|
|
|
Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope |
Ning Hao1,2,Yutao Chen1,Ming Xia3,Ming Tan3,4,Wu Liu1,Xiaotao Guan1,Xi Jiang3,4,*( ),Xuemei Li1,*( ),Zihe Rao1 |
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA 4. University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA |
|
|
|
|
Abstract Human noroviruses (huNoVs) recognize histo-blood group antigens (HBGAs) as attachment factors, in which genogroup (G) I and GII huNoVs use distinct binding interfaces. The genetic and evolutionary relationships of GII huNoVs under selection by the host HBGAs have been well elucidated via a number of structural studies; however, such relationships among GI NoVs remain less clear due to the fact that the structures of HBGA-binding interfaces of only three GI NoVs with similar binding profiles are known. In this study the crystal structures of the P dimers of a Lewis-binding strain, the GI.8 Boxer virus (BV) that does not bind the A and H antigens, in complex with the Lewis b (Leb) and Ley antigens, respectively, were determined and compared with those of the three previously known GI huNoVs, i.e. GI.1 Norwalk virus (NV), GI.2 FUV258 (FUV) and GI.7 TCH060 (TCH) that bind the A/H/Le antigens. The HBGA binding interface of BV is composed of a conserved central binding pocket (CBP) that interacts with the β-galactose of the precursor, and a well-developed Le epitope-binding site formed by five amino acids, including three consecutive residues from the long P-loop and one from the S-loop of the P1 subdomain, a feature that was not seen in the other GI NoVs. On the other hand, the H epitope/acetamido binding site observed in the other GI NoVs is greatly degenerated in BV. These data explain the evolutionary path of GI NoVs selected by the polymorphic human HBGAs. While the CBP is conserved, the regions surrounding the CBP are flexible, providing freedom for changes. The loss or degeneration of the H epitope/acetamido binding site and the reinforcement of the Le binding site of the GI.8 BV is a typical example of such change selected by the host Lewis epitope.
|
| Keywords
norovirus-host interaction
norovirus
P domain
histo-blood group antigens (HBGAs)
crystal structure
|
|
Corresponding Author(s):
Xi Jiang,Xuemei Li
|
|
Issue Date: 05 February 2015
|
|
| 1 |
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58: 1948-1954
https://doi.org/10.1107/S0907444902016657
|
| 2 |
Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS (2008) Structural basis for the receptor binding specificity of Norwalk virus. J Virol 82: 5340-5347
https://doi.org/10.1128/JVI.00135-08
|
| 3 |
Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z (2007) Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81: 5949-5957
https://doi.org/10.1128/JVI.00219-07
|
| 4 |
Chen Y, Tan M, Xia M, Hao N, Zhang XC, Huang P, Jiang X, Li X, Rao Z (2011) Crystallography of a Lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histoblood group antigens. PLoS Pathog 7: e1002152
https://doi.org/10.1371/journal.ppat.1002152
|
| 5 |
Choi JM, Hutson AM, Estes MK, Prasad BV (2008) Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc Natl Acad Sci USA 105: 9175-9180
https://doi.org/10.1073/pnas.0803275105
|
| 6 |
de Rougemont A, Ruvoen-Clouet N, Simon B, Estienney M, Elie-Caille C, Aho S, Pothier P, Le Pendu J, Boireau W, Belliot G (2011) Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens. J Virol 85: 4057-4070
https://doi.org/10.1128/JVI.02077-10
|
| 7 |
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132
https://doi.org/10.1107/S0907444904019158
|
| 8 |
Frenck R, Bernstein DI, Xia M, Huang P, Zhong W, Parker S, Dickey M, McNeal M, Jiang X (2012) Predicting Susceptibility to norovirus GII.4 by use of a challenge model involving humans. J Infect Dis 206: 1386-1393
https://doi.org/10.1093/infdis/jis514
|
| 9 |
Hansman GS, Biertumpfel C, Georgiev I, McLellan JS, Chen L, Zhou T, Katayama K, Kwong PD (2011) Crystal structures of GII.10 and GII.12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability. J Virol 85: 6687-6701
https://doi.org/10.1128/JVI.00246-11
|
| 10 |
Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, Altaye M, Pickering LK, Newburg DS, LePendu J, Jiang X (2003) Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188: 19-31
https://doi.org/10.1086/375742
|
| 11 |
Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79: 6714-6722
https://doi.org/10.1128/JVI.79.11.6714-6722.2005
|
| 12 |
Hutson AM, Atmar RL, Graham DY, Estes MK (2002) Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335-1337
https://doi.org/10.1086/339883
|
| 13 |
Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Green K, Martella V, Katayama K, Koopmans M (2013) Proposal for a unified norovirus nomenclature and genotyping. Arch Virol 158: 2059-2068
https://doi.org/10.1007/s00705-013-1708-5
|
| 14 |
Kubota T, Kumagai A, Ito H, Furukawa S, Someya Y, Takeda N, Ishii K, Wakita T, Narimatsu H, Shirato H (2012) Structural basis for the recognition of Lewis antigens by genogroup I norovirus. J Virol 86: 11138-11150
https://doi.org/10.1128/JVI.00278-12
|
| 15 |
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283-291
https://doi.org/10.1107/S0021889892009944
|
| 16 |
Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548-553
https://doi.org/10.1038/nm860
|
| 17 |
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658-674
https://doi.org/10.1107/S0021889807021206
|
| 18 |
Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255
https://doi.org/10.1107/S0907444996012255
|
| 19 |
Nordgren J, Nitiema LW, Ouermi D, Simpore J, Svensson L (2013) Host genetic factors affect susceptibility to norovirus infections in Burkina Faso. PLoS One 8: e69557
https://doi.org/10.1371/journal.pone.0069557
|
| 20 |
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326
https://doi.org/10.1016/S0076-6879(97)76066-X
|
| 21 |
Prasad BVV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287
https://doi.org/10.1126/science.286.5438.287
|
| 22 |
Shanker S, Choi JM, Sankaran B, Atmar RL, Estes MK, Prasad BV (2011) Structural analysis of histo-blood group antigen binding specificity in a norovirus GII. 4 epidemic variant: implications for epochal evolution. J Virol 85: 8635-8645
https://doi.org/10.1128/JVI.00848-11
|
| 23 |
Shanker S, Czako R, Sankaran B, Atmar RL, Estes MK, Prasad BV (2014) Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. J Virol 88: 6168-6180
https://doi.org/10.1128/JVI.00201-14
|
| 24 |
Shirato H, Ogawa S, Ito H, Sato T, Kameyama A, Narimatsu H, Zheng X, Miyamura T, Wakita T, Ishii K, Takeda N (2008) Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J Virol 82: 10756-10767
https://doi.org/10.1128/JVI.00802-08
|
| 25 |
Tan M, Jiang X (2005) The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol 79: 14017-14030
https://doi.org/10.1128/JVI.79.22.14017-14030.2005
|
| 26 |
Tan M, Jiang X (2010) Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathog 6: e1000983
https://doi.org/10.1371/journal.ppat.1000983
|
| 27 |
Tan M, Jiang X (2011) Norovirus-host interaction: Multi-selections by human histo-blood group antigens. Trends Microbiol 19: 382-388
https://doi.org/10.1016/j.tim.2011.05.007
|
| 28 |
Tan M, Jiang X (2014) Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 16: e5
https://doi.org/10.1017/erm.2014.2
|
| 29 |
Tan M, Hegde RS, Jiang X (2004) The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol 78: 6233-6242
https://doi.org/10.1128/JVI.78.12.6233-6242.2004
|
| 30 |
Tan M, Fang P, Chachiyo T, Xia M, Huang P, Fang Z, Jiang W, Jiang X (2008a) Noroviral P particle: Structure, function and applications in virus-host interaction. Virology 382: 115-123
https://doi.org/10.1016/j.virol.2008.08.047
|
| 31 |
Tan M, Jin M, Xie H, Duan Z, Jiang X, Fang Z (2008b) Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. J Med Virol 80: 1296-1301
https://doi.org/10.1002/jmv.21200
|
| 32 |
Tan M, Xia M, Cao S, Huang P, Farkas T, Meller J, Hegde RS, Li X, Rao Z, Jiang X (2008c) Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology 379: 324-334
https://doi.org/10.1016/j.virol.2008.06.041
|
| 33 |
Tan M, Xia M, Chen Y, Bu W, Hegde RS, Meller J, Li X, Jiang X (2009) Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution. PloS One 4: e5058
https://doi.org/10.1371/journal.pone.0005058
|
| 34 |
Tan M, Fang PA, Xia M, Chachiyo T, Jiang W, Jiang X (2011) Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology 410: 345-352
https://doi.org/10.1016/j.virol.2010.11.017
|
| 35 |
Zhang XJ, Matthews BW (1995) EDPDB: a multifunctional tool for protein structure analysis. J Appl Crystallogr 28: 624-630
https://doi.org/10.1107/S0021889895001063
|
| 36 |
Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS (2006) Norovirus classification and proposed strain nomenclature. Virology 346: 312-323
https://doi.org/10.1016/j.virol.2005.11.015
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|