enzyme.

Keywords enolase      octamer      Streptococcus suis      structure      plasminogen binding     
Corresponding Author(s): Lu Guangwen,Email:luguangwen2001@126.com; Gao George F,Email:gaof@im.ac.cn   
Issue Date: 01 October 2012
 Cite this article:   
Qiong Lu,Hao Lu,Jianxun Qi, et al. An octamer of enolase from Streptococcus suis[J]. Prot Cell, 2012, 3(10): 769-780.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2040-7
https://academic.hep.com.cn/pac/EN/Y2012/V3/I10/769
1 Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., . (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 .
doi: 10.1107/S0907444909052925
2 Agarwal, S., Kulshreshtha, P., Mukku, D.B., and Bhatnagar, R. (2008). alpha-Enolase binds to human plasminogen on the surface of Bacillus anthracis. Bba-Proteins Proteom 1784, 986-994 .
doi: 10.1016/j.bbapap.2008.03.017
3 Andronicos, N.M., Ranson, M., Bognacki, J., and Baker, M.S. (1997). The human ENO1 gene product (recombinant human alpha-enolase) displays characteristics required for a plasminogen binding protein. Bba-Protein Struct M 1337, 27-39 .
doi: 10.1016/S0167-4838(96)00146-X
4 Babbitt, P.C., Hasson, M.S., Wedekind, J.E., Palmer, D.R., Barrett, W.C., Reed, G.H., Rayment, I., Ringe, D., Kenyon, G.L., and Gerlt, J.A. (1996). The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. Biochemistry-US 35, 16489-16501 .
doi: 10.1021/bi9616413
5 Banner, D.W., Bloomer, A.C., Petsko, G.A., Phillips, D.C., Pogson, C.I., Wilson, I.A., Corran, P.H., Furth, A.J., Milman, J.D., Offord, R.E., . (1975). Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 255, 609-614 .
doi: 10.1038/255609a0
6 Baums, C.G., Kaim, U., Fulde, M., Ramachandran, G., Goethe, R., and Valentin-Weigand, P. (2006). Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infect Immun 74, 6154-6162 .
doi: 10.1128/IAI.00359-06
7 Bergmann, S., Rohde, M., Chhatwal, G.S., and Hammerschmidt, S. (2001). alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40, 1273-1287 .
doi: 10.1046/j.1365-2958.2001.02448.x
8 Bergmann, S., Wild, D., Diekmann, O., Frank, R., Bracht, D., Chhatwal, G.S., and Hammerschmidt, S. (2003). Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49, 411-423 .
doi: 10.1046/j.1365-2958.2003.03557.x
9 Brown, C.K., Kuhlman, P.L., Mattingly, S., Slates, K., Calie, P.J., and Farrar, W.W. (1998). A model of the quaternary structure of enolases, based on structural and evolutionary analysis of the octameric enolase from Bacillus subtilis. J Protein Chem 17, 855-866 .
doi: 10.1023/A:1020790604887
10 Candela, M., Biagi, E., Centanni, M., Turroni, S., Vici, M., Musiani, F., Vitali, B., Bergmann, S., Hammerschmidt, S., and Brigidi, P. (2009). Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiol-Sgm 155, 3294-3303 .
doi: 10.1099/mic.0.028795-0
11 Chandran, V., and Luisi, B.F. (2006). Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol 358, 8-15 .
doi: 10.1016/j.jmb.2006.02.012
12 Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., Zheng, F., Pan, X., Liu, D., Li, M., . (2007). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. Plos One 2, e315.
doi: 10.1371/journal.pone.0000315
13 collaborative. (1994). The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol crystallography 50, 760-763 .
doi: 10.1107/S0907444994003112
14 Cork, A.J., Jergic, S., Hammerschmidt, S., Kobe, B., Pancholi, V., Benesch, J.L., Robinson, C.V., Dixon, N.E., Aquilina, J.A., and Walker, M.J. (2009). Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 284, 17129-17137 .
doi: 10.1074/jbc.M109.004317
15 Derbise, A., Song, Y.P., Parikh, S., Fischetti, V.A., and Pancholi, V. (2004). Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72, 94-105 .
doi: 10.1128/IAI.72.1.94-105.2004
16 Ehinger, S., Schubert, W.D., Bergmann, S., Hammerschmidt, S., and Heinz, D.W. (2004). Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: Crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343, 997-1005 .
doi: 10.1016/j.jmb.2004.08.088
17 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .
doi: 10.1107/S0907444904019158
18 Esgleas, M., Li, Y., Hancock, M.A., Harel, J., Dubreuil, J.D., and Gottschalk, M. (2008). Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154, 2668-2679 .
doi: 10.1099/mic.0.2008/017145-0
19 Feng, Y., Pan, X., Sun, W., Wang, C., Zhang, H., Li, X., Ma, Y., Shao, Z., Ge, J., Zheng, F., . (2009). Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. J Infect Dis 200, 1583-1592 .
doi: 10.1086/644602
20 Feng, Y., Zhang, H., Ma, Y., and Gao, G.F. (2010). Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol 18, 124-131 .
doi: 10.1016/j.tim.2009.12.003
21 Gerlt, J.A., Babbitt, P.C., Jacobson, M.P., and Almo, S.C. (2012). Divergent evolution in enolase superfamily: strategies for assigning functions. J Biol Chem 287, 29-34 .
doi: 10.1074/jbc.R111.240945
22 Gerlt, J.A., Babbitt, P.C., and Rayment, I. (2005). Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch Biochem Biophys 433, 59-70 .
doi: 10.1016/j.abb.2004.07.034
23 Guo, Y., Wang, J., Niu, G., Shui, W., Sun, Y., Zhou, H., Zhang, Y., Yang, C., Lou, Z., and Rao, Z. (2011). A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2, 384-394 .
doi: 10.1007/s13238-011-1055-9
24 Han, H., Liu, C., Wang, Q., Xuan, C., Zheng, B., Tang, J., Yan, J., Zhang, J., Li, M., Cheng, H., . (2012). The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology . (In Press)
doi: 10.1099/mic.0.057448-0
25 Holm, L., and Sander, C. (1996). Mapping the protein universe. Science 273, 595-602 .
doi: 10.1126/science.273.5275.595
26 Hosaka, T., Meguro, T., Yamato, I., and Shirakihara, Y. (2003). Crystal structure of Enterococcus hirae enolase at 2.8 A resolution. J Biochem 133, 817-823 .
doi: 10.1093/jb/mvg104
27 Jones, M.N., and Holt, R.G. (2007). Cloning and characterization of an alpha-enolase of the oral pathogen Streptococcus mutans that binds human plasminogen. Biochem Bioph Res Co 364, 924-929 .
doi: 10.1016/j.bbrc.2007.10.098
28 Kang, H.J., Jung, S.K., Kim, S.J., and Chung, S.J. (2008). Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme. Acta Crystallogr D Biol Crystallogr 64, 651-657 .
doi: 10.1107/S0907444908008561
29 Karbassi, F., Quiros, V., Pancholi, V., and Kornblatt, M.J. (2010). Dissociation of the octameric enolase from S. pyogenes--one interface stabilizes another. Plos One 5, e8810.
doi: 10.1371/journal.pone.0008810
30 Kuhnel, K., and Luisi, B.F. (2001). Crystal structure of the Escherichia coli RNA degradosome component enolase. J Mol Biol 313, 583-592 .
doi: 10.1006/jmbi.2001.5065
31 Laskowski, R.A., MacArthur, M. W., Moss, D. S., & Thorton, J. M (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283-291 .
doi: 10.1107/S0021889892009944
32 Li, M., Shen, X., Yan, J., Han, H., Zheng, B., Liu, D., Cheng, H., Zhao, Y., Rao, X., Wang, C., . (2011). GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol 79, 1670-1683 .
doi: 10.1111/j.1365-2958.2011.07553.x
33 Li, M., Wang, C., Feng, Y., Pan, X., Cheng, G., Wang, J., Ge, J., Zheng, F., Cao, M., Dong, Y., . (2008). SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. Plos One 3, e2080.
doi: 10.1371/journal.pone.0002080
34 Lu, G., Qi, J., Gao, F., Yan, J., Tang, J., and Gao, G.F. (2011a). A novel "open-form" structure of sortaseC from Streptococcus suis2764-2769 .
doi: 10.1002/prot.23093
35 Lu, G., Zhang, J., Li, Y., Li, Z., Zhang, N., Xu, X., Wang, T., Guan, Z., Gao, G.F., and Yan, J. (2011b). hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell 2, 64-73 .
doi: 10.1007/s13238-011-1009-2
36 Ma, Y., Feng, Y., Liu, D., and Gao, G.F. (2009). Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China2725-2737 .
doi: 10.1098/rstb.2009.0093
37 Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255 .
doi: 10.1107/S0907444996012255
38 Nurmohamed, S., McKay, A.R., Robinson, C.V., and Luisi, B.F. (2010). Molecular recognition between Escherichia coli enolase and ribonuclease E. Acta Crystallogr D Biol Crystallogr 66, 1036-1040 .
doi: 10.1107/S0907444910030015
39 Otwinowski, Z., Minor, W., and Charles W. Carter, Jr. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology (Academic Press) , pp. 307-326 .
doi: 10.1016/S0076-6879(97)76066-X
40 Pancholi, V. (2001).Multifunctional alpha-enolase: its role in diseases . Cell Mol Life Sci 58, 902-920 .
doi: 10.1007/PL00000910
41 Schurig, H., Rutkat, K., Rachel, R., and Jaenicke, R. (1995). Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing. Protein Sci 4, 228-236 .
doi: 10.1002/pro.5560040209
42 Seweryn, E., Pietkiewicz, J., Szamborska, A., and Gamian, A. (2007). [Enolase on the surface of prockaryotic and eukaryotic cells is a receptor for human plasminogen]. Postepy Hig Med Dosw (Online) 61, 672-682 .
43 Smith, H.E., Damman, M., van der Velde, J., Wagenaar, F., Wisselink, H.J., Stockhofe-Zurwieden, N., and Smits, M.A. (1999). Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun 67, 1750-1756 .
44 Stec, B., and Lebioda, L. (1990). Refined structure of yeast apo-enolase at 2.25 A resolution. J Mol Biol 211, 235-248 .
doi: 10.1016/0022-2836(90)90023-F
45 Tang, J., Wang, C., Feng, Y., Yang, W., Song, H., Chen, Z., Yu, H., Pan, X., Zhou, X., Wang, H., . (2006). Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 3, e151.
doi: 10.1371/journal.pmed.0030151
46 Vagin, A., and Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30, 1022-1025 .
doi: 10.1107/S0021889897006766
47 Vanier, G., Sekizaki, T., Dominguez-Punaro, M.C., Esgleas, M., Osaki, M., Takamatsu, D., Segura, M., and Gottschalk, M. (2008). Disruption of srtA gene in Streptococcus suis results in decreased interactions with endothelial cells and extracellular matrix proteins. Vet Microbiol 127, 417-424 .
doi: 10.1016/j.vetmic.2007.08.032
48 Wang, C., Li, M., Feng, Y., Zheng, F., Dong, Y., Pan, X., Cheng, G., Dong, R., Hu, D., Feng, X., . (2009). The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 223-33 .
doi: 10.1007/s00203-008-0425-z
49 Wierenga, R.K. (2001). The TIM-barrel fold: a versatile framework for efficient enzymes. Febs Lett 492, 193-198 .
doi: 10.1016/S0014-5793(01)02236-0
50 Xu, L., Huang, B., Du, H., Zhang, X.C., Xu, J., Li, X., and Rao, Z. (2010). Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1, 96-105 .
doi: 10.1007/s13238-010-0012-3
51 Zhang, A., Chen, B., Mu, X., Li, R., Zheng, P., Zhao, Y., Chen, H., and Jin, M. (2009). Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine 27, 1348-1353 .
doi: 10.1016/j.vaccine.2008.12.047
52 Zheng, B., Tan, S., Gao, J., Han, H., Liu, J., Lu, G., Liu, D., Yi, Y., Zhu, B., and Gao, G.F. (2011). An unexpected similarity between antibiotic-resistant NDM-1 and beta-lactamase II from Erythrobacter litoralis. Protein Cell 2, 250-258 .
doi: 10.1007/s13238-011-1027-0
[1] Meng Wu, Jinke Gu, Shuai Zong, Runyu Guo, Tianya Liu, Maojun Yang. Research journey of respirasome[J]. Protein Cell, 2020, 11(5): 318-338.
[2] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[3] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[4] Weiyun Huang, Minhao Liu, S. Frank Yan, Nieng Yan. Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels[J]. Protein Cell, 2017, 8(6): 401-438.
[5] Hongliang Tian,Xiaoyun Ji,Xiaoyun Yang,Zhongxin Zhang,Zuokun Lu,Kailin Yang,Cheng Chen,Qi Zhao,Heng Chi,Zhongyu Mu,Wei Xie,Zefang Wang,Huiqiang Lou,Haitao Yang,Zihe Rao. Structural basis of Zika virus helicase in recognizing its substrates[J]. Protein Cell, 2016, 7(8): 562-570.
[6] Runyu Guo,Jinke Gu,Meng Wu,Maojun Yang. Amazing structure of respirasome: unveiling the secrets of cell respiration[J]. Protein Cell, 2016, 7(12): 854-865.
[7] Huirong Yang,Jia Wang,Mengjie Liu,Xizi Chen,Min Huang,Dan Tan,Meng-Qiu Dong,Catherine C. L. Wong,Jiawei Wang,Yanhui Xu,Hong-Wei Wang. 4.4 Å Resolution Cryo-EM structure of human mTOR Complex 1[J]. Protein Cell, 2016, 7(12): 878-887.
[8] Mingyang Wang,Michael Veit. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus[J]. Protein Cell, 2016, 7(1): 28-45.
[9] Shishang Dong,Peng Yang,Guobang Li,Baocheng Liu,Wenming Wang,Xiang Liu,Boran Xia,Cheng Yang,Zhiyong Lou,Yu Guo,Zihe Rao. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution[J]. Protein Cell, 2015, 6(5): 351-362.
[10] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[11] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[12] Ning Hao,Yutao Chen,Ming Xia,Ming Tan,Wu Liu,Xiaotao Guan,Xi Jiang,Xuemei Li,Zihe Rao. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope[J]. Protein Cell, 2015, 6(2): 101-116.
[13] Chenjun Jia,Mei Li,Jianjun Li,Jingjing Zhang,Hongmei Zhang,Peng Cao,Xiaowei Pan,Xuefeng Lu,Wenrui Chang. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases[J]. Protein Cell, 2015, 6(1): 55-67.
[14] Yibing Huang,Liyan He,Guirong Li,Naicui Zhai,Hongyu Jiang,Yuxin Chen. Role of helicity of α-helical antimicrobial peptides to improve specificity[J]. Protein Cell, 2014, 5(8): 631-642.
[15] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed