Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (5) : 331-345    https://doi.org/10.1007/s13238-020-00745-3
REVIEW
The microbiome in inflammatory bowel diseases: from pathogenesis to therapy
Sheng Liu, Wenjing Zhao, Ping Lan(), Xiangyu Mou()
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(451 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Inflammatory bowel disease (IBD) has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear. In the past decade, gut microbiota dysbiosis has consistently been associated with IBD. Although many IBDassociated dysbiosis have not been proven to be a cause or an effect of IBD, it is often hypothesized that at least some of alteration in microbiome is protective or causative. In this article, we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models. Specifically, we reviewed the potential protective bacterial pathways and species against IBD, as well as the potential causative bacterial pathways and species of IBD. We also reviewed the potential roles of some members of mycobiome and virome in IBD. Lastly, we covered the current status of therapeutic approaches targeting microbiome, which is a promising strategy to alleviate and cure this inflammatory disease.

Keywords inflammatory bowel disease      pathogenesis      etiology      microbiome      dysbiosis      therapy     
Corresponding Author(s): Ping Lan,Xiangyu Mou   
Online First Date: 14 September 2020    Issue Date: 08 June 2021
 Cite this article:   
Sheng Liu,Wenjing Zhao,Ping Lan, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00745-3
https://academic.hep.com.cn/pac/EN/Y2021/V12/I5/331
1 BP Abraham, EMM Quigley (2017) Probiotics in inflammatory bowel disease. Gastroenterol Clin N Am 46:769–782
https://doi.org/10.1016/j.gtc.2017.08.003
2 A, Agus J Planchais, H Sokol (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23:716–724
https://doi.org/10.1016/j.chom.2018.05.003
3 W Akram, N Garud, R Joshi (2019) Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov Ther 13:1–8
https://doi.org/10.5582/ddt.2019.01000
4 MH Alhagamhmad, AS Day, DA Lemberg, ST Leach (2016) An overview of the bacterial contribution to Crohn disease pathogenesis. J Med Microbiol 65:1049–1059
https://doi.org/10.1099/jmm.0.000331
5 D An, SF Oh, T Olszak, JF Neves, FY Avci, D Erturk-Hasdemir , X Lu, S Zeissig, RS Blumberg, DL Kasper (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–133
https://doi.org/10.1016/j.cell.2013.11.042
6 E Ansaldo, LC Slayden, KL Ching, MA Koch, NK Wolf, DR Plichta, EM Brown, DB Graham, RJ Xavier, JJ Moonet al. (2019) Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364:1179–1184
https://doi.org/10.1126/science.aaw7479
7 JC Arthur, E Perez-Chanona, M Muhlbauer, S Tomkovich, JM Uronis, TJ Fan, BJ Campbell, T Abujamel, B Dogan, AB Rogerset al. (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123
https://doi.org/10.1126/science.1224820
8 T Atherly, C Mosher, C, Wang J, Hostetter A Proctor, MW Brand, GJ Phillips, M Wannemuehler, AE Jergens (2016) Helicobacter bilis infection alters mucosal bacteria and modulates colitis development in defined microbiota mice. Inflamm Bowel Dis 22:2571–2581
https://doi.org/10.1097/MIB.0000000000000944
9 MP Barnett, WC McNabb, AL Cookson, S Zhu, M Davy, B Knoch, K Nones, AJ Hodgkinson, NC Roy (2010) Changes in colon gene expression associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. BMC Immunol 11:39
https://doi.org/10.1186/1471-2172-11-39
10 N Barnich, FA Carvalho, AL Glasser, C Darcha, P Jantscheff, M Allez, H Peeters, G Bommelaer, P, Desreumaux JF Colombelet al. (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Investig 117:1566–1574
https://doi.org/10.1172/JCI30504
11 A Bell, J Brunt, E Crost, L Vaux, R Nepravishta, CD Owen, D Latousakis, A Xiao, W Li, X Chenet al. (2019) Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol 4:2393–2404
https://doi.org/10.1038/s41564-019-0590-7
12 X Bian, W Wu, L Yang, L Lv, Q Wang, Y Li, J, Ye D Fang, J Wu, X Jianget al. (2019) Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol 10:2259
https://doi.org/10.3389/fmicb.2019.02259
13 R Bibiloni, RN Fedorak, GW Tannock, KL Madsen, P Gionchetti, M Campieri, C De Simone, RB Sartor (2005) VSL#3 probioticmixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100:1539–1546
https://doi.org/10.1111/j.1572-0241.2005.41794.x
14 I Bjarnason, G, Sission B Hayee (2019) A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology 27:465–473
https://doi.org/10.1007/s10787-019-00595-4
15 LE Blandford, EL Johnston, JD Sanderson, WG Wade, AJ Lax (2019) Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD). Gut Microbes 10:569–577
https://doi.org/10.1080/19490976.2018.1560755
16 M Breban, J Tap, A Leboime, R Said-Nahal, P Langella, G, Chiocchia JP Furet, H Sokol (2017) Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 76:1614–1622
https://doi.org/10.1136/annrheumdis-2016-211064
17 MA Bringer, AL Glasser, CH Tung, S, Meresse A Darfeuille-Michaud (2006) The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol 8:471–484
https://doi.org/10.1111/j.1462-5822.2005.00639.x
18 C Burrello, F Garavaglia, FM Cribiu, G Ercoli, G Lopez, J Troisi, A Colucci, S Guglietta, S Carloni, S Guglielmettiet al. (2018) Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun 9:5184
https://doi.org/10.1038/s41467-018-07359-8
19 G, Cammarota G Ianiro, H Tilg, M, Rajilic-Stojanovic P, Kump R Satokari , H Sokol, P Arkkila, C, Pintus A Hartet al. (2017) European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66:569–580
https://doi.org/10.1136/gutjnl-2016-313017
20 G Cammarota, G Ianiro, CR Kelly, BH Mullish, JR Allegretti, Z Kassam, L Putignani, M Fischer, JJ Keller, SP Costelloet al. (2019) International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut 68:2111–2121
https://doi.org/10.1136/gutjnl-2019-319548
21 X Cao(2017) Intestinal inflammation induced by oral bacteria. Science 358:308–309
https://doi.org/10.1126/science.aap9298
22 N Castano-Rodriguez, NO Kaakoush, WS Lee, HM Mitchell (2017) Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 66:235–249
https://doi.org/10.1136/gutjnl-2015-310545
23 JN Chai, Y Peng, S Rengarajan, BD Solomon, TL Ai, Z Shen, JSA Perry, KA Knoop, T Tanoue, S Narushimaet al. (2017) Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci Immunol 2(13):eaal5068
https://doi.org/10.1126/sciimmunol.aal5068
24 C, Chehoud LG Albenberg, C, Judge C Hoffmann, S Grunberg, K, Bittinger RN Baldassano, JD Lewis, FD Bushman, GD Wu (2015) Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 21:1948–1956
https://doi.org/10.1097/MIB.0000000000000454
25 TR Chiaro, R Soto, W Zac Stephens, JL Kubinak, C Petersen, L Gogokhia, R Bell, JC Delgado, J, Cox W Vothet al. (2017) A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med 9(380):eaaf9044
https://doi.org/10.1126/scitranslmed.aaf9044
26 HH Chua, HC Chou, YL Tung, BL Chiang, CC Liao, HH Liu, YH Ni (2018) Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology 154:154–167
https://doi.org/10.1053/j.gastro.2017.09.006
27 L Chung, E Thiele Orberg, AL Geis, JL Chan, K Fu, CE DeStefano Shields, CM Dejea, P Fathi, J Chen, BB Finardet al. (2018) Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23(203–214):e205
https://doi.org/10.1016/j.chom.2018.01.007
28 AG Clooney, TDS Sutton, AN Shkoporov, RK Holohan, KM Daly, O, O’Regan FJ Ryan, LA Draper, SE Plevy, RP Rosset al. (2019) Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26:764–778.e765
https://doi.org/10.1016/j.chom.2019.10.009
29 OO Coker, G, Nakatsu RZ Dai, WKK Wu, SH Wong, SC Ng, FKL Chan, JJY Sung, J Yu(2019) Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68:654–662
https://doi.org/10.1136/gutjnl-2018-317178
30 JF Colombel, A Shin, PR Gibson (2019) AGA clinical practice update on functional gastrointestinal symptoms in patients with inflammatory bowel disease: expert review. Clin Gastroenterol Hepatol 17:380–390.e381
https://doi.org/10.1016/j.cgh.2018.08.001
31 J, Connors KA Dunn, J, Allott R Bandsma, M Rashid, AR Otley, JP Bielawski, J Van Limbergen (2019) The relationship between fecal bile acids and microbiome community structure in pediatric Crohn’s disease . ISME J 14:702–713
https://doi.org/10.1038/s41396-019-0560-3
32 B Cui, Q Feng, H Wang, M Wang, Z Peng, P, Li G, Huang Z Liu, P Wu, Z Fanet al. (2015) Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol 30:51–58
https://doi.org/10.1111/jgh.12727
33 A Darfeuille-Michaud (2002) Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 292:185–193
https://doi.org/10.1078/1438-4221-00201
34 A Darfeuille-Michaud, J Boudeau, P Bulois, C, Neut AL Glasser, N Barnich, MA Bringer, A Swidsinski, L Beaugerie, JF Colombel (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127:412–421
https://doi.org/10.1053/j.gastro.2004.04.061
35 G De Hertogh, J Aerssens, KP Geboes, K Geboes (2008) Evidence for the involvement of infectious agents in the pathogenesis of Crohn’s disease. World J Gastroenterol 14:845–852
https://doi.org/10.3748/wjg.14.845
36 RM Dedrick, CA Guerrero-Bustamante , RA Garlena, DA Russell, K Ford, K Harris, KC Gilmour, J, Soothill D Jacobs-Sera, RT Schooleyet al. (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733
https://doi.org/10.1038/s41591-019-0437-z
37 CM Dejea, P Fathi, JM Craig, A Boleij, R Taddese, AL Geis, X Wu, CE DeStefano Shields , EM Hechenbleikner, DL Husoet al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592–597
https://doi.org/10.1126/science.aah3648
38 Y Derwa, DJ Gracie, PJ Hamlin, AC Ford (2017) Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 46:389–400
https://doi.org/10.1111/apt.14203
39 I Dickson (2018) Gut microbiota: oral bacteria: a cause of IBD? Nat Rev Gastroenterol Hepatol 15:4–5
https://doi.org/10.1038/nrgastro.2017.161
40 D Dodd, MH Spitzer, W Van Treuren, BD Merrill, AJ Hryckowian, SK Higginbottom, A Le, TM Cowan, GP Nolan, MA Fischbachet al. (2017) A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551:648–652
https://doi.org/10.1038/nature24661
41 LA Draper, FJ Ryan, MK Smith, J, Jalanka E Mattila, PA Arkkila, RP Ross, R Satokari, C Hill (2018) Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6:220
https://doi.org/10.1186/s40168-018-0598-x
42 Y Duan, C Llorente, S Lang, K Brandl, H Chu, L Jiang, RC White, TH Clarke, K Nguyen, M Torralbaet al. (2019) Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575:505–511
https://doi.org/10.1038/s41586-019-1742-x
43 H Duboc, S Rajca, D, Rainteau D, Benarous MA Maubert, E Quervain, G Thomas, V Barbu, L Humbert, G Despraset al. (2013) Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62:531–539
https://doi.org/10.1136/gutjnl-2012-302578
44 BA Duerkop, M Kleiner, D Paez-Espino, W Zhu, B Bushnell, B, Hassell SE Winter, NC Kyrpides, LV Hooper (2018) Murine colitis reveals a disease-associated bacteriophage community. Nat Microbiol 3:1023–1031
https://doi.org/10.1038/s41564-018-0210-y
45 K Eaton, A Pirani, ES Snitkin, B Reproducibility Project: Cancer, E, Iorns R Tsui, A Denis, N Perfito, TM Errington, E Iornset al. (2018). Replication Study: intestinal inflammation targets cancerinducing activity of the microbiota. Elife 7:e34364.
https://doi.org/10.7554/eLife.34364
46 E, el-Omar I Penman, G Cruikshank, S Dover, S, Banerjee C Williams, KE McColl (1994) Low prevalence of Helicobacter pylori in inflammatory bowel disease: association with sulphasalazine. Gut 35:1385–1388
https://doi.org/10.1136/gut.35.10.1385
47 AR Erickson, BL Cantarel, R Lamendella, Y, Darzi EF Mongodin, C Pan, M Shah, J Halfvarson, C, Tysk B Henrissatet al. (2012) Integrated metagenomics/metaproteomics reveals human hostmicrobiota signatures of Crohn’s disease. PLoS ONE 7:e49138
https://doi.org/10.1371/journal.pone.0049138
48 RN Fedorak, BG Feagan, N Hotte, D Leddin, LA Dieleman, DM Petrunia, R Enns, A Bitton, N Chiba, P Pareet al. (2015) The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin Gastroenterol Hepatol 13:928–935.e922
https://doi.org/10.1016/j.cgh.2014.10.031
49 EA Franzosa, A Sirota-Madi , J Avila-Pacheco, N Fornelos, HJ Haiser, S Reinker, T Vatanen, AB Hall, H Mallick, LJ McIveret al. (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4:293–305
https://doi.org/10.1038/s41564-018-0306-4
50 SB Freedman, S, Williamson-Urquhart KJ Farion, S Gouin, AR Willan, N Poonai, K Hurley, PM Sherman, Y Finkelstein, BE Leeet al.(2018) Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med 379:2015–2026
https://doi.org/10.1056/NEJMoa1802597
51 Y Furusawa, Y Obata, S Fukuda, TA Endo, G Nakato, D Takahashi, Y Nakanishi, C Uetake, K Kato, T Katoet al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450
https://doi.org/10.1038/nature12721
52 M Galtier, L De Sordi, A Sivignon, A de Vallee, D Maura, C Neut, O Rahmouni, K Wannerberger, A Darfeuille-Michaud , P Desreumauxet al. (2017) Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J Crohns Colitis 11:840–847
https://doi.org/10.1093/ecco-jcc/jjw224
53 WS Garrett (2019) The gut microbiota and colon cancer. Science 364:1133–1135
https://doi.org/10.1126/science.aaw2367
54 WS Garrett, CA Gallini, T Yatsunenko, M Michaud, A DuBois, ML Delaney, S Punit, M Karlsson, L, Bry JN Glickmanet al. (2010) Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8:292–300
https://doi.org/10.1016/j.chom.2010.08.004
55 GR Gibson, R Hutkins, ME Sanders, SL Prescott, RA Reimer, SJ Salminen, K Scott, C, Stanton KS Swanson, PD Caniet al. (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502
https://doi.org/10.1038/nrgastro.2017.75
56 L, Gogokhia K Buhrke, R Bell, B Hoffman, DG Brown, C Hanke-Gogokhia, NJ Ajami, MC Wong, A Ghazaryan, JF Valentineet al. (2019) Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25:285–299. e288
https://doi.org/10.1016/j.chom.2019.01.008
57 AB Hall, M Yassour, J, Sauk A Garner, X Jiang, T Arthur, GK Lagoudas, T Vatanen, N Fornelos, R Wilsonet al. (2017) A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:103
https://doi.org/10.1186/s13073-017-0490-5
58 MJ Hamilton, AR Weingarden, MJ Sadowsky, A Khoruts (2012) Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107:761–767
https://doi.org/10.1038/ajg.2011.482
59 S Hang, D Paik, L Yao, E Kim, J Trinath, J Lu, S Ha, BN Nelson, SP Kelly, L Wuet al. (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–148
https://doi.org/10.1038/s41586-019-1785-z
60 C Hedin, CJ van der Gast, GB Rogers, L Cuthbertson, S McCartney, AJ Stagg, JO Lindsay, K Whelan (2016) Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities. Gut 65:944–953
https://doi.org/10.1136/gutjnl-2014-308896
61 MT Henke, DJ Kenny, CD Cassilly, H Vlamakis, RJ Xavier, J Clardy (2019) Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA 116:12672–12677
https://doi.org/10.1073/pnas.1904099116
62 C, Hill F Guarner, G Reid, GR Gibson, DJ Merenstein, B Pot, L, Morelli RB Canani, HJ Flint, S Salminenet al. (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514
https://doi.org/10.1038/nrgastro.2014.66
63 CL Hvas, SM Dahl Jørgensen, SRP Jørgensen, M Storgaard, L Lemming, MM Hansen, C Erikstrup, JF Dahlerup (2019) Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 156:1324–1332.e1323
https://doi.org/10.1053/j.gastro.2018.12.019
64 ID Iliev, VA Funari, KD Taylor, Q Nguyen, CN Reyes, SP Strom, J Brown, CA Becker, PR Fleshner, M Dubinskyet al. (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317
https://doi.org/10.1126/science.1221789
65 F Imhann, A Vich Vila, MJ Bonder, J Fu, D Gevers, MC Visschedijk, LM Spekhorst, R Alberts, L Franke, HM van Dullemenet al. (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108–119
https://doi.org/10.1136/gutjnl-2016-312135
66 AE Jergens, JH Wilson-Welder, A Dorn, A Henderson, Z Liu, RB Evans, J, Hostetter MJ Wannemuehler (2007) Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut 56:934–940
https://doi.org/10.1136/gut.2006.099242
67 M Joossens, G, Huys M Cnockaert, V De Preter, K Verbeke, P, Rutgeerts P Vandamme, S Vermeire(2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637
https://doi.org/10.1136/gut.2010.223263
68 LD Kalischuk, AG Buret (2010) A role for Campylobacter jejuniinduced enteritis in inflammatory bowel disease? Am J Physiol Gastrointest Liver Physiol 298:29
https://doi.org/10.1152/ajpgi.00193.2009
69 A Khoruts, MJ Sadowsky (2016) Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13:508–516
https://doi.org/10.1038/nrgastro.2016.98
70 A Khoruts, KM Rank, KM Newman, K Viskocil, BP Vaughn, MJ Hamilton, MJ Sadowsky (2016) Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol 14:1433–1438
https://doi.org/10.1016/j.cgh.2016.02.018
71 MH Kim, SG Kang, JH Park, M Yanagisawa, CH Kim (2013) Shortchain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145(396–406):e391–e310
https://doi.org/10.1053/j.gastro.2013.04.056
72 KF Kirk, HL Nielsen, O Thorlacius-Ussing, H Nielsen(2016) Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathog 8:27
https://doi.org/10.1186/s13099-016-0111-7
73 AD Kostic, RJ Xavier, D Gevers (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499
https://doi.org/10.1053/j.gastro.2014.02.009
74 R Kotlowski, CN Bernstein, S, Sepehri DO Krause (2007) High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 56:669–675
https://doi.org/10.1136/gut.2006.099796
75 W Kruis, P Fric, J Pokrotnieks, M Lukas, B Fixa, M Kascak, MA Kamm, J Weismueller, C, Beglinger M Stolteet al. (2004) Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53:1617–1623
https://doi.org/10.1136/gut.2003.037747
76 MC Kullberg, AG Rothfuchs, D, Jankovic P Caspar, TA Wynn, PL Gorelick, AW Cheever, A Sher (2001) Helicobacter hepaticusinduced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation. Infect Immun 69:4232–4241
https://doi.org/10.1128/IAI.69.7.4232-4241.2001
77 MC Kullberg, D Jankovic, CG Feng, S Hue, PL Gorelick, BS McKenzie, DJ Cua, F Powrie, AW Cheever, KJ Maloyet al. (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T celldependent colitis. J Exp Med 203:2485–2494
https://doi.org/10.1084/jem.20061082
78 D Laharie, C Asencio, J, Asselineau P Bulois, A Bourreille, J Moreau, P Bonjean, D Lamarque, A Pariente, JC Souleet al. (2009) Association between entero-hepatic Helicobacter species and Crohn’s disease: a prospective cross-sectional study. Aliment Pharmacol Ther 30:283–293
https://doi.org/10.1111/j.1365-2036.2009.04034.x
79 S Lam, T Zuo, M Ho, FKL Chan, PKS Chan, SC Ng (2019) Review article: fungal alterations in inflammatory bowel diseases. Aliment Pharmacol Ther 50:1159–1171
https://doi.org/10.1111/apt.15523
80 CA Lamb, NA Kennedy, T Raine, PA Hendy, PJ Smith, JK Limdi, B, Hayee MCE Lomer, GC Parkes, C Selingeret al. (2019) British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 68:s1–s106
https://doi.org/10.1136/gutjnl-2019-318484
81 JT LaMont (2018) Probiotics for children with gastroenteritis. N Engl J Med 379:2076–2077
https://doi.org/10.1056/NEJMe1814089
82 M Levy, CA Thaiss, D Zeevi, L Dohnalova, G, Zilberman-Schapira JA Mahdi, E David, A Savidor, T Korem, Y Herziget al. (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–1443
https://doi.org/10.1016/j.cell.2015.10.048
83 Q Li, C Wang, C Tang, Q He, N Li, J Li (2014) Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 48:513–523
https://doi.org/10.1097/MCG.0000000000000035
84 XV Li, I Leonardi, ID Iliev (2019) Gut mycobiota in immunity and inflammatory disease. Immunity 50:1365–1379
https://doi.org/10.1016/j.immuni.2019.05.023
85 JJ Limon, J Tang, D Li, AJ Wolf, KS Michelsen, V Funari, M Gargus, C Nguyen, P Sharma, VI Maymiet al. (2019) Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25:377–388.e376
https://doi.org/10.1016/j.chom.2019.01.007
86 Z Liu, AE Ramer-Tait, AL Henderson, CY Demirkale, D Nettleton, C, Wang JM Hostetter, AE Jergens, MJ Wannemuehler (2011) Helicobacter bilis colonization enhances susceptibility to Typhlocolitis following an inflammatory trigger. Dig Dis Sci 56:2838–2848
https://doi.org/10.1007/s10620-011-1701-3
87 J, Lloyd-Price C Arze, AN Ananthakrishnan, M Schirmer, J, Avila-Pacheco TW Poon, E Andrews, NJ Ajami, KS Bonham, CJ Brislawnet al. (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:655–662
https://doi.org/10.1038/s41586-019-1237-9
88 A Lo Presti , F Zorzi, F Del Chierico, A Altomare, S Cocca, A Avola, F, De Biasio A Russo, E Cella, S Reddelet al.(2019) Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol 10:1655
https://doi.org/10.3389/fmicb.2019.01655
89 SV Lynch, O Pedersen (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379
https://doi.org/10.1056/NEJMra1600266
90 K Machiels, M Joossens, J Sabino, V, De Preter I, Arijs V Eeckhaut, V Ballet, K Claes, F Van Immerseel, K Verbekeet al. (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283
https://doi.org/10.1136/gutjnl-2013-304833
91 K Machiels, J Sabino, L, Vandermosten M Joossens, I, Arijs M de Bruyn, V, Eeckhaut G Van Assche, M Ferrante, J Verhaegenet al. (2017) Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut 66:79–88
https://doi.org/10.1136/gutjnl-2015-309398
92 V Mahendran, SM Riordan, MC Grimm, TA Tran, J Major, NO Kaakoush, H Mitchell, L Zhang (2011) Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS ONE 6:e25417
https://doi.org/10.1371/journal.pone.0025417
93 V Mahendran, F Liu, SM Riordan, MC Grimm, MM Tanaka, L Zhang (2016) Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog 8:18
https://doi.org/10.1186/s13099-016-0101-9
94 SM Man, NO Kaakoush, ST Leach, L Nahidi, HK Lu, J, Norman AS Day, L Zhang, HM Mitchell (2010) Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis 202:1855–1865
https://doi.org/10.1086/657316
95 JS Mar, BJ LaMere, DL Lin, S Levan, M Nazareth, U, Mahadevan SV Lynch (2016) Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. mBio.
https://doi.org/10.1128/mBio.01072-16
96 HM Martin, BJ Campbell, CA Hart, C Mpofu, M Nayar, R Singh, H Englyst, HF Williams, JM Rhodes (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127:80–93
https://doi.org/10.1053/j.gastro.2004.03.054
97 R Martin, S, Miquel L Benevides, C, Bridonneau V, Robert S Hudault, F, Chain O Berteau, V Azevedo, JM Chatelet al. (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226
https://doi.org/10.3389/fmicb.2017.01226
98 SK Mazmanian, CH Liu, AO Tzianabos, DL Kasper (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118
https://doi.org/10.1016/j.cell.2005.05.007
99 SK Mazmanian, JL Round, DL Kasper (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625
https://doi.org/10.1038/nature07008
100 S McCallin, S Alam Sarker, C Barretto, S Sultana, B Berger, S, Huq L Krause, R, Bibiloni B Schmitt, G Reuteleret al. (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443:187–196
https://doi.org/10.1016/j.virol.2013.05.022
101 E Miele, F Pascarella, E Giannetti, L Quaglietta, RN Baldassano, A Staiano (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104:437–443
https://doi.org/10.1038/ajg.2008.118
102 P Moayyedi, MG Surette, PT Kim, J Libertucci, M Wolfe, C Onischi, D Armstrong, JK Marshall, Z Kassam, W Reinischet al. (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–109.e106
https://doi.org/10.1053/j.gastro.2015.04.001
103 XC Morgan, TL Tickle, H, Sokol D, Gevers KL Devaney, DV Ward, JA Reyes, SA Shah, N LeLeiko, SB Snapperet al. (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79
https://doi.org/10.1186/gb-2012-13-9-r79
104 I Mukhopadhya, JM Thomson, R Hansen, SH Berry, EM, El-Omar GL Hold (2011) Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS ONE 6:e21490
https://doi.org/10.1371/journal.pone.0021490
105 M Mylonaki, NB Rayment, DS Rampton, BN Hudspith, J Brostoff (2005) Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11:481–487
https://doi.org/10.1097/01.MIB.0000159663.62651.4f
106 PK Nattramilarasu, R Bucker, FD Lobo de Sa, A Fromm, O Nagel, IM Lee, E Butkevych, S Mousavi, C Genger, S Kloveet al. (2020) Campylobacter concisus impairs sodium absorption in colonic epithelium via ENaC dysfunction and claudin-8 disruption. Int J Mol Sci 21(2):373
https://doi.org/10.3390/ijms21020373
107 SC Ng, HY Shi, N Hamidi, FE Underwood, W Tang, EI Benchimol, R Panaccione, S Ghosh, JCY Wu, FKL Chanet al. (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of populationbased studies. Lancet 390:2769–2778
https://doi.org/10.1016/S0140-6736(17)32448-0
108 J, Ni GD Wu, L Albenberg, VT Tomov (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584
https://doi.org/10.1038/nrgastro.2017.88
109 K Nishino, A Nishida, R Inoue, Y, Kawada M Ohno, S Sakai, O Inatomi, S, Bamba M, Sugimoto M Kawaharaet al. (2018) Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol 53:95–106
https://doi.org/10.1007/s00535-017-1384-4
110 JM Norman, SA Handley, MT Baldridge, L Droit, CY Liu, BC Keller, A Kambal, CL Monaco, G Zhao, P Fleshneret al. (2015) Diseasespecific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–460
https://doi.org/10.1016/j.cell.2015.01.002
111 JP Nougayrede, S, Homburg F Taieb, M Boury, E Brzuszkiewicz, G Gottschalk, C Buchrieser, J Hacker, U Dobrindt, E Oswald (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851
https://doi.org/10.1126/science.1127059
112 T Ohkusa, N Sato, T Ogihara, K Morita, M Ogawa, I Okayasu(2002) Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 17:849–853
https://doi.org/10.1046/j.1440-1746.2002.02834.x
113 T Ohkusa, I Okayasu, T Ogihara, K Morita, M Ogawa, N Sato (2003) Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut 52:79–83
https://doi.org/10.1136/gut.52.1.79
114 T, Ohkusa T, Yoshida N Sato, S Watanabe, H Tajiri, I Okayasu (2009) Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol 58:535–545
https://doi.org/10.1099/jmm.0.005801-0
115 S Oliva, G Di Nardo, F, Ferrari S Mallardo, P Rossi, G Patrizi, S Cucchiara, L Stronati (2012) Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 35:327–334
https://doi.org/10.1111/j.1365-2036.2011.04939.x
116 JC Ossa, NK Ho, E Wine, N Leung, SD Gray-Owen , PM Sherman (2013) Adherent-invasive Escherichia coli blocks interferongamma- induced signal transducer and activator of transcription (STAT)-1 in human intestinal epithelial cells. Cell Microbiol 15:446–457
https://doi.org/10.1111/cmi.12048
117 PW O'Toole, JR Marchesi, C Hill (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2:17057
https://doi.org/10.1038/nmicrobiol.2017.57
118 CD Owen, LE Tailford, S Monaco, T, Suligoj L Vaux, R Lallement, Z Khedri, H Yu, K Lecointe, J Walshawet al. (2017) Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat Commun 8:2196
https://doi.org/10.1038/s41467-017-02109-8
119 C, Palmela C, Chevarin Z Xu, J Torres, G Sevrin, R, Hirten N Barnich, SC Ng, JF Colombel (2018) Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67:574–587
https://doi.org/10.1136/gutjnl-2017-314903
120 S Paramsothy, MA Kamm, NO Kaakoush, AJ Walsh, J van den Bogaerde , D Samuel, RWL Leong, S Connor, W Ng, R Paramsothyet al. (2017a) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebocontrolled trial. Lancet 389:1218–1228
https://doi.org/10.1016/S0140-6736(17)30182-4
121 S, Paramsothy R Paramsothy, DT Rubin, MA Kamm, NO Kaakoush, HM Mitchell, N Castano-Rodriguez (2017b) Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 11:1180–1199
https://doi.org/10.1093/ecco-jcc/jjx063
122 S Paramsothy, S Nielsen, MA Kamm, NP Deshpande, JJ Faith, JC Clemente, R Paramsothy, AJ Walsh, J van den Bogaerde, D Samuelet al. (2019) Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 156:1440–1454. e1442
https://doi.org/10.1053/j.gastro.2018.12.001
123 R Pittayanon, JT Lau, GI Leontiadis, F, Tse Y Yuan, M Surette, P Moayyedi(2019) Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158(4):930–946.e1
https://doi.org/10.1053/j.gastro.2019.11.294
124 H Plovier, A Everard, C, Druart C Depommier, M Van Hul , L Geurts, J, Chilloux N Ottman, T Duparc, L Lichtensteinet al. (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113
https://doi.org/10.1038/nm.4236
125 CW Png, SK Linden, KS Gilshenan, EG Zoetendal, CS McSweeney, LI Sly, MA McGuckin, TH Florin (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428
https://doi.org/10.1038/ajg.2010.281
126 TS Postler, S Ghosh(2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26:110–130
https://doi.org/10.1016/j.cmet.2017.05.008
127 P Praveschotinunt, AM Duraj-Thatte , I, Gelfat F Bahl, DB Chou, NS Joshi (2019) Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 10:5580
https://doi.org/10.1038/s41467-019-13336-6
128 TP Prindiville, RA Sheikh, SH Cohen, YJ Tang, MC Cantrell, J Jr Silva (2000) Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis 6:171–174
https://doi.org/10.3201/eid0602.000210
129 M Prorok-Hamon, MK Friswell, A Alswied, CL Roberts, F Song, PK Flanagan, P, Knight C Codling, JR Marchesi, C Winstanleyet al. (2014) Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 63:761–770
https://doi.org/10.1136/gutjnl-2013-304739
130 E, Quevrain MA Maubert, C, Michon F Chain, R Marquant, J Tailhades, S Miquel, L Carlier, LG Bermudez-Humaran, B Pigneuret al. (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425
https://doi.org/10.1136/gutjnl-2014-307649
131 C Ring, R Klopfleisch, K Dahlke, M Basic, A Bleich, M Blaut (2019) Akkermansia muciniphila strain ATCC BAA-835 does not promote short-term intestinal inflammation in gnotobiotic interleukin-10-deficient mice. Gut Microbes 10:188–203
https://doi.org/10.1080/19490976.2018.1511663
132 T Rokkas, JP Gisbert, Y, Niv C O’Morain (2015) The association between Helicobacter pylori infection and inflammatory bowel disease based on meta-analysis. United Eur Gastroenterol J 3:539–550
https://doi.org/10.1177/2050640615580889
133 O Rossi, LA van Berkel, F Chain, M Tanweer Khan, N Taverne, H Sokol, SH Duncan, HJ, Flint HJ Harmsen, P Langellaet al.(2016) Faecalibacterium prausnitzii A2–165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 6:18507
https://doi.org/10.1038/srep18507
134 JL Round, SM Lee, J, Li G Tran, B Jabri, TA Chatila, SK Mazmanian (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977
https://doi.org/10.1126/science.1206095
135 SA Sarker, S Sultana, G Reuteler, D Moine, P Descombes, F Charton, G Bourdin, S McCallin, C Ngom-Bru , T Nevilleet al. (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137
https://doi.org/10.1016/j.ebiom.2015.12.023
136 SA Sarker, B Berger, Y Deng, S Kieser, F Foata, D Moine, P Descombes, S, Sultana S Huq, PK Bardhanet al.(2017) Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. Environ Microbiol 19:237–250
https://doi.org/10.1111/1462-2920.13574
137 M Sassone-Corsi, SP Nuccio, H Liu, D, Hernandez CT Vu, AA Takahashi, RA Edwards, M Raffatellu (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–283
https://doi.org/10.1038/nature20557
138 F Scaldaferri, V Gerardi, F, Mangiola LR Lopetuso, M Pizzoferrato, V Petito, A Papa, J Stojanovic, A Poscia, G Cammarotaet al. (2016) Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol 22:5505–5511
https://doi.org/10.3748/wjg.v22.i24.5505
139 M Schirmer, A Garner, H Vlamakis, RJ Xavier (2019) Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 17:497–511
https://doi.org/10.1038/s41579-019-0213-6
140 D Schnadower, PI Tarr, TC Casper, MH Gorelick, JM Dean, KJ O'Connell, P Mahajan, AC Levine, SR Bhatt, CG Roskindet al. (2018) Lactobacillus rhamnosus GG versus placebo for acute gastroenteritis in children. N Engl J Med 379:2002–2014
https://doi.org/10.1056/NEJMoa1802598
141 J, Seishima N Iida, K Kitamura, M Yutani, Z Wang, A, Seki T Yamashita, Y Sakai, M Honda, T Yamashitaet al. (2019) Gutderived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol 20:252
https://doi.org/10.1186/s13059-019-1879-9
142 T, Sekizuka Y Ogasawara, T, Ohkusa M Kuroda (2017) Characterization of Fusobacterium varium Fv113-g1 isolated from a patient with ulcerative colitis based on complete genome sequence and transcriptome analysis. PLoS ONE 12:e0189319
https://doi.org/10.1371/journal.pone.0189319
143 S, Sepehri E Khafipour, CN Bernstein, BK Coombes, AV Pilar, M Karmali, K Ziebell, DO Krause (2011) Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm Bowel Dis 17:1451–1463
https://doi.org/10.1002/ibd.21509
144 SS Seregin, N Golovchenko, B Schaf, J Chen, NA Pudlo, J Mitchell, NT Baxter, L Zhao, PD Schloss, EC Martenset al. (2017) NLRP6 protects Il10(−/−) mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep 19:733–745
https://doi.org/10.1016/j.celrep.2017.03.080
145 SR Sinha, Y Haileselassie, LP Nguyen, C Tropini, M Wang, LS Becker, D Sim, K Jarr, ET Spear, G Singhet al. (2020) Dysbiosisinduced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27(4):659–670.e5
https://doi.org/10.1016/j.chom.2020.01.021
146 A Sivignon, A de Vallee, N Barnich, J Denizot, C Darcha, G Pignede, P Vandekerckove, A Darfeuille-Michaud (2015) Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn’s disease. Inflamm Bowel Dis 21:276–286
https://doi.org/10.1097/MIB.0000000000000280
147 H Sokol, B, Pigneur L Watterlot, O Lakhdari, LG Bermúdez-Humarán, J-J, Gratadoux S, Blugeon C Bridonneau, J-P Furet, G Corthieret al. (2008a) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736
https://doi.org/10.1073/pnas.0804812105
148 H Sokol, B Pigneur, L Watterlot, O Lakhdari, LG Bermudez-Humaran, JJ Gratadoux, S Blugeon, C Bridonneau, JP Furet, G Corthieret al. (2008b) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736
https://doi.org/10.1073/pnas.0804812105
149 H Sokol, P Seksik, JP Furet, O Firmesse, I Nion-Larmurier , L Beaugerie, J Cosnes, G Corthier, P Marteau, J Dore (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189
https://doi.org/10.1002/ibd.20903
150 H Sokol, V Leducq, H Aschard, HP Pham, S Jegou, C Landman, D Cohen, G Liguori, A Bourrier, I Nion-Larmurieret al. (2017) Fungal microbiota dysbiosis in IBD. Gut 66:1039–1048
https://doi.org/10.1136/gutjnl-2015-310746
151 X Song, X Sun, SF Oh, M Wu, Y, Zhang W, Zheng N Geva-Zatorsky, R Jupp, D Mathis, C Benoistet al. (2020) Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577:410–415
https://doi.org/10.1038/s41586-019-1865-0
152 A Sonnenberg, RM Genta (2012) Low prevalence of Helicobacter pylori infection among patients with inflammatory bowel disease. Aliment Pharmacol Ther 35:469–476
https://doi.org/10.1111/j.1365-2036.2011.04969.x
153 U Sonnenborn (2016) Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 363(19): fnw212
https://doi.org/10.1093/femsle/fnw212
154 LE Tailford, CD Owen, J Walshaw, EH Crost, J Hardy-Goddard, G, Le Gall WM de Vos, GL Taylor, N Juge(2015) Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 6:7624
https://doi.org/10.1038/ncomms8624
155 C Tang, T Kamiya, Y, Liu M Kadoki, S Kakuta, K Oshima, M Hattori, K, Takeshita T Kanai, S Saijoet al. (2015) Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18:183–197
https://doi.org/10.1016/j.chom.2015.07.003
156 E Thiele Orberg, H Fan, AJ Tam, CM Dejea, CE Destefano Shields , S, Wu L Chung, BB Finard, X Wu, P Fathiet al. (2017) The myeloid immune signature of enterotoxigenic Bacteroides fragilisinduced murine colon tumorigenesis. Mucosal Immunol 10:421–433
https://doi.org/10.1038/mi.2016.53
157 FC Tiago, BA Porto, NS Ribeiro, LM Moreira, RM Arantes, AT Vieira, MM Teixeira, SV Generoso, VN Nascimento, FS Martinset al. (2015) Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease. Benef Microbes 6:807–815
https://doi.org/10.3920/BM2015.0018
158 AP Underwood, NO Kaakoush, N, Sodhi J, Merif W Seah Lee , SM Riordan, WD Rawlinson, HM Mitchell (2016) Campylobacter concisus pathotypes are present at significant levels in patients with gastroenteritis. J Med Microbiol 65:219–226
https://doi.org/10.1099/jmm.0.000216
159 E van Nood, A Vrieze, M Nieuwdorp, S Fuentes, EG Zoetendal, WM de Vos, CE Visser, EJ Kuijper, JF Bartelsman, JG Tijssenet al. (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415
https://doi.org/10.1056/NEJMoa1205037
160 A Vich Vila, F Imhann, V Collij, SA Jankipersadsing, T Gurry, Z Mujagic, A, Kurilshikov MJ Bonder, X Jiang, EF Tigchelaaret al. (2018) Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 10(472):eaap8914
https://doi.org/10.1126/scitranslmed.aap8914
161 J Wagner, J Maksimovic, G Farries, WH Sim, RF Bishop, DJ Cameron, AG Catto-Smith , CD Kirkwood (2013) Bacteriophages in gut samples from pediatric Crohn’s disease patients: metagenomic analysis using 454 pyrosequencing. Inflamm Bowel Dis 19:1598–1608
https://doi.org/10.1097/MIB.0b013e318292477c
162 L Wang, L Tang, Y Feng, S Zhao, M Han, C Zhang, G Yuan, J Zhu, S Cao, Q Wuet al. (2020) A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) Tcells in mice. Gut.
https://doi.org/10.1136/gutjnl-2019-320105
163 EC Wick, S Rabizadeh, E Albesiano, X Wu, S Wu, J Chan, KJ Rhee, G Ortega, DL Huso, D Pardollet al. (2014) Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm Bowel Dis 20:821–834
https://doi.org/10.1097/MIB.0000000000000019
164 S Wildt, I Nordgaard, U Hansen, E Brockmann, JJ Rumessen (2011) A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J Crohns Colitis 5:115–121
https://doi.org/10.1016/j.crohns.2010.11.004
165 BB Williams, AH Van Benschoten, P, Cimermancic MS Donia, M Zimmermann, M Taketani, A Ishihara, PC Kashyap, JS Fraser, MA Fischbach (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503
https://doi.org/10.1016/j.chom.2014.09.001
166 BP Willing, J Dicksved, J Halfvarson, AF Andersson, M Lucio, Z Zheng, G Jarnerot, C, Tysk JK Jansson, L Engstrand (2010) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139:1844–1854.e1841
https://doi.org/10.1053/j.gastro.2010.08.049
167 M Wlodarska, C Luo, R Kolde, E d’Hennezel, JW Annand, CE Heim, P Krastel, EK Schmitt, AS Omar, EA Creaseyet al. (2017) Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22:25–37. e26
https://doi.org/10.1016/j.chom.2017.06.007
168 M Xu, M Pokrovskii, Y Ding, R Yi, C Au, OJ Harrison, C Galan, Y Belkaid, R Bonneau, DR Littman (2018) c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554:373–377
https://doi.org/10.1038/nature25500
169 I, Yang D Eibach, F Kops, B Brenneke, S Woltemate, J Schulze, A Bleich, AD Gruber, S Muthupalani, JG Foxet al. (2013) Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticusinduced colitis. PLoS ONE 8:e70783
https://doi.org/10.1371/journal.pone.0070783
170 B Yilmaz, P Juillerat, O Oyas, C Ramon, FD Bravo, Y Franc, N Fournier, P Michetti, C Mueller, M Geukinget al.(2019) Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med 25:323–336
https://doi.org/10.1038/s41591-018-0308-z
171 S Zamani, S Hesam Shariati, MR Zali, H Asadzadeh Aghdaei A Sarabi Asiabar, S Bokaie B Nomanpour, LA Sechi, MM Feizabadi (2017) Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog 9:53
https://doi.org/10.1186/s13099-017-0202-0
172 T Zelante, RG Iannitti, C Cunha, A De Luca, G, Giovannini G Pieraccini, R Zecchi, C D'Angelo, C Massi-Benedetti , F Fallarinoet al. (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385
https://doi.org/10.1016/j.immuni.2013.08.003
173 L Zhang, SM Man, AS Day, ST Leach, DA Lemberg, S Dutt, M Stormon, A Otley, EV O’Loughlin , A Magoffinet al. (2009) Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J Clin Microbiol 47:453–455
https://doi.org/10.1128/JCM.01949-08
174 FM Zhang, HG Wang, M Wang, BT Cui, ZN Fan, GZ Ji (2013) Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol 19:7213–7216
https://doi.org/10.3748/wjg.v19.i41.7213
175 L Zhang, H Lee, MC Grimm, SM Riordan, AS Day, DA Lemberg (2014) Campylobacter concisus and inflammatory bowel disease. World J Gastroenterol 20:1259–1267
https://doi.org/10.3748/wjg.v20.i5.1259
176 W Zhu, MG Winter, MX Byndloss, L, Spiga BA Duerkop, ER Hughes, L Buttner, E de Lima Romao, CL Behrendt, CA Lopezet al. (2018) Precision editing of the gut microbiota ameliorates colitis. Nature 553:208–211
https://doi.org/10.1038/nature25172
177 W Zhu, N Miyata, MG Winter, A Arenales, ER Hughes, L Spiga, J, Kim L Sifuentes-Dominguez, P, Starokadomskyy P Gopalet al. (2019) Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med 216:2378–2393
https://doi.org/10.1084/jem.20181939
178 T Zuo, SH Wong, CP Cheung, K Lam, R Lui, K Cheung, F Zhang, W Tang, JYL Ching, JCY Wuet al. (2018) Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun 9:3663
https://doi.org/10.1038/s41467-018-06103-6
[1] Juanjuan Yuan, Ting Cai, Xiaojun Zheng, Yangzi Ren, Jingwen Qi, Xiaofei Lu, Huihui Chen, Huizhen Lin, Zijie Chen, Mengnan Liu, Shangwen He, Qijun Chen, Siyang Feng, Yingjun Wu, Zhenhai Zhang, Yanqing Ding, Wei Yang. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLRmediated TCR recycling and signaling[J]. Protein Cell, 2021, 12(4): 240-260.
[2] Hua Qin, Andong Zhao. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics[J]. Protein Cell, 2020, 11(10): 707-722.
[3] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[4] Faming Zhang, Bota Cui, Xingxiang He, Yuqiang Nie, Kaichun Wu, Daiming Fan, FMT-standardization Study Group. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473.
[5] Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu. Pharmacomicrobiomics: a novel route towards personalized medicine?[J]. Protein Cell, 2018, 9(5): 432-445.
[6] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[7] Lu Gao, Tiansong Xu, Gang Huang, Song Jiang, Yan Gu, Feng Chen. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
[8] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[9] Kyoji Tsuchikama, Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries[J]. Protein Cell, 2018, 9(1): 33-46.
[10] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[11] Xiaowen Zheng, Feng Chen, Qian Zhang, Yulan Liu, Peng You, Shan Sun, Jiuxiang Lin, Ning Chen. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease[J]. Protein Cell, 2017, 8(9): 686-695.
[12] Hua Li, Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell, 2017, 8(8): 573-589.
[13] Zhenguang Wang, Yelei Guo, Weidong Han. Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment[J]. Protein Cell, 2017, 8(12): 896-925.
[14] Dongfang Liu, Shuo Tian, Kai Zhang, Wei Xiong, Ndongala Michel Lubaki, Zhiying Chen, Weidong Han. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV[J]. Protein Cell, 2017, 8(12): 861-877.
[15] Chunxiao Qi,Xiaojun Yan,Chenyu Huang,Alexander Melerzanov,Yanan Du. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine[J]. Protein Cell, 2015, 6(9): 638-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed