Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (9) : 695-716    https://doi.org/10.1007/s13238-021-00852-9
RESEARCH ARTICLE
Single-nucleus transcriptomic landscape of primate hippocampal aging
Hui Zhang1,6, Jiaming Li4,6,7,10,11, Jie Ren4,5,6,7,10, Shuhui Sun1,5,13, Shuai Ma1,5,13, Weiqi Zhang4,5,6,7,10, Yang Yu12,14, Yusheng Cai1,5,13, Kaowen Yan1,5,13, Wei Li2,5,6,13, Baoyang Hu2,5,6,13, Piu Chan3, Guo-Guang Zhao3,9, Juan Carlos Izpisua Belmonte15, Qi Zhou2,5,6,13, Jing Qu2,5,6,13(), Si Wang3,8(), Guang-Hui Liu1,3,5,6,13()
1. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. China National Center for Bioinformation, Beijing 100101, China
8. Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
9. Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
10. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
11. Sino-Danish Center for Education and Research, Beijing 101408, China
12. Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
13. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
14. Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
15. Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
 Download: PDF(3408 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.

Keywords aging      hippocampus      primate      single-cell RNA sequencing     
Corresponding Author(s): Jing Qu,Si Wang,Guang-Hui Liu   
Online First Date: 30 July 2021    Issue Date: 14 October 2021
 Cite this article:   
Hui Zhang,Jiaming Li,Jie Ren, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging[J]. Protein Cell, 2021, 12(9): 695-716.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-021-00852-9
https://academic.hep.com.cn/pac/EN/Y2021/V12/I9/695
1 C Aging Atlas (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830
https://doi.org/10.1093/nar/gkaa894
2 S Aibar, CB González-Blas, T Moerman , VA Huynh-Thu, H Imrichova, G Hulselmans, F Rambow, J-C Marine , P Geurts, J Aertset al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086
https://doi.org/10.1038/nmeth.4463
3 JB Aimone, Y Li, SW Lee , GD Clemenson, W Deng, FH Gage (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026
https://doi.org/10.1152/physrev.00004.2014
4 I Angelidis, LM Simon, IE Fernandez , M Strunz, CH Mayr, FR Greiffo, G Tsitsiridis, M Ansari , E Graf, TM Stromet al. (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10:963
https://doi.org/10.1038/s41467-019-08831-9
5 B Artegiani, A Lyubimova, M Muraro , JH van Es, A van Oudenaarden, H Clevers (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284
https://doi.org/10.1016/j.celrep.2017.11.050
6 GS Baird, SK Nelson, TR Keeney , A Stewart, S Williams, S Kraemer, ER Peskind, TJ Montine (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180:446–456
https://doi.org/10.1016/j.ajpath.2011.10.024
7 DJ Baker, RC Petersen (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Investig 128:1208–1216
https://doi.org/10.1172/JCI95145
8 TA Bedrosian, J Houtman, JS Eguiguren , S Ghassemzadeh , N Rund, NM Novaresi, L Hu, SL Parylak, AM Denli , L Randolph-Moore et al.(2021) Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 40:e105819
https://doi.org/10.15252/embj.2020105819
9 N Bengoa-Vergniory , RM Kypta (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172
https://doi.org/10.1007/s00018-015-2028-6
10 S Bi, Z Liu, Z Wu , Z Wang, X Liu, S Wang, J Ren, Y Yao , W Zhang, M Songet al. (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11:483–504
https://doi.org/10.1007/s13238-020-00728-4
11 MK Bin Imtiaz, BN Jaeger, S Bottes , RAC Machado, M Vidmar, DL Moore, S Jessberger (2021) Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell.
https://doi.org/10.1016/j.stem.2021.01.015
12 M Boldrini, CA Fulmore, AN Tartt , LR Simeon, I Pavlova, V Poposka, GB Rosoklija, A Stankov , V Arango, AJ Dworket al. (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585
https://doi.org/10.1016/j.stem.2018.03.015
13 UT Brunk, A Terman (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002
https://doi.org/10.1046/j.1432-1033.2002.02869.x
14 KJ Bryan, X Zhu, PL Harris , G Perry, RJ Castellani, MA Smith, G Casadesus (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13
https://doi.org/10.1186/1750-1326-3-13
15 A Buchwalter, JM Kaneshiro, MW Hetzer (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50
https://doi.org/10.1038/s41576-018-0063-5
16 A Buckig, R Tikkanen, V Herzog , A Schmitz (2002) Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360
https://doi.org/10.1007/s00418-002-0459-2
17 A Butler, P Hoffman, P Smibert , E Papalexi, R Satija (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420
https://doi.org/10.1038/nbt.4096
18 Y Chen, Y Niu, W Ji (2012) Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genom 39:247–251
https://doi.org/10.1016/j.jgg.2012.04.007
19 Y Chen, Y Niu, W Ji (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280:246–251
https://doi.org/10.1111/joim.12469
20 Y Chen, J Yu, Y Niu , D Qin, H Liu, G Li, Y Hu, J Wang , Y Lu, Y Kanget al. (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169(945–955):
https://doi.org/10.1016/j.cell.2017.04.035
21 WT Chen, A Lu, K Craessaerts , B Pavie, C Sala Frigerio, N Corthout, X Qian, J Lalakova, M Kuhnemund , I Voytyuket al. (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919
https://doi.org/10.1016/j.cell.2020.06.038
22 HM Chow, M Shi, A Cheng , Y Gao, G Chen, X Song, RWL So, J Zhang , K Herrup (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819
https://doi.org/10.1038/s41593-019-0505-1
23 RJ Colman (2018) Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 1864:2733–2741
https://doi.org/10.1016/j.bbadis.2017.07.008
24 M Costa-Mattioli, P Walter (2020) The integrated stress response: from mechanism to disease. Science 368:eaat5314
https://doi.org/10.1126/science.aat5314
25 M De Cecco, T Ito, AP Petrashen , AE Elias, NJ Skvir, SW Criscione, A Caligiana, G Brocculi , EM Adney, JD Boekeet al.(2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
https://doi.org/10.1038/s41586-018-0784-9
26 F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint (2009) Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
https://doi.org/10.1038/nprot.2009.191
27 L Deng, R Ren, Z Liu , M Song, J Li, Z Wu, X Ren, L Fu , W Li, W Zhanget al.(2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329
https://doi.org/10.1038/s41467-019-10831-8
28 Z Diao, Q Ji, Z Wu , W Zhang , Y Cai, Z Wang, J Hu, Z Liu , Q Wang, S Biet al. (2021) SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 49:4203–4219
https://doi.org/10.1093/nar/gkab161
29 Z Dou, C Xu, G Donahue , T Shimi, JA Pan, J Zhu, A Ivanov, BC Capell , AM Drake, PP Shahet al. (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109
https://doi.org/10.1038/nature15548
30 BW Dulken, MT Buckley, P Navarro Negredo, N Saligrama , R Cayrol, DS Leeman, BM George, SC Boutet, K Hebestreit , JV Pluvinageet al. (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–210
https://doi.org/10.1038/s41586-019-1362-5
31 M Efremova, M Vento-Tormo, SA Teichmann , R Vento-Tormo (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506
https://doi.org/10.1038/s41596-020-0292-x
32 JM Encinas, TV Michurina, N Peunova , JH Park, J Tordo, DA Peterson, G Fishell, A Koulakov , G Enikolopov (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579
https://doi.org/10.1016/j.stem.2011.03.010
33 X Fan, EG Wheatley, SA Villeda (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272
https://doi.org/10.1146/annurev-neuro-072116-031357
34 B Frost (2016) Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus 7:275–283
https://doi.org/10.1080/19491034.2016.1183859
35 L Geng, Z Liu, S Wang , S Sun, S Ma, X Liu, P Chan, L Sun , M Song, W Zhanget al. (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775
https://doi.org/10.1007/s13238-019-0646-8
36 SB Geutskens, PL Hordijk, PB van Hennik (2010) The chemorepellent Slit3 promotes monocyte migration. J Immunol 185:7691–7698
https://doi.org/10.4049/jimmunol.0903898
37 E Giacobini, G Gold (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686
https://doi.org/10.1038/nrneurol.2013.223
38 SX Gu, T Tyagi, K Jain , VW Gu, SH Lee, JM Hwa, JM Kwan, DS Krause , AI Lee, S Haleneet al.(2021) Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 18:194–209
https://doi.org/10.1038/s41569-020-00469-1
39 J Gust, KA Hay, LA Hanafi , D Li, D Myerson, LF Gonzalez-Cuyar, C Yeung, WC Liles, M Wurfel , JA Lopezet al. (2017) Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–1419
https://doi.org/10.1158/2159-8290.CD-17-0698
40 N Habib, Y Li, M Heidenreich , L Swiech, I Avraham-Davidi, JJ Trombetta, C Hession, F Zhang, A Regev (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928
https://doi.org/10.1126/science.aad7038
41 L Harris, LA Genovesi, RM Gronostajski, BJ Wainwright , M Piper (2015) Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations. Dev Dyn 244:227–238
https://doi.org/10.1002/dvdy.24182
42 G He, W Luo, P Li , C Remmers, WJ Netzer, J Hendrick, K Bettayeb, M Flajolet , F Gorelick, LP Wennogleet al. (2010) Gammasecretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467:95–98
https://doi.org/10.1038/nature09325
43 X He, S Memczak, J Qu , JCI Belmonte, GH Liu (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
https://doi.org/10.1038/s42255-020-0196-7
44 D Head, AZ Snyder, LE Girton , JC Morris, RL Buckner (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739
https://doi.org/10.1093/cercor/bhh174
45 S Herculano-Houzel (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31
https://doi.org/10.3389/neuro.09.031.2009
46 B Hoppe, T Dorner (2012) Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol 8:738–746
https://doi.org/10.1038/nrrheum.2012.184
47 Y Hou, X Dan, M Babbar , Y Wei, SG Hasselbalch, DL Croteau, VA Bohr (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581
https://doi.org/10.1038/s41582-019-0244-7
48 H Hu, Q Ji, M Song , J Ren, Z Liu, Z Wang, X Liu, K Yan , J Hu, Y Jinget al. (2020) ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 48:6001–6018
https://doi.org/10.1093/nar/gkaa425
49 IK Hwang, JH Park, TK Lee , DW Kim, KY Yoo, JH Ahn, YH Kim, JH Cho , YM Kim, MH Wonet al. (2017) CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 15:4148–4154
https://doi.org/10.3892/mmr.2017.6525
50 A Ibrayeva, M Bay, E Pu , DJ Jorg, L Peng, H Jun, N Zhang, D Aaron , C Lin, G Resleret al. (2021) Early stem cell aging in the mature brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.018
https://doi.org/10.1016/j.stem.2021.03.018
51 WN Jin, K Shi, W He , JH Sun, L Van Kaer, FD Shi, Q Liu (2021) Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 24:61–73
https://doi.org/10.1038/s41593-020-00745-w
52 G Kempermann, H Song, FH Gage (2015) Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812
https://doi.org/10.1101/cshperspect.a018812
53 H Keren-Shaul, A Spinrad, A Weiner , O Matcovitch-Natan, R Dvir-Szternfeld , TK Ulland, E David, K Baruch, D Lara-Astaiso, B Tothet al. (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290
https://doi.org/10.1016/j.cell.2017.05.018
54 SR Krishnaswami, RV Grindberg, M Novotny, P Venepally , B Lacar, K Bhutani, SB Linker, S Pham, JA Erwin , JA Milleret al. (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11:499–524
https://doi.org/10.1038/nprot.2016.015
55 EK Kruithof, S Dunoyer-Geindre (2014) Human tissue-type plasminogen activator. Thromb Haemost 112:243–254
https://doi.org/10.1160/TH13-06-0517
56 HG Kuhn, T Toda, FH Gage (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410
https://doi.org/10.1523/JNEUROSCI.2144-18.2018
57 F Leng, P Edison (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
https://doi.org/10.1038/s41582-020-00435-y
58 B Leuner, Y Kozorovitskiy, CG Gross , E Gould (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173
https://doi.org/10.1073/pnas.0708228104
59 CEG Leyns, JD Ulrich, MB Finn , FR Stewart, LJ Koscal, J Remolina Serrano, GO Robinson, E Anderson, M Colonna , DM Holtzman (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci USA 114:11524–11529
https://doi.org/10.1073/pnas.1710311114
60 R Li, K Lindholm, LB Yang , X Yue, M Citron, R Yan, T Beach, L Sue , M Sabbagh, H Caiet al.(2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637
https://doi.org/10.1073/pnas.0205689101
61 D Li, N Takeda, R Jain , LJ Manderfield, F Liu, L Li, SA Anderson, JA Epstein (2015) Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 15:522–529
https://doi.org/10.1016/j.scr.2015.09.015
62 J Li, Y Zheng, P Yan , M Song, S Wang, L Sun, Z Liu, S Ma , JCI Belmonte, P Chanet al.(2020) A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 8(2):127
https://doi.org/10.1093/nsr/nwaa127
63 C Liang, Z Liu, M Song , W Li, Z Wu, Z Wang, Q Wang, S Wang , K Yan, L Sunet al.(2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31:187–205
https://doi.org/10.1038/s41422-020-0385-7
64 B Linnartz-Gerlach, LG Bodea, C Klaus, A Ginolhac , R Halder, L Sinkkonen, J Walter, M Colonna, H Neumann (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550
https://doi.org/10.1002/glia.23563
65 GH Liu, J Qu, K Suzuki, E Nivet, M Li, N Montserrat, F Yi, X Xu, S Ruiz, W Zhanget al.(2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
https://doi.org/10.1038/nature11557
66 X Liu, Z Liu, L Sun , J Ren, Z Wu, X Jiang, Q Ji, Q, Wang Y Fan, Y Caiet al. (2021) Resurrection of human endogenous retroviruses during aging reinforces senescence. bioRxiv. https://doi.org/10
67 SJ Lubbe, B Bustos, J Hu , D Krainc, T Joseph, J Hehir, M Tan, W Zhang, V Escott-Price , NM Williamset al.(2021) Assessing the relationship between monoallelic PRKN mutations and Parkinson’s risk. Human Mol Genet 30:78–86
https://doi.org/10.1093/hmg/ddaa273
68 S Ma, S Sun, L Geng , M Song, W Wang, Y Ye, Q Ji, Z Zou , S Wang, X Heet al. (2020a) Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell 180 (984–1001):e1022
https://doi.org/10.1016/j.cell.2020.02.008
69 S Ma, S Sun, J Li , Y Fan, J Qu, L Sun, S Wang, Y Zhang , S Yang, Z Liuet al. (2020b) Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 31(4):415–432
https://doi.org/10.1038/s41422-020-00412-6
70 NV Malykhin, TP Bouchard, R Camicioli , NJ Coupland (2008) Aging hippocampus and amygdala. NeuroReport 19:543–547
https://doi.org/10.1097/WNR.0b013e3282f8b18c
71 OA Marcos-Contreras, de Martinez S Lizarrondo, I Bardou, C Orset, M Pruvost, A Anfray, Y Frigout, Y Hommet, L Lebouvier, J Montaneret al. (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128:2423–2434
https://doi.org/10.1182/blood-2016-03-705384
72 S Marques, A Zeisel, S Codeluppi , D van Bruggen, A Mendanha Falcao, L Xiao, H Li, M Haring, H Hochgerner , RA Romanovet al. (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329
https://doi.org/10.1126/science.aaf6463
73 P Martinelli, FX Real (2019) Mouse models shed light on the SLIT/ ROBO pathway in pancreatic development and cancer. Trends Cancer 5:145–148
https://doi.org/10.1016/j.trecan.2019.02.004
74 P Mauffrey, N Tchitchek, V Barroca , A-P Bemelmans, V Firlej, Y Allory, P-H Roméo, C Magnon (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678
https://doi.org/10.1038/s41586-019-1219-y
75 CS McGinnis, LM Murrow, ZJ Gartner (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e324
https://doi.org/10.1016/j.cels.2019.03.003
76 JH Morrison, MG Baxter (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250
https://doi.org/10.1038/nrn3200
77 R Nakamura, C Nakamoto, H Obama , E Durward, M Nakamoto (2012) Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J Biol Chem 287:3282–3291
https://doi.org/10.1074/jbc.M111.281485
78 P Navarro Negredo, RW Yeo A , Brunet (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27:202–223
https://doi.org/10.1016/j.stem.2020.07.002
79 D Ofengeim, J Yuan (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736
https://doi.org/10.1038/nrm3683
80 RM Ransohoff (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783
https://doi.org/10.1126/science.aag2590
81 O Rivero, S Sich, S Popp , A Schmitt, B Franke, KP Lesch (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23:492–507
https://doi.org/10.1016/j.euroneuro.2012.06.009
82 P Shannon, A Markiel, O Ozier , NS Baliga, JT Wang, D Ramage, N Amin, B Schwikowski , T Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
https://doi.org/10.1101/gr.1239303
83 Z Shi, Y Geng, J Liu , H Zhang, L Zhou, Q Lin, J Yu, K Zhang, J Liu, X Gaoet al. (2018) Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–364
https://doi.org/10.1007/s13238-017-0450-2
84 M Simon, M Van Meter, J Ablaeva, Z Ke, RS Gonzalez, T Taguchi, M De Cecco, KI Leonova, V Kogan, SL Helfand et al. (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885
https://doi.org/10.1016/j.cmet.2019.02.014
85 PL Stahl, F Salmen, S Vickovic , A Lundmark, JF Navarro, J Magnusson, S Giacomello, M Asp , JO Westholm, M Husset al. (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
https://doi.org/10.1126/science.aaf2403
86 H Su, N Na, X Zhang , Y Zhao (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216
https://doi.org/10.1007/s00011-016-0995-1
87 A Subramanian, P Tamayo, VK Mootha , S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy , TR Golub, ES Landeret al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545
https://doi.org/10.1073/pnas.0506580102
88 MD Sweeney, AP Sagare, BV Zlokovic (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150
https://doi.org/10.1038/nrneurol.2017.188
89 T Tanaka, A Biancotto, R Moaddel , AZ Moore, M Gonzalez-Freire, MA Aon, J Candia, P Zhang, F Cheung , G Fantoniet al.(2018) Plasma proteomic signature of age in healthy humans. Aging Cell 17:
https://doi.org/10.1111/acel.12799
90 H Tiensuu, AM Haapalainen, MK Karjalainen , A Pasanen, JM Huusko, R Marttila, M Ojaniemi, LJ Muglia , M Hallman, M Ramet (2019) Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 15:e1008107
https://doi.org/10.1371/journal.pgen.1008107
91 JS Tilstra, CL Clauson, LJ Niedernhofer, PD Robbins (2011) NFkappaB in aging and disease. Aging Dis 2:449–465
92 C Trapnell, D Cacchiarelli, J Grimsby , P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak , TS Mikkelsen, JL Rinn (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386
https://doi.org/10.1038/nbt.2859
93 TK Ulland, M Colonna (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675
https://doi.org/10.1038/s41582-018-0072-1
94 M Vanlandewijck, L He, MA Mae, J Andrae , K Ando, F Del Gaudio, K Nahar, T Lebouvier, B Lavina , L Gouveiaet al. (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480
https://doi.org/10.1038/nature25739
95 MJ Végh, A Rausell, M Loos , CM Heldring, W Jurkowski, P van Nierop, I Paliukhovich, KW Li , A del AB Sol, Smit et al. (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteom 13:2975–2985
https://doi.org/10.1074/mcp.M113.032086
96 HE Volkman, DB Stetson (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422
https://doi.org/10.1038/ni.2872
97 L Wang, G Song, X Zhang , T Feng, J Pan, W Chen, M Yang, X Bai , Y Pang, J Yuet al. (2017) PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res 77:5755–5768
https://doi.org/10.1158/0008-5472.CAN-17-0150
98 S Wang, Y, Zheng J Li , Y Yu, W Zhang, M Song, Z Liu, Z Min , H Hu, Y Jinget al.(2020a) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(585–600):e519
https://doi.org/10.1016/j.cell.2020.01.009
99 S Wang, Y Zheng, Q Li , X He, R Ren, W Zhang , M Song, H Hu , F Liu, G Sunet al.(2020b) Deciphering primate retinal aging at singlecell resolution. Protein Cell. https://doi.org/10.1007/s13238-020-
https://doi.org/10.1007/s13238-020-00791-x
100 J Wegiel, J Frackowiak, B Mazur-Kolecka, NC Schanen , Jr Cook EH, M Sigman, WT Brown, I Kuchna, J Wegiel , K Nowickiet al.(2012) Abnormal intracellular accumulation and extracellular Abeta deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 7:e35414
https://doi.org/10.1371/journal.pone.0035414
101 MS Woo, F Ufer, N Rothammer , G Di Liberto, L Binkle, U Haferkamp, JK Sonner, JB Engler , S Hornig, S Baueret al. (2021) Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med. https://doi.org/10.1084/
https://doi.org/10.1084/jem.20201290
102 T Wyss-Coray (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186
https://doi.org/10.1038/nature20411
103 X Yang, A Goh, SH Chen , A Qiu (2013) Evolution of hippocampal shapes across the human lifespan. Hum Brain Mapp 34:3075–3085
https://doi.org/10.1002/hbm.22125
104 AC Yang, MY Stevens, MB Chen , DP Lee, D Stahli, D Gate, K Contrepois, W Chen , T Iram, L Zhanget al. (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430
https://doi.org/10.1038/s41586-020-2453-z
105 MD Young, S Behjati (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9:giaa151
https://doi.org/10.1093/gigascience/giaa151
106 HC Yu, CH Tung, KY Huang , HB Huang, MC Lu (2020) The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage. Int J Mol Sci 21:5720
https://doi.org/10.3390/ijms21165720
107 J Yuan, P Amin, D Ofengeim (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33
https://doi.org/10.1038/s41583-018-0093-1
108 M Zenker, J Bunt, I Schanze, D Schanze, M Piper, M Priolo, EH Gerkes, RM Gronostajski, LJ Richards , J Vogtet al. (2019) Variants in nuclear factor I genes influence growth and development. Am J Med Genet C Semin Med Genet 181:611–626
https://doi.org/10.1002/ajmg.c.31747
109 W Zhang, J Li, K Suzuki , J Qu, P Wang, J Zhou, X Liu, R Ren , X Xu, A Ocampoet al. (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
https://doi.org/10.1126/science.aaa1356
110 W Zhang, H Wan, G Feng , J Qu, J Wang, Y Jing, R Ren, Z Liu , L Zhang, Z Chenet al. (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
https://doi.org/10.1038/s41586-018-0437-z
111 K Zhang, Y Wang, T Fan , C Zeng, ZS Sun (2020a) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell.
https://doi.org/10.1007/s13238-020-00812-9
112 W Zhang, J Qu, GH Liu , JCI Belmonte (2020b) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21:137–150
https://doi.org/10.1038/s41580-019-0204-5
113 W Zhang, S Zhang, P Yan , J Ren, M Song, J Li, J Lei, H Pan , S Wang, X Maet al. (2020c) A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 11:2202
https://doi.org/10.1038/s41467-020-15997-0
114 S Zhong, W Ding, L Sun , Y Lu, H Dong, X Fan, Z Liu, R Chen , S Zhang, Q Maet al.(2020) Decoding the development of the human hippocampus. Nature 577:531–536
https://doi.org/10.1038/s41586-019-1917-5
115 Y Zhou, B Zhou, L Pache , M Chang, AH Khodabakhshi, O Tanaseichuk, C Benner, SK Chanda (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
https://doi.org/10.1038/s41467-019-09234-6
[1] PAC-0695-21203-LGH_suppl_1 Download
[2] PAC-0695-21203-LGH_suppl_2 Download
[3] PAC-0695-21203-LGH_suppl_3 Download
[4] PAC-0695-21203-LGH_suppl_4 Download
[5] PAC-0695-21203-LGH_suppl_5 Download
[6] PAC-0695-21203-LGH_suppl_6 Download
[7] PAC-0695-21203-LGH_suppl_7 Download
[1] Yue Sun, Qi Wang, Yi Wang, Wenran Ren, Ying Cao, Jiali Li, Xin Zhou, Wei Fu, Jing Yang. Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon[J]. Protein Cell, 2021, 12(8): 621-638.
[2] Yugong Ho, Peng Hu, Michael T. Peel, Sixing Chen, Pablo G. Camara, Douglas J. Epstein, Hao Wu, Stephen A. Liebhaber. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity[J]. Protein Cell, 2020, 11(8): 565-583.
[3] Shijia Bi, Zunpeng Liu, Zeming Wu, Zehua Wang, Xiaoqian Liu, Si Wang, Jie Ren, Yan Yao, Weiqi Zhang, Moshi Song, Guang-Hui Liu, Jing Qu. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer[J]. Protein Cell, 2020, 11(7): 483-504.
[4] Jianwei Liu, Mengdi Wang, Le Sun, Na Clara Pan, Changjiang Zhang, Junjing Zhang, Zhentao Zuo, Sheng He, Qian Wu, Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1[J]. Protein Cell, 2020, 11(6): 417-432.
[5] Yunxiang Yang, Pan Yang, Nan Wang, Zhonghao Chen, Dan Su, Z. Hong Zhou, Zihe Rao, Xiangxi Wang. Architecture of the herpesvirus genomepackaging complex and implications for DNA translocation[J]. Protein Cell, 2020, 11(5): 339-351.
[6] Xin Shao, Xiaoyan Lu, Jie Liao, Huajun Chen, Xiaohui Fan. New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data[J]. Protein Cell, 2020, 11(12): 866-880.
[7] Fang Wang, Weiqi Zhang, Qiaoyan Yang, Yu Kang, Yanling Fan, Jingkuan Wei, Zunpeng Liu, Shaoxing Dai, Hao Li, Zifan Li, Lizhu Xu, Chu Chu, Jing Qu, Chenyang Si, Weizhi Ji, Guang-Hui Liu, Chengzu Long, Yuyu Niu. Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing[J]. Protein Cell, 2020, 11(11): 809-824.
[8] Yingfeng Zheng, Xiuxing Liu, Wenqing Le, Lihui Xie, He Li, Wen Wen, Si Wang, Shuai Ma, Zhaohao Huang, Jinguo Ye, Wen Shi, Yanxia Ye, Zunpeng Liu, Moshi Song, Weiqi Zhang, Jing-Dong J. Han, Juan Carlos Izpisua Belmonte, Chuanle Xiao, Jing Qu, Hongyang Wang, Guang-Hui Liu, Wenru Su. A human circulating immune cell landscape in aging and COVID-19[J]. Protein Cell, 2020, 11(10): 740-770.
[9] Lingling Geng, Zunpeng Liu, Weiqi Zhang, Wei Li, Zeming Wu, Wei Wang, Ruotong Ren, Yao Su, Peichang Wang, Liang Sun, Zhenyu Ju, Piu Chan, Moshi Song, Jing Qu, Guang-Hui Liu. Chemical screen identifies a geroprotective role of quercetin in premature aging[J]. Protein Cell, 2019, 10(6): 417-435.
[10] Nan Zhou, Kaili Liu, Yue Sun, Ying Cao, Jing Yang. Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition[J]. Protein Cell, 2019, 10(2): 87-103.
[11] Wenjuan Wu, Shuwen Du, Wei Shi, Yunlong Liu, Ying Hu, Zuolei Xie, Xinsheng Yao, Zhenyu Liu, Weiwei Ma, Lin Xu, Chao Ma, Yi Zhong. Inhibition of Rac1-dependent forgetting alleviates memory deficits in animal models of Alzheimer’s disease[J]. Protein Cell, 2019, 10(10): 745-759.
[12] Ying Cao, Huanhuan Wang, Wenwen Zeng. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging[J]. Protein Cell, 2018, 9(6): 527-539.
[13] Zeming Wu, Weiqi Zhang, Moshi Song, Wei Wang, Gang Wei, Wei Li, Jinghui Lei, Yu Huang, Yanmei Sang, Piu Chan, Chang Chen, Jing Jing, Keiichiro Suzuki, Juan Carlos Izpisua Belmonte, Guang-Hui Liu. Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome[J]. Protein Cell, 2018, 9(4): 333-350.
[14] Zhanping Shi, Yanan Geng, Jiping Liu, Huina Zhang, Liqiang Zhou, Quan Lin, Juehua Yu, Kunshan Zhang, Jie Liu, Xinpei Gao, Chunxue Zhang, Yinan Yao, Chong Zhang, Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations[J]. Protein Cell, 2018, 9(4): 351-364.
[15] Ying Li,Weizhou Zhang,Liang Chang,Yan Han,Liang Sun,Xiaojun Gong,Hong Tang,Zunpeng Liu,Huichao Deng,Yanxia Ye,Yu Wang,Jian Li,Jie Qiao,Jing Qu,Weiqi Zhang,Guang-Hui Liu. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome[J]. Protein Cell, 2016, 7(7): 478-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed