Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2022, Vol. 13 Issue (10) : 742-759    https://doi.org/10.1007/s13238-021-00894-z
RESEARCH ARTICLE
Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis
Yuting Wang1, Liping Liu1, Yifan Song2, Xiaojie Yu2, Hongkui Deng1,2,3()
1. School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
2. The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
3. State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
 Download: PDF(5755 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Senescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knock-down of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.

Keywords transcription factor      senescence      multi-omics     
Corresponding Author(s): Hongkui Deng   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 01 March 2022    Issue Date: 16 August 2022
 Cite this article:   
Yuting Wang,Liping Liu,Yifan Song, et al. Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis[J]. Protein Cell, 2022, 13(10): 742-759.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-021-00894-z
https://academic.hep.com.cn/pac/EN/Y2022/V13/I10/742
1 RA Avelar, JG Ortega, R Tacutu, EJ Tyler, D Bennett, P Binetti, A Budovsky, K Chatsirisupachai, E Johnson, A Murray et al (2020) A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol 21: 91
https://doi.org/10.1186/s13059-020-01990-9
2 DJ Baker, BG Childs, M Durik, ME Wijers, CJ Sieben, J Zhong, RA Saltness, KB Jeganathan, GC Verzosa, A Pezeshki et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530: 184- 189
https://doi.org/10.1038/nature16932
3 I Berest, C Arnold, A Reyes-Palomares, G Palla, KD Rasmussen, H Giles, PM Bruch, W Huber, S Dietrich, K Helin et al (2020) Quantification of differential transcription factor activity and multiomics-based classification into activators and repressors:diffTF. Cell Rep 29: 3147- 3159.e3112
https://doi.org/10.1016/j.celrep.2019.10.106
4 JD Buenrostro, B Wu, HY Chang, WJ Greenleaf (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109: 21.29.21- 21.29.29
https://doi.org/10.1002/0471142727.mb2129s109
5 Y Cai, H Zhou, Y Zhu, Q Sun, Y Ji, A Xue, Y Wang, W Chen, X Yu, L Wang et al (2020) Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30: 574- 589
https://doi.org/10.1038/s41422-020-0314-9
6 M Chan, H Yuan, I Soifer, TM Maile, RY Wang, A Ireland, J O’Brien, L Chan, T Vijay et al (2021) Revisiting the hayflick limit: insights from an integrated analysis of changing transcripts, proteins, metabolites and chromatin. bioRxiv.
7 G Collin, A Huna, M Warnier, JM Flaman, D Bernard (2018) Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death Dis 9: 259
https://doi.org/10.1038/s41419-018-0300-z
8 AR Colombo, HK Elias, G Ramsingh (2018) Senescence induction universally activates transposable element expression. Cell Cycle 17: 1846- 1857
https://doi.org/10.1080/15384101.2018.1502576
9 JP Coppé, CK Patil, F Rodier, Y Sun, DP Muñoz, J Goldstein, PS Nelson, PY Desprez, J Campisi (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853- 2868
10 MR Corces, AE Trevino, EG Hamilton, PG Greenside, NA Sinnott-Armstrong, S Vesuna, AT Satpathy, AJ Rubin, KS Montine, B Wu et al (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14: 959- 962
https://doi.org/10.1038/nmeth.4396
11 M De Cecco, T Ito, AP Petrashen, AE Elias, NJ Skvir, SW Criscione, A Caligiana, G Brocculi, EM Adney, JD Boeke et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566: 73- 78
https://doi.org/10.1038/s41586-018-0784-9
12 M Eren, AE Boe, EA Klyachko, DE Vaughan (2014) Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb Hemost 40: 645- 651
https://doi.org/10.1055/s-0034-1387883
13 H Feng, KN Conneely, H Wu (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42: e69
https://doi.org/10.1093/nar/gku154
14 H Garneau, MC Paquin, JC Carrier, N Rivard (2009) E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. J Cell Physiol 221: 350- 358
https://doi.org/10.1002/jcp.21859
15 Y Guan, C Zhang, G Lyu, X Huang, X Zhang, T Zhuang, L Jia, L Zhang, C Zhang, C Li et al (2020) Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res 48: 10909- 10923
https://doi.org/10.1093/nar/gkaa858
16 S Hänzelmann, F Beier, EG Gusmao, CM Koch, S Hummel, I Charapitsa, S Joussen, V Benes, TH Brümmendorf, G Reid et al (2015) Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenet 7: 19
https://doi.org/10.1186/s13148-015-0057-5
17 A Hernandez-Segura, J Nehme, M Demaria (2018) Hallmarks of cellular senescence. Trends Cell Biol 28: 436- 453
https://doi.org/10.1016/j.tcb.2018.02.001
18 I Hernando-Herraez, B Evano, T Stubbs, PH Commere, M Jan Bonder, S Clark, S Andrews, S Tajbakhsh, W Reik (2019) Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun 10: 4361
https://doi.org/10.1038/s41467-019-12293-4
19 J Hsu, J Sage (2016) Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle 15: 3183- 3190
https://doi.org/10.1080/15384101.2016.1234551
20 J Hsu, J Arand, A Chaikovsky, NA Mooney, J Demeter, CM Brison, R Oliverio, H Vogel, SM Rubin, PK Jackson et al (2019) E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun 10: 2939
https://doi.org/10.1038/s41467-019-10901-x
21 PO Humbert, C Rogers, S Ganiatsas, RL Landsberg, JM Trimarchi, S Dandapani, C Brugnara, S Erdman, M Schrenzel, RT Bronson et al (2000) E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell 6: 281- 291
https://doi.org/10.1016/S1097-2765(00)00029-0
22 M Iwafuchi-Doi, KS Zaret (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 28: 2679- 2692
https://doi.org/10.1101/gad.253443.114
23 Z Ji, L He, A Regev, K Struhl (2019) Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers. Proc Natl Acad Sci USA 116: 9453- 9462
https://doi.org/10.1073/pnas.1821068116
24 J Joung, S Konermann, JS Gootenberg, OO Abudayyeh, RJ Platt, MD Brigham, NE Sanjana, F Zhang (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12: 828- 863
https://doi.org/10.1038/nprot.2017.016
25 KJ Kurppa, Y Liu, C To, T Zhang, M Fan, A Vajdi, EH Knelson, Y Xie, K Lim, P Cejas et al (2020) Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37: 104- 122
https://doi.org/10.1016/j.ccell.2019.12.006
26 Z Li, MH Schulz, T Look, M Begemann, M Zenke, IG Costa (2019) Identification of transcription factor binding sites using ATACseq. Genome Biol 20: 45
https://doi.org/10.1186/s13059-019-1642-2
27 K Maehara, K Yamakoshi, N Ohtani, Y Kubo, A Takahashi, S Arase, N Jones, E Hara (2005) Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J Cell Biol 168: 553- 560
https://doi.org/10.1083/jcb.200411093
28 S Marquard, S Thomann, SME Weiler, M Bissinger, T Lutz, C Sticht, M Tóth, C de la Torre, N Gretz, BK Straub et al (2020) Yesassociated protein (YAP) induces a secretome phenotype and transcriptionally regulates plasminogen activator Inhibitor-1 (PAI-1) expression in hepatocarcinogenesis. Cell Commun Signal 18: 166
https://doi.org/10.1186/s12964-020-00634-6
29 P Marti, C Stein, T Blumer, Y Abraham, MT Dill, M Pikiolek, V Orsini, G Jurisic, P Megel, Z Makowska et al (2015) YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62: 1497- 1510
https://doi.org/10.1002/hep.27992
30 RI Martínez-Zamudio, PF Roux, J de Freitas, L Robinson, G Doré, B Sun, D Belenki, M Milanovic, U Herbig, CA Schmitt et al (2020) AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol 22: 842- 855
https://doi.org/10.1038/s41556-020-0529-5
31 C Minteer, M Morselli, M Meer, J Cao, S Lang, M Pellegrini, Q Yan, M Levine (2020) A DNAmRep epigenetic fingerprint for determining cellular replication age. bioRxiv
32 DM Nelson, T McBryan, JC Jeyapalan, JM Sedivy, PD Adams (2014) A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age 36: 9637
https://doi.org/10.1007/s11357-014-9637-0
33 L Potocki, E Kuna, K Filip, B Kasprzyk, A Lewinska, M Wnuk (2019) Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 20: 457- 474
https://doi.org/10.1007/s10522-019-09809-2
34 M Purcell, A Kruger, MA Tainsky (2014) Gene expression profiling of replicative and induced senescence. Cell Cycle 13: 3927- 3937
https://doi.org/10.4161/15384101.2014.973327
35 K Qu, LC Zaba, AT Satpathy, PG Giresi, R Li, Y Jin, R Armstrong, C Jin, N Schmitt, Z Rahbar et al (2017) Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 32: 27- 41
https://doi.org/10.1016/j.ccell.2017.05.008
36 R Sanokawa-Akakura, S Akakura, EA Ostrakhovitch, S Tabibzadeh (2019) Replicative senescence is distinguishable from DNA damage-induced senescence by increased methylation of promoter of rDNA and reduced expression of rRNA. Mech Ageing Dev 183: 111149
https://doi.org/10.1016/j.mad.2019.111149
37 E Shaulian, M Karin (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131- 136
https://doi.org/10.1038/ncb0502-e131
38 RI Sherwood, T Hashimoto, CW O’Donnell, S Lewis, AA Barkal, JP van Hoff, V Karun, T Jaakkola, DK Gifford (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 32: 171- 178
https://doi.org/10.1038/nbt.2798
39 F Spitz, EE Furlong (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613- 626
https://doi.org/10.1038/nrg3207
40 Ö Uluçkan, J Guinea-Viniegra, M Jimenez, EF Wagner (2015) Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clin Exp Rheumatol 33: S44- 49
41 JM van Deursen (2014) The role of senescent cells in ageing. Nature 509: 439- 446
https://doi.org/10.1038/nature13193
42 DE Vaughan, R Rai, SS Khan, M Eren, AK Ghosh (2017) Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 37: 1446- 1452
https://doi.org/10.1161/ATVBAHA.117.309451
43 W Wagner, S Bork, P Horn, D Krunic, T Walenda, A Diehlmann, V Benes, J Blake, FX Huber, V Eckstein et al (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4: e5846
https://doi.org/10.1371/journal.pone.0005846
44 W Wagner, E Fernandez-Rebollo, J Frobel (2016) DNA-methylation changes in replicative senescence and aging: two sides of the same coin? Epigenomics 8: 1- 3
https://doi.org/10.2217/epi.15.100
45 J Wang, C Zibetti, P Shang, SR Sripathi, P Zhang, M Cano, T Hoang, S Xia, H Ji, SL Merbs et al (2018) ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat Commun 9: 1364
https://doi.org/10.1038/s41467-018-03856-y
46 ES Wong, BM Schmitt, A Kazachenka, D Thybert, A Redmond, F Connor, TF Rayner, C Feig, AC Ferguson-Smith, JC Marioni et al (2017) Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat Commun 8: 1092
https://doi.org/10.1038/s41467-017-01037-x
47 M Xu, T Pirtskhalava, JN Farr, BM Weigand, AK Palmer, MM Weivoda, CL Inman, MB Ogrodnik, CM Hachfeld, DG Fraser et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24: 1246- 1256
https://doi.org/10.1038/s41591-018-0092-9
48 FX Yu, B Zhao, KL Guan (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163: 811- 828
https://doi.org/10.1016/j.cell.2015.10.044
49 C Zhang, X Zhang, L Huang, X Huang, XL Tian, L Zhang, W Tao (2021) ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 20: e13315
https://doi.org/10.1111/acel.13315
[1] PAC-0742-21341-DHK_suppl_1 Download
[1] Jian Xiao, Yanni Xiong, Liu-Ting Yang, Ju-Qiong Wang, Zi-Mu Zhou, Le-Wei Dong, Xiong-Jie Shi, Xiaolu Zhao, Jie Luo, Bao-Liang Song. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation[J]. Protein Cell, 2021, 12(4): 279-296.
[2] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[3] Chao Zhong, Jinfang Zhu. Transcriptional regulators dictate innate lymphoid cell fates[J]. Protein Cell, 2017, 8(4): 242-254.
[4] Lucy Cassar,Craig Nicholls,Alex R. Pinto,Ruping Chen,Lihui Wang,He Li,Jun-Ping Liu. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence[J]. Protein Cell, 2017, 8(1): 39-54.
[5] Liang Chen,Zhimin Peng,Qinghang Meng,Maureen Mongan,Jingcai Wang,Maureen Sartor,Jing Chen,Liang Niu,Mario Medvedovic,Winston Kao,Ying Xia. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop[J]. Protein Cell, 2016, 7(5): 338-350.
[6] Qianqian Liang,Chen Xu,Xinyun Chen,Xiuya Li,Chao Lu,Ping Zhou,Lianhua Yin,Ruizhe Qian,Sifeng Chen,Zhendong Ling,Ning Sun. The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development[J]. Protein Cell, 2015, 6(8): 553-561.
[7] Shrestha Ghosh,Zhongjun Zhou. SIRTain regulators of premature senescence and accelerated aging[J]. Protein Cell, 2015, 6(5): 322-333.
[8] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[9] Yiming Lu, Bohua Wei, Tao Zhang, Zi Chen, Jing Ye. How will telomeric complex be further contributed to our longevity? — The potential novel biomarkers of telomere complex counteracting both aging and cancer[J]. Prot Cell, 2013, 4(8): 573-581.
[10] Limin Han, Pan Wang, Ganye Zhao, Hui Wang, Meng Wang, Jun Chen, Tanjun Tong. Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1[J]. Prot Cell, 2013, 4(4): 310-321.
[11] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
[12] Priyanka Sathe, Li Wu. The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets[J]. Prot Cell, 2011, 2(8): 620-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed