|
|
|
Pattern discovery of long non-coding RNAs associated with the herbal treatments in breast and prostate cancers |
Elham Dalalbashi Esfahani1( ), Esmaeil Ebrahimie2,3,4, Ali Niazi1, Manijeh Mohammadi Dehcheshmeh2,3 |
1. Institute of Biotechnology, Shiraz University, Shiraz 7196484334, Iran 2. Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia 3. School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5005, Australia 4. School of BioSciences, The University of Melbourne, Victoria 3052, Australia |
|
|
|
|
Abstract Background: Accumulating evidence shows that long non-coding RNAs (lncRNAs) play critical roles in cancer progression. The possible association between lncRNAs and herbal medicine is yet to be known. This study aims to identify medicinal herbs associated with lncRNAs by RNA-seq data for breast and prostate cancer. Methods: To develop the optimal approach for identifying cancer-related lncRNAs, we implemented two steps: (1) applying protein–protein interaction (PPI), Gene Ontology (GO), and pathway analyses, and (2) applying attribute weighting and finding the efficient classification model of the machine learning approach. Results: In the first step, GO terms and pathway analyses on differential co-expressed mRNAs revealed that lncRNAs were widely co-expressed with metabolic process genes. We identified two hub lncRNA-mRNA networks that implicate lncRNAs associated with breast and prostate cancer. In the second step, we implemented various machine learning-based prediction systems (Decision Tree, Random Forest, Deep Learning, and Gradient-Boosted Tree) on the non-transformed and Z-standardized differential co-expressed lncRNAs. Based on five-fold cross-validation, we obtained high accuracy (91.11%), high sensitivity (88.33%), and high specificity (93.33%) in Deep Learning which reinforces the biomarker power of identified lncRNAs in this study. As data originally came from different cell lines at different durations of herbal treatment intervention, we applied seven attribute weighting algorithms to check the effects of variables on identifying lncRNAs. Attribute weighting results showed that the cell line and time had little or no effect on the selected lncRNAs list. Besides, we identified one known lncRNAs, downregulated RNA in cancer (DRAIC), as an essential feature. Conclusions: This study will provide further insights to investigate the potential therapeutic and prognostic targets for prostate cancer (PC) and breast cancer (BC) in common.
|
| Keywords
RNA-Seq
lncRNA
cancer
co-expression
machine learning
attribute weighting
|
|
Corresponding Author(s):
Elham Dalalbashi Esfahani
|
|
Just Accepted Date: 14 July 2023
Online First Date: 24 August 2023
Issue Date: 08 October 2023
|
|
| 1 |
M. Ekor, (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol, 4: 177
https://doi.org/10.3389/fphar.2013.00177
|
| 2 |
A. I., KuruppuP. ParanagamaC. Goonasekara. (2019) Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. 27, 565–573
|
| 3 |
J. MachariaR. MwangiN., RozmannK., ZsoltT., VarjasP. UchechukwuI. WagaraB. Raposa. (2022) Medicinal plants with anti-colorectal cancer bioactive compounds: potential game-changers in colorectal cancer management. Biomed Pharmacother. 153, 113383
|
| 4 |
W., Kooti, K., Servatyari, M., Behzadifar, M., Asadi-Samani, F., Sadeghi, B. Nouri, (2017). Effective medicinal plant in cancer treatment, part 2: review study. J. Evid. Based Complementary Altern. Med., 22: 982–995
https://doi.org/10.1177/2156587217696927
|
| 5 |
J., IqbalB. AbbasiT., MahmoodS., KanwalB., AliS. ShahA. Khalil. (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac. J. Trop. Med., 7, 1129–1150
|
| 6 |
E. Diamandis, (1998). Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr. Rev., 19: 365–396
https://doi.org/10.1210/er.19.4.365
|
| 7 |
W., Wu, E. Wagner, Y., Hao, X., Rao, H., Dai, J., Han, J., Chen, A. Storniolo, Y. Liu, (2016). Tissue-specific co-expression of long non-coding and coding RNAs associated with breast cancer. Sci. Rep., 6: 32731
https://doi.org/10.1038/srep32731
|
| 8 |
Z. Ren, D. Cao, Q., Zhang, P. Ren, L. Liu, Q., Wei, W. Wei, (2019). First-degree family history of breast cancer is associated with prostate cancer risk: a systematic review and meta-analysis. BMC Cancer, 19: 871
https://doi.org/10.1186/s12885-019-6055-9
|
| 9 |
Y., Zheng, Q., Xu, M., Liu, H., Hu, Y., Xie, Z. Zuo, (2019). LnCAR: a comprehensive resource for lncRNAs from cancer arrays. Cancer Res., 79: 2076–83
https://doi.org/10.1158/0008-5472.CAN-18-2169
|
| 10 |
O., Beylerli, I., Gareev, A., Sufianov, T. Ilyasova, (2022). Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res., 7: 66–70
https://doi.org/10.1016/j.ncrna.2022.02.004
|
| 11 |
J., Wang, Y. Shen, Z. Chen, Z. Yuan, H., Wang, D. Li, K. Liu, F. Wen, (2019). Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model. Biosci. Rep., 39: BSR20181634
https://doi.org/10.1042/BSR20181634
|
| 12 |
A. M., Silva, S. R., Moura, J. H., Teixeira, M. A., Barbosa, S. G. Santos, M. Almeida, (2019). Long noncoding RNAs: a missing link in osteoporosis. Bone Res., 7: 10
https://doi.org/10.1038/s41413-019-0048-9
|
| 13 |
S., Zhou, Y., He, S., Yang, J., Hu, Q., Zhang, W., Chen, H., Xu, H., Zhang, S., Zhong, J. Zhao, et al.. (2018). The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci. Rep., 38: BSR20180772
https://doi.org/10.1042/BSR20180772
|
| 14 |
A., Cimadamore, S., Gasparrini, R., Mazzucchelli, A., Doria, L., Cheng, A., Lopez-Beltran, M., Santoni, M. Scarpelli, (2017). Long non-coding RNAs in prostate cancer with emphasis on second chromosome locus associated with prostate-1 expression. Front. Oncol., 7: 305
https://doi.org/10.3389/fonc.2017.00305
|
| 15 |
W., Yang, Y., Li, X., Song, J. Xu, (2017). Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget, 8: 26591–26599
https://doi.org/10.18632/oncotarget.15721
|
| 16 |
S., Marttila, K., Chatsirisupachai, D. Palmer, J. de Magalhaes, (2020). Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech. Ageing. Dev., 185: 111177doi
https://doi.org/10.1016/j.mad.2019.111177
|
| 17 |
S. Cogill. (2014) Co-expression network analysis of human lncRNAs and cancer genes. Cancer Inform. 13, 49–59
|
| 18 |
M. Guttman, J. Rinn, (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482: 339–346
https://doi.org/10.1038/nature10887
|
| 19 |
A. Sharma, (2022). Non-coding RNAs are brokers in breast cancer interactome networks and add discrimination power between subtypes. J. Clin. Med., 11: 2103
https://doi.org/10.3390/jcm11082103
|
| 20 |
J. L. Rinn, H. Chang, (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 81: 145–166
https://doi.org/10.1146/annurev-biochem-051410-092902
|
| 21 |
X., Ruan, Y., Chen, Y., Shi, M., Pirooznia, F., Seifuddin, H., Suemizu, Y., Ohnishi, N., Yoneda, M. Nishiwaki, et al.. (2020). In vivo functional analysis of nonconserved human lncRNAs associated with cardiometabolic traits. Nat. Commun., 11: 45
https://doi.org/10.1038/s41467-019-13688-z
|
| 22 |
S., HanY., LiangY. Li. (2016) Long noncoding RNA identification: comparing machine learning based tools for long noncoding transcripts discrimination. BioMed Res. Int. 2016, 1–14
|
| 23 |
N., Wang, S. Khan, L. Elo, (2022). Deep learning tools are top performers in long non-coding RNA prediction. Brief. Funct. Genomics, 21: 230–241
https://doi.org/10.1093/bfgp/elab045
|
| 24 |
B., Zhu, M., Xu, H., Shi, X. Gao, (2017). Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L. ). BMC Genomics, 18: 380
https://doi.org/10.1186/s12864-017-3748-9
|
| 25 |
H., Zheng, K., Brennan, M. Hernaez, (2019). Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples. Gigascience, 8: giz145
https://doi.org/10.1093/gigascience/giz145
|
| 26 |
H., Sun, Z., Huang, W. Sheng, M. Xu, (2018). Emerging roles of long non-coding RNAs in tumor metabolism. J. Hematol. Oncol., 11: 106
https://doi.org/10.1186/s13045-018-0648-7
|
| 27 |
W., Lin, Q., Zhou, C. Q., Wang, L., Zhu, C., Bi, S., Zhang, X. Wang, (2020). LncRNAs regulate metabolism in cancer. Int. J. Biol. Sci., 16: 1194–1206
https://doi.org/10.7150/ijbs.40769
|
| 28 |
H. Wajant. (2009) The role of TNF in cancer. Results Probl. Cell Differ. 49,1–15
|
| 29 |
L. K. Boroughs, R. DeBerardinis, (2015). Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 17: 351–359
https://doi.org/10.1038/ncb3124
|
| 30 |
Y., Hao, W., Wu, F., Shi, R. J., Dalmolin, M., Yan, F., Tian, X., Chen, G. Chen, (2015). Prediction of long noncoding RNA functions with co-expression network in esophageal squamous cell carcinoma. BMC Cancer, 15: 168
https://doi.org/10.1186/s12885-015-1179-z
|
| 31 |
M., EbrahimiM., Mohammadi-DehcheshmehE. EbrahimiK. Petrovski. (2019) Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: deep learning and gradient-boosted trees outperform other models. Comp. Biol. Med., 114, 103456
|
| 32 |
R., El Ansari, M. Craze, I., Miligy, M., Diez-Rodriguez, C. Nolan, I. Ellis, E. Rakha, A. Green, (2018). The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res., 20: 21
https://doi.org/10.1186/s13058-018-0946-6
|
| 33 |
L. H., Alfarsi, R., El-Ansari, M. L., Craze, B. K., Masisi, O. J., Mohammed, I. O., Ellis, E. A. Rakha, A. Green, (2020). Co-expression effect of SLC7A5/SLC3A2 to predict response to endocrine therapy in oestrogen-receptor-positive breast cancer. Int. J. Mol. Sci., 21: 1407
https://doi.org/10.3390/ijms21041407
|
| 34 |
M., Scalise, M., Galluccio, L., Console, L. Pochini, (2018). The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem., 6: 243–243
https://doi.org/10.3389/fchem.2018.00243
|
| 35 |
R., Boque-Sastre, M. C., Moura, A., Gomez, S. Guil, (2017). Abstract 3483: genome-wide analysis of the antisense transcriptome in cancer. Cancer Res., 77: 3483
https://doi.org/10.1158/1538-7445.AM2017-3483
|
| 36 |
Y., WatanabeK., NumataS., MurataY., OsadaR., SaitoH., NakaokaN., YamamotoK., WatanabeH., KatoK. Abe. (2010) Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse. Genomics, 96, 333–341
|
| 37 |
R., Durai, M., Davies, W., Yang, S. Yang, A., Seifalian, G., Goldspink, (2006). Biology of insulin-like growth factor binding protein-4 and its role in cancer (review). Int. J. Oncol., 28: 1317–1325
https://doi.org/10.3892/ijo.28.6.1317
|
| 38 |
X., Li, R., Xiao, K., Tembo, L., Hao, M., Xiong, S., Pan, X., Yang, W., Yuan, J. Xiong, (2016). PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int. J. Oncol., 48: 1933–1942
https://doi.org/10.3892/ijo.2016.3406
|
| 39 |
Z., Yu, E., Jiang, X., Wang, Y., Shi, A. J., Shangguan, L. Zhang, (2015). Sushi domain-containing protein 3: a potential target for breast cancer. Cell Biochem. Biophys., 72: 321–324
https://doi.org/10.1007/s12013-014-0480-9
|
| 40 |
Y., Yang, W., Toy, L. Y., Choong, P., Hou, H., Ashktorab, D. T., Smoot, K. G. Yeoh, Y. Lim, (2012). Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. J. Proteome Res., 11: 5736–5747
https://doi.org/10.1021/pr300555y
|
| 41 |
N. SankpalC. MoskalukG. HamptonS. Powell. (2006) Overexpression of CEBPβ correlates with decreased TFF1 in gastric cancer. Oncogene. 7, 643–649
|
| 42 |
S., Fukumoto, N., Yamauchi, H., Moriguchi, Y., Hippo, A., Watanabe, J., Shibahara, H., Taniguchi, S., Ishikawa, H., Ito, S. Yamamoto, et al.. (2005). Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin. Cancer Res., 11: 1776–1785
https://doi.org/10.1158/1078-0432.CCR-04-1238
|
| 43 |
Y. D., Bhutia, E., Babu, S. Ramachandran, (2015). Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res., 75: 1782–1788
https://doi.org/10.1158/0008-5472.CAN-14-3745
|
| 44 |
R., Morgan, G. Feng, H. Pandha, (2013). Abstract A193: transmembrane protein TMEM92 as a novel target in prostate cancer. Mol. Cancer Ther., 12: A193
https://doi.org/10.1158/1535-7163.TARG-13-A193
|
| 45 |
W., Szeto, W., Jiang, D. A., Tice, B., Rubinfeld, P. G., Hollingshead, S. E., Fong, D. L., Dugger, T., Pham, D. G., Yansura, T. A. Wong, et al.. (2001). Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res., 61: 4197–4205
|
| 46 |
B., Behnam Azad, A., Lisok, S., Chatterjee, J. T., Poirier, M., Pullambhatla, G. D., Luker, M. G. Pomper, (2016). Targeted imaging of the atypical chemokine receptor 3 (ACKR3/CXCR7) in human cancer xenografts. J. Nucl. Med., 57: 981–988
https://doi.org/10.2967/jnumed.115.167932
|
| 47 |
A., FadakaB., AjiboyeO., OjoO., AdewaleI., OlayideR. Emuowhochere. (2017) Biology of glucose metabolization in cancer cells. J. Oncol. Sci., 3, 45–51
|
| 48 |
I. Kareva, (2022). Understanding metabolic alterations in cancer cachexia through the lens of exercise physiology. Cells, 11: 2317
https://doi.org/10.3390/cells11152317
|
| 49 |
A., Govic, H., Nasser, E. A., Levay, M., Zelko, E., Ebrahimie, M., Mohammadi Dehcheshmeh, S., Kent, J. Penman, (2022). Long-term calorie restriction alters anxiety-like behaviour and the brain and adrenal gland transcriptomes of the ageing male rat. Nutrients, 14: 4670
https://doi.org/10.3390/nu14214670
|
| 50 |
D. Zhao, J. Dong, (2018). Upregulation of long non-coding RNA DRAIC correlates with adverse features of breast cancer. Noncoding RNA, 4: 39
https://doi.org/10.3390/ncrna4040039
|
| 51 |
Q., Yao, X. Zhang, (2022). The emerging potentials of lncRNA DRAIC in human cancers. Front. Oncol., 12: 867670
https://doi.org/10.3389/fonc.2022.867670
|
| 52 |
D. C., Berry, L. Levi, (2014). Holo-retinol-binding protein and its receptor STRA6 drive oncogenic transformation. Cancer Res., 74: 6341–6351
https://doi.org/10.1158/0008-5472.CAN-14-1052
|
| 53 |
S., ndez, J. B., ndez, J., vez, O., n-Fonseca, Y., n-Lobo, A., Ortega, M. pez, (2020). STRA6 polymorphisms are associated with EGFR mutations in locally-advanced and metastatic non-small cell lung cancer patients. Front. Oncol., 10: 579561
https://doi.org/10.3389/fonc.2020.579561
|
| 54 |
P., Rajan, J., Stockley, I. M., Sudbery, J. T., Fleming, A., Hedley, G., Kalna, D., Sims, C. P., Ponting, A., Heger, C. N. Robson, et al.. (2014). Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer, 14: 977
https://doi.org/10.1186/1471-2407-14-977
|
| 55 |
L. M., Beaver, A., Buchanan, E. I., Sokolowski, A. N., Riscoe, C. P., Wong, J. H., Chang, C. V., hr, D. E., Williams, R. H. Dashwood, (2014). Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention. Mol. Nutr. Food Res., 58: 2001–2013
https://doi.org/10.1002/mnfr.201400269
|
| 56 |
P., Gong, Z., Madak-Erdogan, J., Li, J., Cheng, C. M., Greenlief, W., Helferich, J. A. Katzenellenbogen, B. Katzenellenbogen, (2014). Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens. Nucl. Recept. Signal., 12: e001
https://doi.org/10.1621/nrs.12001
|
| 57 |
J., Gertz, T. E., Reddy, K. E., Varley, M. J. Garabedian, R. Myers, (2012). Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res., 22: 2153–2162
https://doi.org/10.1101/gr.135681.111
|
| 58 |
M. Love, W. Huber, (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol., 15: 550
https://doi.org/10.1186/s13059-014-0550-8
|
| 59 |
J. T., HowardM. S., AshwellR. E., Baynes. (2017) Gene co-expression network analysis identifies porcine genes associated with variation in metabolizing fenbendazole and flunixin meglumine in the liver. Sci. Rep. 7, 1357
|
| 60 |
K. A. Johnson. (2022) Robust normalization and transformation techniques for constructing gene co-expression networks from RNA-seq data. Genome Biol. 23, 2022
|
| 61 |
D., Szklarczyk, A. L., Gable, D., Lyon, A., Junge, S., Wyder, J., Huerta-Cepas, M., Simonovic, N. T., Doncheva, J. H., Morris, P. Bork, et al.. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47: D607–D613
https://doi.org/10.1093/nar/gky1131
|
| 62 |
I. O., Alanazi, Z. S., Al Shehri, E., Ebrahimie, H. Giahi, (2019). Non-coding and coding genomic variants distinguish prostate cancer, castration-resistant prostate cancer, familial prostate cancer, and metastatic castration-resistant prostate cancer from each other. Mol. Carcinog., 58: 862–874
https://doi.org/10.1002/mc.22975
|
| 63 |
I. O., Alanazi, S. A., AlYahya, E. Ebrahimie, (2018). Computational systems biology analysis of biomarkers in lung cancer; unravelling genomic regions which frequently encode biomarkers, enriched pathways, and new candidates. Gene, 659: 29–36
https://doi.org/10.1016/j.gene.2018.03.038
|
| 64 |
M., Fruzangohar, E., Ebrahimie, A. D., Ogunniyi, L. K., Mahdi, J. C. Paton, D. Adelson, (2013). Comparative GO: a web application for comparative Gene Ontology and Gene Ontology-based gene selection in bacteria. PLoS One, 8: e58759
https://doi.org/10.1371/journal.pone.0058759
|
| 65 |
M., Ebrahimi, A., Lakizadeh, P., Agha-Golzadeh, E. Ebrahimie, (2011). Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes. PLoS One, 6: e23146
https://doi.org/10.1371/journal.pone.0023146
|
| 66 |
E., Ghasemi, M. Ebrahimi, (2022). Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials. Cogn. Neurodynamics, 16: 1335–1349
https://doi.org/10.1007/s11571-021-09746-2
|
| 67 |
E., Ebrahimie, F., Zamansani, I. O., Alanazi, E. M., Sabi, M., Khazandi, F., Ebrahimi, M. Mohammadi-Dehcheshmeh, (2021). Advances in understanding the specificity function of transporters by machine learning. Comput. Biol. Med., 138: 104893
https://doi.org/10.1016/j.compbiomed.2021.104893
|
| 68 |
M. MeredithJ. Kruschke. (2021) Bayesian Estimation Supersedes the t-test (computer software manual)
|
| 69 |
J. Kruschke, (2013). Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen., 142: 573–603
https://doi.org/10.1037/a0029146
|
| 70 |
J., HuY., GaoJ. Li. (2019) Deep learning enables accurate prediction of interplay between lncRNA and disease. Front. Genet., 10
|
| 71 |
D., YaoX., ZhanX., ZhanC. K., KwohP. Li. (2020) A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinf. 21, 126
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|