|
|
|
Single-nucleus transcriptomic landscape of primate hippocampal aging |
Hui Zhang1,6, Jiaming Li4,6,7,10,11, Jie Ren4,5,6,7,10, Shuhui Sun1,5,13, Shuai Ma1,5,13, Weiqi Zhang4,5,6,7,10, Yang Yu12,14, Yusheng Cai1,5,13, Kaowen Yan1,5,13, Wei Li2,5,6,13, Baoyang Hu2,5,6,13, Piu Chan3, Guo-Guang Zhao3,9, Juan Carlos Izpisua Belmonte15, Qi Zhou2,5,6,13, Jing Qu2,5,6,13( ), Si Wang3,8( ), Guang-Hui Liu1,3,5,6,13( ) |
1. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China 4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China 6. University of Chinese Academy of Sciences, Beijing 100049, China 7. China National Center for Bioinformation, Beijing 100101, China 8. Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China 9. Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China 10. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China 11. Sino-Danish Center for Education and Research, Beijing 101408, China 12. Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China 13. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China 14. Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China 15. Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA |
|
|
|
|
Abstract The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
|
| Keywords
aging
hippocampus
primate
single-cell RNA sequencing
|
|
Corresponding Author(s):
Jing Qu,Si Wang,Guang-Hui Liu
|
|
Online First Date: 30 July 2021
Issue Date: 14 October 2021
|
|
| 1 |
C Aging Atlas (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830
https://doi.org/10.1093/nar/gkaa894
|
| 2 |
S Aibar, CB González-Blas, T Moerman , VA Huynh-Thu, H Imrichova, G Hulselmans, F Rambow, J-C Marine , P Geurts, J Aertset al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086
https://doi.org/10.1038/nmeth.4463
|
| 3 |
JB Aimone, Y Li, SW Lee , GD Clemenson, W Deng, FH Gage (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026
https://doi.org/10.1152/physrev.00004.2014
|
| 4 |
I Angelidis, LM Simon, IE Fernandez , M Strunz, CH Mayr, FR Greiffo, G Tsitsiridis, M Ansari , E Graf, TM Stromet al. (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10:963
https://doi.org/10.1038/s41467-019-08831-9
|
| 5 |
B Artegiani, A Lyubimova, M Muraro , JH van Es, A van Oudenaarden, H Clevers (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284
https://doi.org/10.1016/j.celrep.2017.11.050
|
| 6 |
GS Baird, SK Nelson, TR Keeney , A Stewart, S Williams, S Kraemer, ER Peskind, TJ Montine (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180:446–456
https://doi.org/10.1016/j.ajpath.2011.10.024
|
| 7 |
DJ Baker, RC Petersen (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Investig 128:1208–1216
https://doi.org/10.1172/JCI95145
|
| 8 |
TA Bedrosian, J Houtman, JS Eguiguren , S Ghassemzadeh , N Rund, NM Novaresi, L Hu, SL Parylak, AM Denli , L Randolph-Moore et al.(2021) Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 40:e105819
https://doi.org/10.15252/embj.2020105819
|
| 9 |
N Bengoa-Vergniory , RM Kypta (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172
https://doi.org/10.1007/s00018-015-2028-6
|
| 10 |
S Bi, Z Liu, Z Wu , Z Wang, X Liu, S Wang, J Ren, Y Yao , W Zhang, M Songet al. (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11:483–504
https://doi.org/10.1007/s13238-020-00728-4
|
| 11 |
MK Bin Imtiaz, BN Jaeger, S Bottes , RAC Machado, M Vidmar, DL Moore, S Jessberger (2021) Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell.
https://doi.org/10.1016/j.stem.2021.01.015
|
| 12 |
M Boldrini, CA Fulmore, AN Tartt , LR Simeon, I Pavlova, V Poposka, GB Rosoklija, A Stankov , V Arango, AJ Dworket al. (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585
https://doi.org/10.1016/j.stem.2018.03.015
|
| 13 |
UT Brunk, A Terman (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002
https://doi.org/10.1046/j.1432-1033.2002.02869.x
|
| 14 |
KJ Bryan, X Zhu, PL Harris , G Perry, RJ Castellani, MA Smith, G Casadesus (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13
https://doi.org/10.1186/1750-1326-3-13
|
| 15 |
A Buchwalter, JM Kaneshiro, MW Hetzer (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50
https://doi.org/10.1038/s41576-018-0063-5
|
| 16 |
A Buckig, R Tikkanen, V Herzog , A Schmitz (2002) Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360
https://doi.org/10.1007/s00418-002-0459-2
|
| 17 |
A Butler, P Hoffman, P Smibert , E Papalexi, R Satija (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420
https://doi.org/10.1038/nbt.4096
|
| 18 |
Y Chen, Y Niu, W Ji (2012) Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genom 39:247–251
https://doi.org/10.1016/j.jgg.2012.04.007
|
| 19 |
Y Chen, Y Niu, W Ji (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280:246–251
https://doi.org/10.1111/joim.12469
|
| 20 |
Y Chen, J Yu, Y Niu , D Qin, H Liu, G Li, Y Hu, J Wang , Y Lu, Y Kanget al. (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169(945–955):
https://doi.org/10.1016/j.cell.2017.04.035
|
| 21 |
WT Chen, A Lu, K Craessaerts , B Pavie, C Sala Frigerio, N Corthout, X Qian, J Lalakova, M Kuhnemund , I Voytyuket al. (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919
https://doi.org/10.1016/j.cell.2020.06.038
|
| 22 |
HM Chow, M Shi, A Cheng , Y Gao, G Chen, X Song, RWL So, J Zhang , K Herrup (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819
https://doi.org/10.1038/s41593-019-0505-1
|
| 23 |
RJ Colman (2018) Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 1864:2733–2741
https://doi.org/10.1016/j.bbadis.2017.07.008
|
| 24 |
M Costa-Mattioli, P Walter (2020) The integrated stress response: from mechanism to disease. Science 368:eaat5314
https://doi.org/10.1126/science.aat5314
|
| 25 |
M De Cecco, T Ito, AP Petrashen , AE Elias, NJ Skvir, SW Criscione, A Caligiana, G Brocculi , EM Adney, JD Boekeet al.(2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
https://doi.org/10.1038/s41586-018-0784-9
|
| 26 |
F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint (2009) Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
https://doi.org/10.1038/nprot.2009.191
|
| 27 |
L Deng, R Ren, Z Liu , M Song, J Li, Z Wu, X Ren, L Fu , W Li, W Zhanget al.(2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329
https://doi.org/10.1038/s41467-019-10831-8
|
| 28 |
Z Diao, Q Ji, Z Wu , W Zhang , Y Cai, Z Wang, J Hu, Z Liu , Q Wang, S Biet al. (2021) SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 49:4203–4219
https://doi.org/10.1093/nar/gkab161
|
| 29 |
Z Dou, C Xu, G Donahue , T Shimi, JA Pan, J Zhu, A Ivanov, BC Capell , AM Drake, PP Shahet al. (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109
https://doi.org/10.1038/nature15548
|
| 30 |
BW Dulken, MT Buckley, P Navarro Negredo, N Saligrama , R Cayrol, DS Leeman, BM George, SC Boutet, K Hebestreit , JV Pluvinageet al. (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–210
https://doi.org/10.1038/s41586-019-1362-5
|
| 31 |
M Efremova, M Vento-Tormo, SA Teichmann , R Vento-Tormo (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506
https://doi.org/10.1038/s41596-020-0292-x
|
| 32 |
JM Encinas, TV Michurina, N Peunova , JH Park, J Tordo, DA Peterson, G Fishell, A Koulakov , G Enikolopov (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579
https://doi.org/10.1016/j.stem.2011.03.010
|
| 33 |
X Fan, EG Wheatley, SA Villeda (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272
https://doi.org/10.1146/annurev-neuro-072116-031357
|
| 34 |
B Frost (2016) Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus 7:275–283
https://doi.org/10.1080/19491034.2016.1183859
|
| 35 |
L Geng, Z Liu, S Wang , S Sun, S Ma, X Liu, P Chan, L Sun , M Song, W Zhanget al. (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775
https://doi.org/10.1007/s13238-019-0646-8
|
| 36 |
SB Geutskens, PL Hordijk, PB van Hennik (2010) The chemorepellent Slit3 promotes monocyte migration. J Immunol 185:7691–7698
https://doi.org/10.4049/jimmunol.0903898
|
| 37 |
E Giacobini, G Gold (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686
https://doi.org/10.1038/nrneurol.2013.223
|
| 38 |
SX Gu, T Tyagi, K Jain , VW Gu, SH Lee, JM Hwa, JM Kwan, DS Krause , AI Lee, S Haleneet al.(2021) Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 18:194–209
https://doi.org/10.1038/s41569-020-00469-1
|
| 39 |
J Gust, KA Hay, LA Hanafi , D Li, D Myerson, LF Gonzalez-Cuyar, C Yeung, WC Liles, M Wurfel , JA Lopezet al. (2017) Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–1419
https://doi.org/10.1158/2159-8290.CD-17-0698
|
| 40 |
N Habib, Y Li, M Heidenreich , L Swiech, I Avraham-Davidi, JJ Trombetta, C Hession, F Zhang, A Regev (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928
https://doi.org/10.1126/science.aad7038
|
| 41 |
L Harris, LA Genovesi, RM Gronostajski, BJ Wainwright , M Piper (2015) Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations. Dev Dyn 244:227–238
https://doi.org/10.1002/dvdy.24182
|
| 42 |
G He, W Luo, P Li , C Remmers, WJ Netzer, J Hendrick, K Bettayeb, M Flajolet , F Gorelick, LP Wennogleet al. (2010) Gammasecretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467:95–98
https://doi.org/10.1038/nature09325
|
| 43 |
X He, S Memczak, J Qu , JCI Belmonte, GH Liu (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
https://doi.org/10.1038/s42255-020-0196-7
|
| 44 |
D Head, AZ Snyder, LE Girton , JC Morris, RL Buckner (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739
https://doi.org/10.1093/cercor/bhh174
|
| 45 |
S Herculano-Houzel (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31
https://doi.org/10.3389/neuro.09.031.2009
|
| 46 |
B Hoppe, T Dorner (2012) Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol 8:738–746
https://doi.org/10.1038/nrrheum.2012.184
|
| 47 |
Y Hou, X Dan, M Babbar , Y Wei, SG Hasselbalch, DL Croteau, VA Bohr (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581
https://doi.org/10.1038/s41582-019-0244-7
|
| 48 |
H Hu, Q Ji, M Song , J Ren, Z Liu, Z Wang, X Liu, K Yan , J Hu, Y Jinget al. (2020) ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 48:6001–6018
https://doi.org/10.1093/nar/gkaa425
|
| 49 |
IK Hwang, JH Park, TK Lee , DW Kim, KY Yoo, JH Ahn, YH Kim, JH Cho , YM Kim, MH Wonet al. (2017) CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 15:4148–4154
https://doi.org/10.3892/mmr.2017.6525
|
| 50 |
A Ibrayeva, M Bay, E Pu , DJ Jorg, L Peng, H Jun, N Zhang, D Aaron , C Lin, G Resleret al. (2021) Early stem cell aging in the mature brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.018
https://doi.org/10.1016/j.stem.2021.03.018
|
| 51 |
WN Jin, K Shi, W He , JH Sun, L Van Kaer, FD Shi, Q Liu (2021) Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 24:61–73
https://doi.org/10.1038/s41593-020-00745-w
|
| 52 |
G Kempermann, H Song, FH Gage (2015) Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812
https://doi.org/10.1101/cshperspect.a018812
|
| 53 |
H Keren-Shaul, A Spinrad, A Weiner , O Matcovitch-Natan, R Dvir-Szternfeld , TK Ulland, E David, K Baruch, D Lara-Astaiso, B Tothet al. (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290
https://doi.org/10.1016/j.cell.2017.05.018
|
| 54 |
SR Krishnaswami, RV Grindberg, M Novotny, P Venepally , B Lacar, K Bhutani, SB Linker, S Pham, JA Erwin , JA Milleret al. (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11:499–524
https://doi.org/10.1038/nprot.2016.015
|
| 55 |
EK Kruithof, S Dunoyer-Geindre (2014) Human tissue-type plasminogen activator. Thromb Haemost 112:243–254
https://doi.org/10.1160/TH13-06-0517
|
| 56 |
HG Kuhn, T Toda, FH Gage (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410
https://doi.org/10.1523/JNEUROSCI.2144-18.2018
|
| 57 |
F Leng, P Edison (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
https://doi.org/10.1038/s41582-020-00435-y
|
| 58 |
B Leuner, Y Kozorovitskiy, CG Gross , E Gould (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173
https://doi.org/10.1073/pnas.0708228104
|
| 59 |
CEG Leyns, JD Ulrich, MB Finn , FR Stewart, LJ Koscal, J Remolina Serrano, GO Robinson, E Anderson, M Colonna , DM Holtzman (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci USA 114:11524–11529
https://doi.org/10.1073/pnas.1710311114
|
| 60 |
R Li, K Lindholm, LB Yang , X Yue, M Citron, R Yan, T Beach, L Sue , M Sabbagh, H Caiet al.(2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637
https://doi.org/10.1073/pnas.0205689101
|
| 61 |
D Li, N Takeda, R Jain , LJ Manderfield, F Liu, L Li, SA Anderson, JA Epstein (2015) Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 15:522–529
https://doi.org/10.1016/j.scr.2015.09.015
|
| 62 |
J Li, Y Zheng, P Yan , M Song, S Wang, L Sun, Z Liu, S Ma , JCI Belmonte, P Chanet al.(2020) A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 8(2):127
https://doi.org/10.1093/nsr/nwaa127
|
| 63 |
C Liang, Z Liu, M Song , W Li, Z Wu, Z Wang, Q Wang, S Wang , K Yan, L Sunet al.(2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31:187–205
https://doi.org/10.1038/s41422-020-0385-7
|
| 64 |
B Linnartz-Gerlach, LG Bodea, C Klaus, A Ginolhac , R Halder, L Sinkkonen, J Walter, M Colonna, H Neumann (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550
https://doi.org/10.1002/glia.23563
|
| 65 |
GH Liu, J Qu, K Suzuki, E Nivet, M Li, N Montserrat, F Yi, X Xu, S Ruiz, W Zhanget al.(2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
https://doi.org/10.1038/nature11557
|
| 66 |
X Liu, Z Liu, L Sun , J Ren, Z Wu, X Jiang, Q Ji, Q, Wang Y Fan, Y Caiet al. (2021) Resurrection of human endogenous retroviruses during aging reinforces senescence. bioRxiv. https://doi.org/10
|
| 67 |
SJ Lubbe, B Bustos, J Hu , D Krainc, T Joseph, J Hehir, M Tan, W Zhang, V Escott-Price , NM Williamset al.(2021) Assessing the relationship between monoallelic PRKN mutations and Parkinson’s risk. Human Mol Genet 30:78–86
https://doi.org/10.1093/hmg/ddaa273
|
| 68 |
S Ma, S Sun, L Geng , M Song, W Wang, Y Ye, Q Ji, Z Zou , S Wang, X Heet al. (2020a) Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell 180 (984–1001):e1022
https://doi.org/10.1016/j.cell.2020.02.008
|
| 69 |
S Ma, S Sun, J Li , Y Fan, J Qu, L Sun, S Wang, Y Zhang , S Yang, Z Liuet al. (2020b) Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 31(4):415–432
https://doi.org/10.1038/s41422-020-00412-6
|
| 70 |
NV Malykhin, TP Bouchard, R Camicioli , NJ Coupland (2008) Aging hippocampus and amygdala. NeuroReport 19:543–547
https://doi.org/10.1097/WNR.0b013e3282f8b18c
|
| 71 |
OA Marcos-Contreras, de Martinez S Lizarrondo, I Bardou, C Orset, M Pruvost, A Anfray, Y Frigout, Y Hommet, L Lebouvier, J Montaneret al. (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128:2423–2434
https://doi.org/10.1182/blood-2016-03-705384
|
| 72 |
S Marques, A Zeisel, S Codeluppi , D van Bruggen, A Mendanha Falcao, L Xiao, H Li, M Haring, H Hochgerner , RA Romanovet al. (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329
https://doi.org/10.1126/science.aaf6463
|
| 73 |
P Martinelli, FX Real (2019) Mouse models shed light on the SLIT/ ROBO pathway in pancreatic development and cancer. Trends Cancer 5:145–148
https://doi.org/10.1016/j.trecan.2019.02.004
|
| 74 |
P Mauffrey, N Tchitchek, V Barroca , A-P Bemelmans, V Firlej, Y Allory, P-H Roméo, C Magnon (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678
https://doi.org/10.1038/s41586-019-1219-y
|
| 75 |
CS McGinnis, LM Murrow, ZJ Gartner (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e324
https://doi.org/10.1016/j.cels.2019.03.003
|
| 76 |
JH Morrison, MG Baxter (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250
https://doi.org/10.1038/nrn3200
|
| 77 |
R Nakamura, C Nakamoto, H Obama , E Durward, M Nakamoto (2012) Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J Biol Chem 287:3282–3291
https://doi.org/10.1074/jbc.M111.281485
|
| 78 |
P Navarro Negredo, RW Yeo A , Brunet (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27:202–223
https://doi.org/10.1016/j.stem.2020.07.002
|
| 79 |
D Ofengeim, J Yuan (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736
https://doi.org/10.1038/nrm3683
|
| 80 |
RM Ransohoff (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783
https://doi.org/10.1126/science.aag2590
|
| 81 |
O Rivero, S Sich, S Popp , A Schmitt, B Franke, KP Lesch (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23:492–507
https://doi.org/10.1016/j.euroneuro.2012.06.009
|
| 82 |
P Shannon, A Markiel, O Ozier , NS Baliga, JT Wang, D Ramage, N Amin, B Schwikowski , T Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
https://doi.org/10.1101/gr.1239303
|
| 83 |
Z Shi, Y Geng, J Liu , H Zhang, L Zhou, Q Lin, J Yu, K Zhang, J Liu, X Gaoet al. (2018) Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–364
https://doi.org/10.1007/s13238-017-0450-2
|
| 84 |
M Simon, M Van Meter, J Ablaeva, Z Ke, RS Gonzalez, T Taguchi, M De Cecco, KI Leonova, V Kogan, SL Helfand et al. (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885
https://doi.org/10.1016/j.cmet.2019.02.014
|
| 85 |
PL Stahl, F Salmen, S Vickovic , A Lundmark, JF Navarro, J Magnusson, S Giacomello, M Asp , JO Westholm, M Husset al. (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
https://doi.org/10.1126/science.aaf2403
|
| 86 |
H Su, N Na, X Zhang , Y Zhao (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216
https://doi.org/10.1007/s00011-016-0995-1
|
| 87 |
A Subramanian, P Tamayo, VK Mootha , S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy , TR Golub, ES Landeret al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545
https://doi.org/10.1073/pnas.0506580102
|
| 88 |
MD Sweeney, AP Sagare, BV Zlokovic (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150
https://doi.org/10.1038/nrneurol.2017.188
|
| 89 |
T Tanaka, A Biancotto, R Moaddel , AZ Moore, M Gonzalez-Freire, MA Aon, J Candia, P Zhang, F Cheung , G Fantoniet al.(2018) Plasma proteomic signature of age in healthy humans. Aging Cell 17:
https://doi.org/10.1111/acel.12799
|
| 90 |
H Tiensuu, AM Haapalainen, MK Karjalainen , A Pasanen, JM Huusko, R Marttila, M Ojaniemi, LJ Muglia , M Hallman, M Ramet (2019) Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 15:e1008107
https://doi.org/10.1371/journal.pgen.1008107
|
| 91 |
JS Tilstra, CL Clauson, LJ Niedernhofer, PD Robbins (2011) NFkappaB in aging and disease. Aging Dis 2:449–465
|
| 92 |
C Trapnell, D Cacchiarelli, J Grimsby , P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak , TS Mikkelsen, JL Rinn (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386
https://doi.org/10.1038/nbt.2859
|
| 93 |
TK Ulland, M Colonna (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675
https://doi.org/10.1038/s41582-018-0072-1
|
| 94 |
M Vanlandewijck, L He, MA Mae, J Andrae , K Ando, F Del Gaudio, K Nahar, T Lebouvier, B Lavina , L Gouveiaet al. (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480
https://doi.org/10.1038/nature25739
|
| 95 |
MJ Végh, A Rausell, M Loos , CM Heldring, W Jurkowski, P van Nierop, I Paliukhovich, KW Li , A del AB Sol, Smit et al. (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteom 13:2975–2985
https://doi.org/10.1074/mcp.M113.032086
|
| 96 |
HE Volkman, DB Stetson (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422
https://doi.org/10.1038/ni.2872
|
| 97 |
L Wang, G Song, X Zhang , T Feng, J Pan, W Chen, M Yang, X Bai , Y Pang, J Yuet al. (2017) PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res 77:5755–5768
https://doi.org/10.1158/0008-5472.CAN-17-0150
|
| 98 |
S Wang, Y, Zheng J Li , Y Yu, W Zhang, M Song, Z Liu, Z Min , H Hu, Y Jinget al.(2020a) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(585–600):e519
https://doi.org/10.1016/j.cell.2020.01.009
|
| 99 |
S Wang, Y Zheng, Q Li , X He, R Ren, W Zhang , M Song, H Hu , F Liu, G Sunet al.(2020b) Deciphering primate retinal aging at singlecell resolution. Protein Cell. https://doi.org/10.1007/s13238-020-
https://doi.org/10.1007/s13238-020-00791-x
|
| 100 |
J Wegiel, J Frackowiak, B Mazur-Kolecka, NC Schanen , Jr Cook EH, M Sigman, WT Brown, I Kuchna, J Wegiel , K Nowickiet al.(2012) Abnormal intracellular accumulation and extracellular Abeta deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 7:e35414
https://doi.org/10.1371/journal.pone.0035414
|
| 101 |
MS Woo, F Ufer, N Rothammer , G Di Liberto, L Binkle, U Haferkamp, JK Sonner, JB Engler , S Hornig, S Baueret al. (2021) Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med. https://doi.org/10.1084/
https://doi.org/10.1084/jem.20201290
|
| 102 |
T Wyss-Coray (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186
https://doi.org/10.1038/nature20411
|
| 103 |
X Yang, A Goh, SH Chen , A Qiu (2013) Evolution of hippocampal shapes across the human lifespan. Hum Brain Mapp 34:3075–3085
https://doi.org/10.1002/hbm.22125
|
| 104 |
AC Yang, MY Stevens, MB Chen , DP Lee, D Stahli, D Gate, K Contrepois, W Chen , T Iram, L Zhanget al. (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430
https://doi.org/10.1038/s41586-020-2453-z
|
| 105 |
MD Young, S Behjati (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9:giaa151
https://doi.org/10.1093/gigascience/giaa151
|
| 106 |
HC Yu, CH Tung, KY Huang , HB Huang, MC Lu (2020) The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage. Int J Mol Sci 21:5720
https://doi.org/10.3390/ijms21165720
|
| 107 |
J Yuan, P Amin, D Ofengeim (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33
https://doi.org/10.1038/s41583-018-0093-1
|
| 108 |
M Zenker, J Bunt, I Schanze, D Schanze, M Piper, M Priolo, EH Gerkes, RM Gronostajski, LJ Richards , J Vogtet al. (2019) Variants in nuclear factor I genes influence growth and development. Am J Med Genet C Semin Med Genet 181:611–626
https://doi.org/10.1002/ajmg.c.31747
|
| 109 |
W Zhang, J Li, K Suzuki , J Qu, P Wang, J Zhou, X Liu, R Ren , X Xu, A Ocampoet al. (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
https://doi.org/10.1126/science.aaa1356
|
| 110 |
W Zhang, H Wan, G Feng , J Qu, J Wang, Y Jing, R Ren, Z Liu , L Zhang, Z Chenet al. (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
https://doi.org/10.1038/s41586-018-0437-z
|
| 111 |
K Zhang, Y Wang, T Fan , C Zeng, ZS Sun (2020a) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell.
https://doi.org/10.1007/s13238-020-00812-9
|
| 112 |
W Zhang, J Qu, GH Liu , JCI Belmonte (2020b) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21:137–150
https://doi.org/10.1038/s41580-019-0204-5
|
| 113 |
W Zhang, S Zhang, P Yan , J Ren, M Song, J Li, J Lei, H Pan , S Wang, X Maet al. (2020c) A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 11:2202
https://doi.org/10.1038/s41467-020-15997-0
|
| 114 |
S Zhong, W Ding, L Sun , Y Lu, H Dong, X Fan, Z Liu, R Chen , S Zhang, Q Maet al.(2020) Decoding the development of the human hippocampus. Nature 577:531–536
https://doi.org/10.1038/s41586-019-1917-5
|
| 115 |
Y Zhou, B Zhou, L Pache , M Chang, AH Khodabakhshi, O Tanaseichuk, C Benner, SK Chanda (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
https://doi.org/10.1038/s41467-019-09234-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|