Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (10) : 762-768    https://doi.org/10.1007/s13238-012-2058-x      PMID: 22983902
COMMUNICATION
Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling
Kai Gong1, Fangfang Zhou1,2(), Huizhe Huang1,3, Yandao Gong1, Long Zhang2()
1. Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China; 2. Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, the Netherland; 3. Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
 Download: PDF(474 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the role of β-catenin signaling in the response of macrophage to lipopolysaccharide (LPS) by using RAW264.7 cells. LPS rapidly stimulated cytosolic β-catenin accumulation. β-catenin mediated transcription was showed to be required for LPS induced gene expression and cell migration. Mechanically, ERK activationprimed GSK3β inactivation by Akt was demonstrated to mediate the LPS induced β-catenin accumulation. Overall, our findings suggest that suppression of GSK3β by ERK stimulates β-catenin signaling therefore contributes to LPS induced cell migration in macrophage activation.

Keywords LPS      ERK      GSK3b      b-catenin      cell migration     
Corresponding Author(s): Zhou Fangfang,Email:F.zhou@lumc.nl; Zhang Long,Email:L.zhang@lumc.nl   
Issue Date: 01 October 2012
 Cite this article:   
Kai Gong,Fangfang Zhou,Huizhe Huang, et al. Suppression of GSK3β by ERK mediates lipopolysaccharide induced cell migration in macrophage through β-catenin signaling[J]. Prot Cell, 2012, 3(10): 762-768.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2058-x
https://academic.hep.com.cn/pac/EN/Y2012/V3/I10/762
1 Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638-642 .
doi: 10.1038/382638a0
2 Brunner, E., Peter, O., Schweizer, L., and Basler, K. (1997). pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829-833 .
doi: 10.1038/385829a0
3 Carpenter, S., and O'Neill, L.A. (2009). Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 422, 1-10 .
doi: 10.1042/BJ20090616
4 Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789 .
doi: 10.1038/378785a0
5 Ding, Q., Xia, W., Liu, J.C., Yang, J.Y., Lee, D.F., Xia, J., Bartholomeusz, G., Li, Y., Pan, Y., Li, Z., . (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19, 159-170 .
doi: 10.1016/j.molcel.2005.06.009
6 Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23-35 .
doi: 10.1038/nri978
7 Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94 .
doi: 10.1016/S0898-6568(00)00149-2
8 Lien, E., Means, T.K., Heine, H., Yoshimura, A., Kusumoto, S., Fukase, K., Fenton, M.J., Oikawa, M., Qureshi, N., Monks, B., . (2000). Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105, 497-504 .
doi: 10.1172/JCI8541
9 Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847 .
doi: 10.1016/S0092-8674(02)00685-2
10 Logan, C.Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781-810 .
doi: 10.1146/annurev.cellbio.20.010403.113126
11 Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., . (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13, 1015-1024 .
doi: 10.1101/gad.13.8.1015
12 MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9-26 .
doi: 10.1016/j.devcel.2009.06.016
13 Means, T.K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D.T., and Fenton, M.J. (1999). The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163, 6748-6755 .
14 Moon, R.T., Kohn, A.D., De Ferrari, G.V., and Kaykas, A. (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5, 691-701 .
doi: 10.1038/nrg1427
15 Nelson, W.J., and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487 .
doi: 10.1126/science.1094291
16 Nie, J., Wang, H., He, F., and Huang, H. (2010). Nusap1 is essential for neural crest cell migration in zebrafish. Protein Cell 1, 259-266 .
doi: 10.1007/s13238-010-0036-8
17 Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., . (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 .
doi: 10.1126/science.282.5396.2085
18 Reya, T., and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843-850 .
doi: 10.1038/nature03319
19 Zhang, B., and Ma, J.X. (2010). Wnt pathway antagonists and angiogenesis. Protein Cell 1, 898-906 .
doi: 10.1007/s13238-010-0112-0
20 Zhang, J., Zhang, X., Zhang, L., Zhou, F., van Dinther, M., and Ten Dijke, P. (2012a) LRP8 mediates Wnt/beta-catenin signaling and controls osteoblast differentiation. J Bone Miner Res . (In Press)
doi: 10.1002/jbmr.1661
21 Zhang, L., Gao, X., Wen, J., Ning, Y., and Chen, Y.G. (2006). Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281, 8607-8612 .
doi: 10.1074/jbc.M600274200
22 Zhang, L., Huang, H., Zhou, F., Schimmel, J., Pardo, C.G., Zhang, T., Barakat, T.S., Sheppard, K.A., Mickanin, C., Porter, J.A., . (2012b). RNF12 Controls Embryonic Stem Cell Fate and Morphogenesis in Zebrafish Embryos by Targeting Smad7 for Degradation. Mol Cell 46, 650-661 .
doi: 10.1016/j.molcel.2012.04.003
23 Zhang, L., Shi, S., Zhang, J., Zhou, F., and ten Dijke, P. Wnt/beta-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression. (2012c).Biochem Biophys Res Commun 419, 83-88 .
doi: 10.1016/j.bbrc.2012.01.132
24 Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. (2011). Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol Biol Cell 22, 1617-1624 .
doi: 10.1091/mbc.E10-12-0985
25 Zhang, L., Zhou, H., Su, Y., Sun, Z., Zhang, H., Zhang, Y., Ning, Y., Chen, Y.G., and Meng, A. (2004). Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306, 114-117 .
doi: 10.1126/science.1100569
26 Zhou, F., Huang, H., and Zhang, L. (2012a). Bisindoylmaleimide I enhances osteogenic differentiation. Protein Cell 3, 311-320 .
doi: 10.1007/s13238-012-2027-4
27 Zhou, F., Kai, G., Song, B., Ma, T., van Laar, T., Gong, Y., and Zhang, L. (2012b). The APP intracellular domain (AICD) inhibits Wnt signalling and promotes neurite outgrowth. Biochim Biophys Acta 1823, 1233-1241 .
doi: 10.1016/j.bbamcr.2012.05.011
28 Zhou, F., van Laar, T., Huang, H., and Zhang, L. (2011a). APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell 2, 377-383 .
doi: 10.1007/s13238-011-1047-9
29 Zhou, F., Zhang, L., van Laar, T., van Dam, H., and Ten Dijke, P. (2011b). GSK3beta inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 22, 3533-3540 .
doi: 10.1091/mbc.E11-06-0483
[1] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[2] Zhanping Shi, Yanan Geng, Jiping Liu, Huina Zhang, Liqiang Zhou, Quan Lin, Juehua Yu, Kunshan Zhang, Jie Liu, Xinpei Gao, Chunxue Zhang, Yinan Yao, Chong Zhang, Yi E. Sun. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations[J]. Protein Cell, 2018, 9(4): 351-364.
[3] Qian Gao,Xiongfei Chen,Hongxia Duan,Zhaoqing Wang,Jing Feng,Dongling Yang,Lina Song,Ningxin Zhou,Xiyun Yan. FXYD6: a novel therapeutic target toward hepatocellular carcinoma[J]. Protein Cell, 2014, 5(7): 532-543.
[4] Dengwen Li,Xiaodong Sun,Linlin Zhang,Bing Yan,Songbo Xie,Ruming Liu,Min Liu,Jun Zhou. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells[J]. Protein Cell, 2014, 5(3): 214-223.
[5] Yan Yan, Wenfeng Zeng, Shujun Song, Fayun Zhang, Wenxi He, Wei Liang, Zhongying Niu. Vitamin C induces periodontal ligament progenitor cell differentiation via activation of ERK pathway mediated by PELP1[J]. Prot Cell, 2013, 4(8): 620-627.
[6] Wenfeng Zeng, Yan Yan, Fayun Zhang, Chunling Zhang, Wei Liang. Chrysin promotes osteogenic differentiation via ERK/MAPK activation[J]. Prot Cell, 2013, 4(7): 539-547.
[7] Byung-Kwon Choi, Xiumei Cai, Bin Yuan, Zhao Huang, Xuejun Fan, Hui Deng, Ningyan Zhang, Zhiqiang An. HER3 intracellular domains play a crucial role in HER3/HER2 dimerization and activation of downstream signaling pathways[J]. Prot Cell, 2012, 3(10): 781-789.
[8] Dengwen Li, Songbo Xie, Yuan Ren, Lihong Huo, Jinmin Gao, Dandan Cui, Min Liu, Jun Zhou. Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner[J]. Prot Cell, 2011, 2(2): 150-160.
[9] Shenglin Huang, Xianghuo He. microRNAs: tiny RNA molecules, huge driving forces to move the cell[J]. Prot Cell, 2010, 1(10): 916-926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed