|
|
|
Nuclear cGAS: sequestration and beyond |
Juli Bai1,2( ), Feng Liu1,2( ) |
1. Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA 2. National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China |
|
|
|
|
Abstract The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.
|
| Keywords
cGAS
STING
innate immunity
nuclear translocation
DNA damage repair
micronuclei
|
|
Corresponding Author(s):
Juli Bai,Feng Liu
|
|
Online First Date: 28 October 2021
Issue Date: 09 March 2022
|
|
| 1 |
T Abe, GN Barber(2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NFkappaB activation through TBK1. J Virol 88:5328–5341
https://doi.org/10.1128/JVI.00037-14
|
| 2 |
A Ablasser, ZJ Chen(2019) cGAS in action: Expanding roles in immunity and inflammation. Science 363:eaat8657
https://doi.org/10.1126/science.aat8657
|
| 3 |
L Andreeva, B Hiller, D Kostrewa, C Lassig, CC de Oliveira Mann, D Jan Drexler, A Maiser, M, Gaidt H Leonhardt, V Hornunget al.(2017) cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549:394–398
https://doi.org/10.1038/nature23890
|
| 4 |
W Antonin, H Neumann(2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15–22
https://doi.org/10.1016/j.ceb.2016.01.013
|
| 5 |
SE Artandi, RA DePinho(2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10:39–46
https://doi.org/10.1016/S0959-437X(99)00047-7
|
| 6 |
J Bai, C Cervantes, S He, J He, GR Plasko, J Wen, Z Li, D Yin, C Zhang, M Liuet al.(2020) Mitochondrial stress-activated cGAS STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol 3:257
https://doi.org/10.1038/s42003-020-0986-1
|
| 7 |
J Bai, C Cervantes, J Liu, S He, H Zhou, B Zhang, H Cai, D Yin, D Hu, Z Liet al.(2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA releaseactivated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 114:12196–12201
https://doi.org/10.1073/pnas.1708744114
|
| 8 |
J Bai, F Liu(2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes 68:1099–1108
https://doi.org/10.2337/dbi18-0052
|
| 9 |
SF Bakhoum, B Ngo, AM Laughney, JA Cavallo, CJ Murphy, P Ly, P Shah, RK Sriram, TBK Watkins, NK Taunket al.(2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–472
https://doi.org/10.1038/nature25432
|
| 10 |
KR Balka, C Louis, TL Saunders, AM Smith, DJ Calleja, DB D’Silva, F Moghaddas, M Tailler, KE Lawlor, Y Zhanet al.(2020) TBK1 and IKKepsilon act redundantly to mediate STING-induced NFkappaB responses in myeloid cells. Cell Rep 31:107492
https://doi.org/10.1016/j.celrep.2020.03.056
|
| 11 |
KC Barnett, JM Coronas-Serna, W Zhou, MJ Ernandes, A Cao, PJ Kranzusch, JC Kagan(2019) Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176:1432–1446
https://doi.org/10.1016/j.cell.2019.01.049
|
| 12 |
JA Boyer, CJ Spangler, JD Strauss, AP Cesmat, P Liu, RK McGinty, Q Zhang(2020) Structural basis of nucleosome-dependent cGAS inhibition. Science 370:450–454
https://doi.org/10.1126/science.abd0609
|
| 13 |
D Cao, X Han, X Fan, RM Xu, X Zhang(2020) Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Res 30:1088–1097
https://doi.org/10.1038/s41422-020-00422-4
|
| 14 |
H Chen, H Chen, J Zhang, Y Wang, A Simoneau, H Yang, AS Levine, L Zou, Z Chen, L Lan(2020) cGAS suppresses genomic instability as a decelerator of replication forks. Sci Adv 6:108293
https://doi.org/10.1126/sciadv.abb8941
|
| 15 |
Q Chen, L Sun, ZJ Chen(2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149
https://doi.org/10.1038/ni.3558
|
| 16 |
F Civril, T Deimling, CC de Oliveira Mann, A Ablasser, M Moldt, G Witte, V Hornung, KP Hopfner(2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–337
https://doi.org/10.1038/nature12305
|
| 17 |
S Cui, Q Yu, L Chu, Y Cui, M Ding, Q Wang, H Wang, Y Chen, X Liu, C Wang(2020) Nuclear cGAS Functions Non-canonically to Enhance Antiviral Immunity via Recruiting Methyltransferase Prmt5. Cell Rep 33:108490
https://doi.org/10.1016/j.celrep.2020.108490
|
| 18 |
M Du, ZJ Chen(2018) DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–709
https://doi.org/10.1126/science.aat1022
|
| 19 |
R Fang, C Wang, Q Jiang, M Lv, P Gao, X Yu, P Mu, R Zhang, S Bi, JM Fenget al.(2017) NEMO-IKKbeta are essential for IRF3 and NF-kappaB activation in the cGAS-STING pathway. J Immunol 199:3222–3233
https://doi.org/10.4049/jimmunol.1700699
|
| 20 |
M Fenech, M Kirsch-Volders, AT Natarajan, J Surralles, JW Crott, J Parry, H Norppa, DA Eastmond, JD Tucker, P Thomas(2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132
https://doi.org/10.1093/mutage/geq052
|
| 21 |
NO Gekara, H Jiang(2019) The innate immune DNA sensor cGAS: a membrane, cytosolic, or nuclear protein? Sci Signal 12:12–89
https://doi.org/10.1126/scisignal.aax3521
|
| 22 |
M Gentili, X Lahaye, F Nadalin, GPF Nader, E Puig Lombardi, S Herve, NS De Silva, DC Rookhuizen, E Zueva, C Goudotet al.(2019) The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26:2377–2393
https://doi.org/10.1016/j.celrep.2019.01.105
|
| 23 |
S Gluck, B Guey, MF Gulen, K Wolter, TW Kang, NA Schmacke, A Bridgeman, J Rehwinkel, L Zender, A Ablasser(2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19:1061–1070
https://doi.org/10.1038/ncb3586
|
| 24 |
B Guey, M Wischnewski, A Decout, K Makasheva, M Kaynak, MS Sakar, B Fierz, A Ablasser(2020) BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 369:823–828
https://doi.org/10.1126/science.aaw6421
|
| 25 |
R Hakem(2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605
https://doi.org/10.1038/emboj.2008.15
|
| 26 |
SM Harding, JL Benci, J Irianto, DE Discher, AJ Minn, RA Greenberg(2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470
https://doi.org/10.1038/nature23470
|
| 27 |
MH Hauer, SM Gasser(2017) Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31:2204–2221
https://doi.org/10.1101/gad.307702.117
|
| 28 |
C Hong, AE Tijhuis, F Foijer(2019) The cGAS paradox: contrasting roles for cGAS-STING pathway in chromosomal instability. Cells 8:1228
https://doi.org/10.3390/cells8101228
|
| 29 |
RM Hooy, J Sohn(2018) The allosteric activation of cGAS underpins its dynamic signaling landscape. Elife 7:35–136
https://doi.org/10.7554/eLife.39984
|
| 30 |
A Janssen, M van der Burg, K Szuhai, GJ Kops, RH Medema(2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898
https://doi.org/10.1126/science.1210214
|
| 31 |
H Jiang, X Xue, S Panda, A Kawale, RM Hooy, F Liang, J Sohn, P Sung, NO Gekara(2019) Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38:102718
https://doi.org/10.15252/embj.2019102718
|
| 32 |
V Karantza-Wadsworth, S Patel, O Kravchuk, G Chen, R Mathew, S Jin, E White(2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635
https://doi.org/10.1101/gad.1565707
|
| 33 |
PJ Kranzusch(2019) cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr Opin Struct Biol 59:178–187
https://doi.org/10.1016/j.sbi.2019.08.003
|
| 34 |
T Kujirai, C Zierhut, Y Takizawa, R Kim, L Negishi, N Uruma, S Hirai, H Funabiki, H Kurumizaka(2020) Structural basis for the inhibition of cGAS by nucleosomes. Science 370:455–458
https://doi.org/10.1126/science.abd0237
|
| 35 |
X Lahaye, M Gentili, A Silvin, C Conrad, L Picard, M Jouve, E Zueva, M Maurin, F Nadalin, GJ Knottet al.(2018) NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 175:488–501
https://doi.org/10.1016/j.cell.2018.08.062
|
| 36 |
C Lengauer, KW Kinzler, B Vogelstein(1998) Genetic instabilities in human cancers. Nature 396:643–649
https://doi.org/10.1038/25292
|
| 37 |
T Li, T Huang, M Du, X Chen, F Du, J Ren, ZJ Chen(2021) Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371(6535):5386
https://doi.org/10.1126/science.abc5386
|
| 38 |
X Li, C Shu, G Yi, CT Chaton, CL Shelton, J Diao, X Zuo, CC Kao, AB Herr, P Li(2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–1031
https://doi.org/10.1016/j.immuni.2013.10.019
|
| 39 |
H Liu, H Zhang, X Wu, D Ma, J Wu, L Wang, Y Jiang, Y Fei, C Zhu, R Tanet al.(2018) Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563:131–136
https://doi.org/10.1038/s41586-018-0629-6
|
| 40 |
S Luecke, A Holleufer, MH Christensen, KL Jonsson, GA Boni, LK Sorensen, M Johannsen, MR Jakobsen, R Hartmann, SR Paludan(2017) cGAS is activated by DNA in a lengthdependent manner. EMBO Rep 18:1707–1715
https://doi.org/10.15252/embr.201744017
|
| 41 |
K Luger, ML Dechassa, DJ Tremethick(2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447
https://doi.org/10.1038/nrm3382
|
| 42 |
KJ Mackenzie, P Carroll, CA Martin, O Murina, A Fluteau, DJ Simpson, N Olova, H Sutcliffe, JK Rainger, A Leitchet al.(2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–465
https://doi.org/10.1038/nature23449
|
| 43 |
S Martire, LA Banaszynski(2020) The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 21:522–541
https://doi.org/10.1038/s41580-020-0262-8
|
| 44 |
R Mathew, S Kongara, B Beaudoin, CM Karp, K Bray, K Degenhardt, G Chen, S Jin, E White(2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381
https://doi.org/10.1101/gad.1545107
|
| 45 |
S Michalski, CC de Oliveira Mann, CA Stafford, G Witte, J Bartho, K Lammens, V Hornung, KP Hopfner(2020) Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587:678–682
https://doi.org/10.1038/s41586-020-2748-0
|
| 46 |
M Motwani, S Pesiridis, KA Fitzgerald(2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20:657–674
https://doi.org/10.1038/s41576-019-0151-1
|
| 47 |
J Nassour, R Radford, A Correia, JM Fuste, B Schoell, A Jauch, RJ Shaw, J Karlseder(2019) Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565:659–663
https://doi.org/10.1038/s41586-019-0885-0
|
| 48 |
MH Orzalli, NM Broekema, BA Diner, DC Hancks, NC Elde, IM Cristea, DM Knipe(2015) cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci U S A 112:E1773–1781
https://doi.org/10.1073/pnas.1424637112
|
| 49 |
GR Pathare, A Decout, S Gluck, S Cavadini, K Makasheva, R Hovius, G Kempf, J Weiss, Z Kozicka, B Gueyet al.(2020) Structural mechanism of cGAS inhibition by the nucleosome. Nature.
https://doi.org/10.1038/s41586-020-2750-6
|
| 50 |
M Raab, M Gentili, H de Belly, HR Thiam, P Vargas, AJ Jimenez, F Lautenschlaeger, R Voituriez, AM Lennon-Dumenil, N Manelet al.(2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362
https://doi.org/10.1126/science.aad7611
|
| 51 |
EP Rogakou, DR Pilch, AH Orr, VS Ivanova, WM Bonner(1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868
https://doi.org/10.1074/jbc.273.10.5858
|
| 52 |
H Sun, Y Huang, S Mei, F Xu, X Liu, F Zhao, L Yin, D Zhang, L Wei, C Wuet al.(2021) A nuclear export signal is required for cGAS to sense cytosolic DNA. Cell Rep 34:108586
https://doi.org/10.1016/j.celrep.2020.108586
|
| 53 |
L Sun, J Wu, F Du, X Chen, ZJ Chen(2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791
https://doi.org/10.1126/science.1232458
|
| 54 |
C Uggenti, A Lepelley, M Depp, AP Badrock, MP Rodero, MT El-Daher, GI Rice, S Dhir, AP Wheeler, A Dhiret al.(2020) cGASmediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 52:1364–1372
https://doi.org/10.1038/s41588-020-00737-3
|
| 55 |
BL Uhlorn, ER Gamez, S Li, SK Campos(2020) Attenuation of cGAS/STING activity during mitosis. Life Sci Alliance 3(9): e201900636
https://doi.org/10.26508/lsa.201900636
|
| 56 |
HE Volkman, S Cambier, EE Gray, DB Stetson(2019) Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 8:e47491
https://doi.org/10.7554/eLife.47491
|
| 57 |
H Wang, C Zang, M Ren, M Shang, Z Wang, X Peng, Q Zhang, X Wen, Z Xi, C Zhou(2020) Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Sci Rep 10:15385
https://doi.org/10.1038/s41598-020-72393-w
|
| 58 |
AP West, W Khoury-Hanold, M Staron, MC Tal, CM Pineda, SM Lang, M Bestwick, BA Duguay, N Raimundo, DA MacDuffet al.(2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–557
https://doi.org/10.1038/nature14156
|
| 59 |
BJ Wilkins, NA Rall, Y Ostwal, T Kruitwagen, K Hiragami-Hamada, M Winkler, Y Barral, W Fischle, H Neumann(2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80
https://doi.org/10.1126/science.1244508
|
| 60 |
J Wu, L Sun, X Chen, F Du, H Shi, C Chen, ZJ Chen(2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830
https://doi.org/10.1126/science.1229963
|
| 61 |
X Wu, FH Wu, X Wang, L Wang, JN Siedow, W Zhang, ZM Pei(2014) Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res 42:8243–8257
https://doi.org/10.1093/nar/gku569
|
| 62 |
P Xia, B Ye, S Wang, X Zhu, Y Du, Z Xiong, Y Tian, Z Fan(2016) Erratum: Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 17:469
https://doi.org/10.1038/ni0416-469e
|
| 63 |
W Xie, L Lama, C Adura, D Tomita, JF Glickman, T Tuschl, DJ Patel(2019) Human cGAS catalytic domain has an additional DNAbinding interface that enhances enzymatic activity and liquidphase condensation. Proc Natl Acad Sci U S A 116:11946–11955
https://doi.org/10.1073/pnas.1905013116
|
| 64 |
H Yang, H Wang, J Ren, Q Chen, ZJ Chen(2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci U S A 114:E4612–E4620
https://doi.org/10.1073/pnas.1705499114
|
| 65 |
X Zhang, J Wu, F Du, H Xu, L Sun, Z Chen, CA Brautigam, X Zhang, ZJ Chen(2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–430
https://doi.org/10.1016/j.celrep.2014.01.003
|
| 66 |
B Zhao, P Xu, CM Rowlett, T Jing, O Shinde, Y Lei, AP West, WR Liu, P Li(2020) The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587:673–677
https://doi.org/10.1038/s41586-020-2749-z
|
| 67 |
M Zhao, F Wang, J Wu, Y Cheng, Y Cao, X Wu, M Ma, F Tang, Z Liu, H Liuet al.(2021) CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 24:1–17
https://doi.org/10.1080/15548627.2021.1899440
|
| 68 |
L Zhong, MM Hu, LJ Bian, Y Liu, Q Chen, HB Shu(2020) Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov 6:26
https://doi.org/10.1038/s41421-020-0162-2
|
| 69 |
W Zhou, AT Whiteley, CC de Oliveira Mann, BR Morehouse, RP Nowak, ES Fischer, NS Gray, JJ Mekalanos, PJ Kranzusch(2018) Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174:300–311
https://doi.org/10.1016/j.cell.2018.06.026
|
| 70 |
C Zierhut, N Yamaguchi, M Paredes, JD Luo, T Carroll, H Funabiki(2019) The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:302–315
https://doi.org/10.1016/j.cell.2019.05.035
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|