Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2023, Vol. 11 Issue (3) : 343-358    https://doi.org/10.15302/J-QB-023-0333
RESEARCH ARTICLE
Pattern discovery of long non-coding RNAs associated with the herbal treatments in breast and prostate cancers
Elham Dalalbashi Esfahani1(), Esmaeil Ebrahimie2,3,4, Ali Niazi1, Manijeh Mohammadi Dehcheshmeh2,3
1. Institute of Biotechnology, Shiraz University, Shiraz 7196484334, Iran
2. Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
3. School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5005, Australia
4. School of BioSciences, The University of Melbourne, Victoria 3052, Australia
 Download: PDF(4593 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Accumulating evidence shows that long non-coding RNAs (lncRNAs) play critical roles in cancer progression. The possible association between lncRNAs and herbal medicine is yet to be known. This study aims to identify medicinal herbs associated with lncRNAs by RNA-seq data for breast and prostate cancer.

Methods: To develop the optimal approach for identifying cancer-related lncRNAs, we implemented two steps: (1) applying protein–protein interaction (PPI), Gene Ontology (GO), and pathway analyses, and (2) applying attribute weighting and finding the efficient classification model of the machine learning approach.

Results: In the first step, GO terms and pathway analyses on differential co-expressed mRNAs revealed that lncRNAs were widely co-expressed with metabolic process genes. We identified two hub lncRNA-mRNA networks that implicate lncRNAs associated with breast and prostate cancer. In the second step, we implemented various machine learning-based prediction systems (Decision Tree, Random Forest, Deep Learning, and Gradient-Boosted Tree) on the non-transformed and Z-standardized differential co-expressed lncRNAs. Based on five-fold cross-validation, we obtained high accuracy (91.11%), high sensitivity (88.33%), and high specificity (93.33%) in Deep Learning which reinforces the biomarker power of identified lncRNAs in this study. As data originally came from different cell lines at different durations of herbal treatment intervention, we applied seven attribute weighting algorithms to check the effects of variables on identifying lncRNAs. Attribute weighting results showed that the cell line and time had little or no effect on the selected lncRNAs list. Besides, we identified one known lncRNAs, downregulated RNA in cancer (DRAIC), as an essential feature.

Conclusions: This study will provide further insights to investigate the potential therapeutic and prognostic targets for prostate cancer (PC) and breast cancer (BC) in common.

Keywords RNA-Seq      lncRNA      cancer      co-expression      machine learning      attribute weighting     
Corresponding Author(s): Elham Dalalbashi Esfahani   
Just Accepted Date: 14 July 2023   Online First Date: 24 August 2023    Issue Date: 08 October 2023
 Cite this article:   
Elham Dalalbashi Esfahani,Esmaeil Ebrahimie,Ali Niazi, et al. Pattern discovery of long non-coding RNAs associated with the herbal treatments in breast and prostate cancers[J]. Quant. Biol., 2023, 11(3): 343-358.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-023-0333
https://academic.hep.com.cn/qb/EN/Y2023/V11/I3/343
Fig.1  The flowchart of the analysis pipeline.
Fig.2  Pathway analysis figures used to predict the potential roles of lncRNAs.
GO IDGO namesGO termsCOUNTP-value
GO.0015175Neutral amino acid transmembrane transporter activityMF25.58E–6
GO.0015179L-amino acid transmembrane transporter activityMF29.80E–6
GO.0004181Metallocarboxypeptidase activityMF23.26E–4
GO.0001085RNA polymerase II transcription factor bindingMF28.02E–4
GO.0001228DNA-binding transcription activator activity, RNA polymerase II-specificMF51.97E–3
GO.1902475L-alpha-amino acid transmembrane transportBP27.50E–9
GO.0006560Proline metabolic processBP24.05E–8
GO.0010133Proline catabolic process to glutamateBP28.62E–8
GO.0048286Lung alveolus developmentBP48.86E–8
GO.00194704-hydroxyproline catabolic processBP22.90E–7
GO.0005886Plasma membraneCC274.43E–4
GO.0009898Cytoplasmic side of plasma membraneCC26.85E–4
GO.0010008Endosome membraneCC49.00E–4
GO.0031093Platelet alpha granule lumenCC21.77E–3
GO.0016324Apical plasma membraneCC44.26E–3
Tab.1  Only the top 15 enriched Gene Ontology terms of differentially expressed genes in BC and PC herbal treatment are presented
lncRNAEnsembl IDLncRNA chromosomeTranscript typemRNAs
RP4-536B24.2ENST00000563687.1Chr16Antisense19
FUT8-AS1ENST00000621019.2Chr14Antisense16
CTD-2140G10.4ENST00000534543.1Chr11Antisense8
APOBEC3B-AS1ENST00000513758.2Chr22Antisense8
AC008268.1ENST00000425887.2Chr2LincRNA7
Tab.2  The five top lncRNAs with the highest numbers of mRNA associations in differential co-expression in BC and PC herbal treatment
AttributeWeight_Info Gain RatioWeight_RuleWeight_Chi SquaredWeight_Gini IndexWeight_UncertaintyWeight_ReliefWeight_Info GainAverage
ENST00000498938.2 (DRAIC)1.00.70.81.01.00.81.00.9
ENST00000502514.50.70.41.00.70.81.00.60.7
ENST00000489011.10.71.00.60.40.60.90.50.7
ENST00000509144.20.60.60.60.50.60.80.60.6
ENST00000558107.10.70.90.70.60.60.40.50.6
ENST00000588466.10.60.90.80.50.60.50.40.6
ENST00000607600.10.40.40.60.50.50.90.40.5
ENST00000361558.70.60.90.20.40.40.60.30.5
ENST00000514752.10.60.30.50.40.50.60.40.5
ENST00000445997.10.60.80.50.40.40.10.40.5
ENST00000513758.20.70.50.40.50.30.00.60.4
ENST00000576302.10.61.00.20.40.20.20.40.4
ENST00000547946.10.50.30.30.30.40.60.30.4
ENST00000611475.20.60.70.30.30.50.20.30.4
ENST00000562814.10.50.50.40.30.50.20.30.4
ENST00000505030.50.60.30.60.30.60.00.30.4
ENST00000581457.10.40.80.50.10.60.00.10.4
ENST00000603875.10.60.40.40.30.60.10.30.4
ENST00000456526.10.50.30.60.20.60.10.20.4
ENST00000562038.10.30.20.40.50.30.30.40.3
ENST00000563687.10.50.40.20.30.30.20.30.3
ENST00000534543.10.50.40.20.20.20.10.30.3
ENST00000425887.20.40.40.30.10.60.00.10.3
ENST00000621019.20.30.20.40.30.40.00.20.3
Cell line0.00.00.00.00.00.70.00.1
Time0.00.10.00.00.00.20.00.1
Tab.3  Attribute weighting of the Z-standardized lncRNAs in BC and PC herbal treatment, regardless of herbal medicine type and concentration variable, according to the 7 applied attribute weighting algorithms
lncRNACancer geneFull nameCorrelation coefficientCorrelationCondition
RP4-536B24.2AKR1B10Aldo-Keto reductase family 1 member B100.880587PositiveControl
IGFBP4Insulin like growth factor binding protein 40.901975PositiveControl
PEG10Paternally expressed gene 10 protein0.857614PositiveControl
SUSD3Sushi domain containing protein 30.921415PositiveControl
TMEM92Transmembrane protein 920.862738PositiveControl
SLC3A2Solute carrier family 3 member 20.847517PositiveTreatment
SLC7A5Solute carrier family 7 member 50.863401PositiveTreatment
0.910333
FUT8-AS1CEBPBCCAAT enhancer binding protein beta0.929094PositiveTreatment
ACKR3Atypical chemokine receptor 30.894196PositiveControl
STRA6Stimulated by retinoic acid 60.845782PositiveControl
Tab.4  Co-expressed cancer-related genes in BC and PC herbal treatment with two hub lncRNAs and their high correlation in our data
Fig.3  DRAIC has a similar response pattern to herbal treatments in breast and prostate cancer cell lines.
Fig.4  Decision Tree induced by (A) Decision Tree Accuracy algorithm, (B) Decision Tree Gain Ratio algorithm on Z-standardized in distinguishing cancer cell line in BC and PC from under treatment ones. The model shows the importance of lncRNAs on sub-clinical cancer classification (control=cancer cell line, treated=healthy cell line). A significant cancer occurrence pattern was discovered where cell lines with a high level of ENST00000498938.2 (>?0.142) could be seen. However, with the low expression of this lncRNA (<?0.142), cancer could be suppressed in almost all cell lines
Fig.5  Comparing receiver operating characteristic (ROC) curves of machine learning models in BC and PC for predicting novel lncRNA-disease associations, run on Z-Standardized dataset
Simple sourcePlatformsTissue/cellHerbal medicineNo. of samplesAccession number
TreatmentControl
In vivoIllumina HiSeq 2000 (Homo sapiens)PcaDocetaxel66GSE51005
In vivoIllumina HiSeq 2000 (Homo sapiens)LNCaPSulforaphane33GSE48812
In vivoIllumina HiSeq 2000 (Homo sapiens)PC-3Sulforaphane33
In vivoIllumina Genome Analyzer IIx (Homo sapiens)MCF-7Phytoestrogen resveratrol22PRJDB1992
In vivoIllumina HiSeq 2000 (Homo sapiens)MCF-7S-equol22GSE56066
In vivoIllumina HiSeq 2000 (Homo sapiens)MCF-7Genistein22
In vivoIllumina HiSeq 2000 (Homo sapiens)MCF-7Liquiritigenin22
In vivoIllumina HiSeq 2000 (Homo sapiens)ECC-1Genistein22GSE38234
In vivoIllumina HiSeq 2000 (Homo sapiens)T-47DGenistein22
Tab.5  The selected original datasets of prostate and breast cancer herbal treatment
1 M. Ekor, (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol, 4: 177
https://doi.org/10.3389/fphar.2013.00177
2 A. I., KuruppuP. ParanagamaC. Goonasekara. (2019) Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. 27, 565–573
3 J. MachariaR. MwangiN., RozmannK., ZsoltT., VarjasP. UchechukwuI. WagaraB. Raposa. (2022) Medicinal plants with anti-colorectal cancer bioactive compounds: potential game-changers in colorectal cancer management. Biomed Pharmacother. 153, 113383
4 W., Kooti, K., Servatyari, M., Behzadifar, M., Asadi-Samani, F., Sadeghi, B. Nouri, (2017). Effective medicinal plant in cancer treatment, part 2: review study. J. Evid. Based Complementary Altern. Med., 22: 982–995
https://doi.org/10.1177/2156587217696927
5 J., IqbalB. AbbasiT., MahmoodS., KanwalB., AliS. ShahA. Khalil. (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac. J. Trop. Med., 7, 1129–1150
6 E. Diamandis, (1998). Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr. Rev., 19: 365–396
https://doi.org/10.1210/er.19.4.365
7 W., Wu, E. Wagner, Y., Hao, X., Rao, H., Dai, J., Han, J., Chen, A. Storniolo, Y. Liu, (2016). Tissue-specific co-expression of long non-coding and coding RNAs associated with breast cancer. Sci. Rep., 6: 32731
https://doi.org/10.1038/srep32731
8 Z. Ren, D. Cao, Q., Zhang, P. Ren, L. Liu, Q., Wei, W. Wei, (2019). First-degree family history of breast cancer is associated with prostate cancer risk: a systematic review and meta-analysis. BMC Cancer, 19: 871
https://doi.org/10.1186/s12885-019-6055-9
9 Y., Zheng, Q., Xu, M., Liu, H., Hu, Y., Xie, Z. Zuo, (2019). LnCAR: a comprehensive resource for lncRNAs from cancer arrays. Cancer Res., 79: 2076–83
https://doi.org/10.1158/0008-5472.CAN-18-2169
10 O., Beylerli, I., Gareev, A., Sufianov, T. Ilyasova, (2022). Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res., 7: 66–70
https://doi.org/10.1016/j.ncrna.2022.02.004
11 J., Wang, Y. Shen, Z. Chen, Z. Yuan, H., Wang, D. Li, K. Liu, F. Wen, (2019). Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model. Biosci. Rep., 39: BSR20181634
https://doi.org/10.1042/BSR20181634
12 A. M., Silva, S. R., Moura, J. H., Teixeira, M. A., Barbosa, S. G. Santos, M. Almeida, (2019). Long noncoding RNAs: a missing link in osteoporosis. Bone Res., 7: 10
https://doi.org/10.1038/s41413-019-0048-9
13 S., Zhou, Y., He, S., Yang, J., Hu, Q., Zhang, W., Chen, H., Xu, H., Zhang, S., Zhong, J. Zhao, et al.. (2018). The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci. Rep., 38: BSR20180772
https://doi.org/10.1042/BSR20180772
14 A., Cimadamore, S., Gasparrini, R., Mazzucchelli, A., Doria, L., Cheng, A., Lopez-Beltran, M., Santoni, M. Scarpelli, (2017). Long non-coding RNAs in prostate cancer with emphasis on second chromosome locus associated with prostate-1 expression. Front. Oncol., 7: 305
https://doi.org/10.3389/fonc.2017.00305
15 W., Yang, Y., Li, X., Song, J. Xu, (2017). Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget, 8: 26591–26599
https://doi.org/10.18632/oncotarget.15721
16 S., Marttila, K., Chatsirisupachai, D. Palmer, J. de Magalhaes, (2020). Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech. Ageing. Dev., 185: 111177doi
https://doi.org/10.1016/j.mad.2019.111177
17 S. Cogill. (2014) Co-expression network analysis of human lncRNAs and cancer genes. Cancer Inform. 13, 49–59
18 M. Guttman, J. Rinn, (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482: 339–346
https://doi.org/10.1038/nature10887
19 A. Sharma, (2022). Non-coding RNAs are brokers in breast cancer interactome networks and add discrimination power between subtypes. J. Clin. Med., 11: 2103
https://doi.org/10.3390/jcm11082103
20 J. L. Rinn, H. Chang, (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 81: 145–166
https://doi.org/10.1146/annurev-biochem-051410-092902
21 X., Ruan, Y., Chen, Y., Shi, M., Pirooznia, F., Seifuddin, H., Suemizu, Y., Ohnishi, N., Yoneda, M. Nishiwaki, et al.. (2020). In vivo functional analysis of nonconserved human lncRNAs associated with cardiometabolic traits. Nat. Commun., 11: 45
https://doi.org/10.1038/s41467-019-13688-z
22 S., HanY., LiangY. Li. (2016) Long noncoding RNA identification: comparing machine learning based tools for long noncoding transcripts discrimination. BioMed Res. Int. 2016, 1–14
23 N., Wang, S. Khan, L. Elo, (2022). Deep learning tools are top performers in long non-coding RNA prediction. Brief. Funct. Genomics, 21: 230–241
https://doi.org/10.1093/bfgp/elab045
24 B., Zhu, M., Xu, H., Shi, X. Gao, (2017). Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L. ). BMC Genomics, 18: 380
https://doi.org/10.1186/s12864-017-3748-9
25 H., Zheng, K., Brennan, M. Hernaez, (2019). Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples. Gigascience, 8: giz145
https://doi.org/10.1093/gigascience/giz145
26 H., Sun, Z., Huang, W. Sheng, M. Xu, (2018). Emerging roles of long non-coding RNAs in tumor metabolism. J. Hematol. Oncol., 11: 106
https://doi.org/10.1186/s13045-018-0648-7
27 W., Lin, Q., Zhou, C. Q., Wang, L., Zhu, C., Bi, S., Zhang, X. Wang, (2020). LncRNAs regulate metabolism in cancer. Int. J. Biol. Sci., 16: 1194–1206
https://doi.org/10.7150/ijbs.40769
28 H. Wajant. (2009) The role of TNF in cancer. Results Probl. Cell Differ. 49,1–15
29 L. K. Boroughs, R. DeBerardinis, (2015). Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 17: 351–359
https://doi.org/10.1038/ncb3124
30 Y., Hao, W., Wu, F., Shi, R. J., Dalmolin, M., Yan, F., Tian, X., Chen, G. Chen, (2015). Prediction of long noncoding RNA functions with co-expression network in esophageal squamous cell carcinoma. BMC Cancer, 15: 168
https://doi.org/10.1186/s12885-015-1179-z
31 M., EbrahimiM., Mohammadi-DehcheshmehE. EbrahimiK. Petrovski. (2019) Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: deep learning and gradient-boosted trees outperform other models. Comp. Biol. Med., 114, 103456
32 R., El Ansari, M. Craze, I., Miligy, M., Diez-Rodriguez, C. Nolan, I. Ellis, E. Rakha, A. Green, (2018). The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res., 20: 21
https://doi.org/10.1186/s13058-018-0946-6
33 L. H., Alfarsi, R., El-Ansari, M. L., Craze, B. K., Masisi, O. J., Mohammed, I. O., Ellis, E. A. Rakha, A. Green, (2020). Co-expression effect of SLC7A5/SLC3A2 to predict response to endocrine therapy in oestrogen-receptor-positive breast cancer. Int. J. Mol. Sci., 21: 1407
https://doi.org/10.3390/ijms21041407
34 M., Scalise, M., Galluccio, L., Console, L. Pochini, (2018). The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem., 6: 243–243
https://doi.org/10.3389/fchem.2018.00243
35 R., Boque-Sastre, M. C., Moura, A., Gomez, S. Guil, (2017). Abstract 3483: genome-wide analysis of the antisense transcriptome in cancer. Cancer Res., 77: 3483
https://doi.org/10.1158/1538-7445.AM2017-3483
36 Y., WatanabeK., NumataS., MurataY., OsadaR., SaitoH., NakaokaN., YamamotoK., WatanabeH., KatoK. Abe. (2010) Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse. Genomics, 96, 333–341
37 R., Durai, M., Davies, W., Yang, S. Yang, A., Seifalian, G., Goldspink, (2006). Biology of insulin-like growth factor binding protein-4 and its role in cancer (review). Int. J. Oncol., 28: 1317–1325
https://doi.org/10.3892/ijo.28.6.1317
38 X., Li, R., Xiao, K., Tembo, L., Hao, M., Xiong, S., Pan, X., Yang, W., Yuan, J. Xiong, (2016). PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int. J. Oncol., 48: 1933–1942
https://doi.org/10.3892/ijo.2016.3406
39 Z., Yu, E., Jiang, X., Wang, Y., Shi, A. J., Shangguan, L. Zhang, (2015). Sushi domain-containing protein 3: a potential target for breast cancer. Cell Biochem. Biophys., 72: 321–324
https://doi.org/10.1007/s12013-014-0480-9
40 Y., Yang, W., Toy, L. Y., Choong, P., Hou, H., Ashktorab, D. T., Smoot, K. G. Yeoh, Y. Lim, (2012). Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. J. Proteome Res., 11: 5736–5747
https://doi.org/10.1021/pr300555y
41 N. SankpalC. MoskalukG. HamptonS. Powell. (2006) Overexpression of CEBPβ correlates with decreased TFF1 in gastric cancer. Oncogene. 7, 643–649
42 S., Fukumoto, N., Yamauchi, H., Moriguchi, Y., Hippo, A., Watanabe, J., Shibahara, H., Taniguchi, S., Ishikawa, H., Ito, S. Yamamoto, et al.. (2005). Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin. Cancer Res., 11: 1776–1785
https://doi.org/10.1158/1078-0432.CCR-04-1238
43 Y. D., Bhutia, E., Babu, S. Ramachandran, (2015). Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res., 75: 1782–1788
https://doi.org/10.1158/0008-5472.CAN-14-3745
44 R., Morgan, G. Feng, H. Pandha, (2013). Abstract A193: transmembrane protein TMEM92 as a novel target in prostate cancer. Mol. Cancer Ther., 12: A193
https://doi.org/10.1158/1535-7163.TARG-13-A193
45 W., Szeto, W., Jiang, D. A., Tice, B., Rubinfeld, P. G., Hollingshead, S. E., Fong, D. L., Dugger, T., Pham, D. G., Yansura, T. A. Wong, et al.. (2001). Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res., 61: 4197–4205
46 B., Behnam Azad, A., Lisok, S., Chatterjee, J. T., Poirier, M., Pullambhatla, G. D., Luker, M. G. Pomper, (2016). Targeted imaging of the atypical chemokine receptor 3 (ACKR3/CXCR7) in human cancer xenografts. J. Nucl. Med., 57: 981–988
https://doi.org/10.2967/jnumed.115.167932
47 A., FadakaB., AjiboyeO., OjoO., AdewaleI., OlayideR. Emuowhochere. (2017) Biology of glucose metabolization in cancer cells. J. Oncol. Sci., 3, 45–51
48 I. Kareva, (2022). Understanding metabolic alterations in cancer cachexia through the lens of exercise physiology. Cells, 11: 2317
https://doi.org/10.3390/cells11152317
49 A., Govic, H., Nasser, E. A., Levay, M., Zelko, E., Ebrahimie, M., Mohammadi Dehcheshmeh, S., Kent, J. Penman, (2022). Long-term calorie restriction alters anxiety-like behaviour and the brain and adrenal gland transcriptomes of the ageing male rat. Nutrients, 14: 4670
https://doi.org/10.3390/nu14214670
50 D. Zhao, J. Dong, (2018). Upregulation of long non-coding RNA DRAIC correlates with adverse features of breast cancer. Noncoding RNA, 4: 39
https://doi.org/10.3390/ncrna4040039
51 Q., Yao, X. Zhang, (2022). The emerging potentials of lncRNA DRAIC in human cancers. Front. Oncol., 12: 867670
https://doi.org/10.3389/fonc.2022.867670
52 D. C., Berry, L. Levi, (2014). Holo-retinol-binding protein and its receptor STRA6 drive oncogenic transformation. Cancer Res., 74: 6341–6351
https://doi.org/10.1158/0008-5472.CAN-14-1052
53 S., ndez, J. B., ndez, J., vez, O., n-Fonseca, Y., n-Lobo, A., Ortega, M. pez, (2020). STRA6 polymorphisms are associated with EGFR mutations in locally-advanced and metastatic non-small cell lung cancer patients. Front. Oncol., 10: 579561
https://doi.org/10.3389/fonc.2020.579561
54 P., Rajan, J., Stockley, I. M., Sudbery, J. T., Fleming, A., Hedley, G., Kalna, D., Sims, C. P., Ponting, A., Heger, C. N. Robson, et al.. (2014). Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer, 14: 977
https://doi.org/10.1186/1471-2407-14-977
55 L. M., Beaver, A., Buchanan, E. I., Sokolowski, A. N., Riscoe, C. P., Wong, J. H., Chang, C. V., hr, D. E., Williams, R. H. Dashwood, (2014). Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention. Mol. Nutr. Food Res., 58: 2001–2013
https://doi.org/10.1002/mnfr.201400269
56 P., Gong, Z., Madak-Erdogan, J., Li, J., Cheng, C. M., Greenlief, W., Helferich, J. A. Katzenellenbogen, B. Katzenellenbogen, (2014). Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens. Nucl. Recept. Signal., 12: e001
https://doi.org/10.1621/nrs.12001
57 J., Gertz, T. E., Reddy, K. E., Varley, M. J. Garabedian, R. Myers, (2012). Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res., 22: 2153–2162
https://doi.org/10.1101/gr.135681.111
58 M. Love, W. Huber, (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol., 15: 550
https://doi.org/10.1186/s13059-014-0550-8
59 J. T., HowardM. S., AshwellR. E., Baynes. (2017) Gene co-expression network analysis identifies porcine genes associated with variation in metabolizing fenbendazole and flunixin meglumine in the liver. Sci. Rep. 7, 1357
60 K. A. Johnson. (2022) Robust normalization and transformation techniques for constructing gene co-expression networks from RNA-seq data. Genome Biol. 23, 2022
61 D., Szklarczyk, A. L., Gable, D., Lyon, A., Junge, S., Wyder, J., Huerta-Cepas, M., Simonovic, N. T., Doncheva, J. H., Morris, P. Bork, et al.. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47: D607–D613
https://doi.org/10.1093/nar/gky1131
62 I. O., Alanazi, Z. S., Al Shehri, E., Ebrahimie, H. Giahi, (2019). Non-coding and coding genomic variants distinguish prostate cancer, castration-resistant prostate cancer, familial prostate cancer, and metastatic castration-resistant prostate cancer from each other. Mol. Carcinog., 58: 862–874
https://doi.org/10.1002/mc.22975
63 I. O., Alanazi, S. A., AlYahya, E. Ebrahimie, (2018). Computational systems biology analysis of biomarkers in lung cancer; unravelling genomic regions which frequently encode biomarkers, enriched pathways, and new candidates. Gene, 659: 29–36
https://doi.org/10.1016/j.gene.2018.03.038
64 M., Fruzangohar, E., Ebrahimie, A. D., Ogunniyi, L. K., Mahdi, J. C. Paton, D. Adelson, (2013). Comparative GO: a web application for comparative Gene Ontology and Gene Ontology-based gene selection in bacteria. PLoS One, 8: e58759
https://doi.org/10.1371/journal.pone.0058759
65 M., Ebrahimi, A., Lakizadeh, P., Agha-Golzadeh, E. Ebrahimie, (2011). Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes. PLoS One, 6: e23146
https://doi.org/10.1371/journal.pone.0023146
66 E., Ghasemi, M. Ebrahimi, (2022). Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials. Cogn. Neurodynamics, 16: 1335–1349
https://doi.org/10.1007/s11571-021-09746-2
67 E., Ebrahimie, F., Zamansani, I. O., Alanazi, E. M., Sabi, M., Khazandi, F., Ebrahimi, M. Mohammadi-Dehcheshmeh, (2021). Advances in understanding the specificity function of transporters by machine learning. Comput. Biol. Med., 138: 104893
https://doi.org/10.1016/j.compbiomed.2021.104893
68 M. MeredithJ. Kruschke. (2021) Bayesian Estimation Supersedes the t-test (computer software manual)
69 J. Kruschke, (2013). Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen., 142: 573–603
https://doi.org/10.1037/a0029146
70 J., HuY., GaoJ. Li. (2019) Deep learning enables accurate prediction of interplay between lncRNA and disease. Front. Genet., 10
71 D., YaoX., ZhanX., ZhanC. K., KwohP. Li. (2020) A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinf. 21, 126
[1] Nan Miles Xi, Angelos Vasilopoulos. Tuning hyperparameters of doublet-detection methods for single-cell RNA sequencing data[J]. Quant. Biol., 2023, 11(3): 297-305.
[2] Haiyan Gong, Zhengyuan Chen, Yuxin Tang, Minghong Li, Sichen Zhang, Xiaotong Zhang, Yang Chen. Computational methods for identifying enhancer-promoter interactions[J]. Quant. Biol., 2023, 11(2): 122-142.
[3] Junting Wang, Huan Tao, Hao Li, Xiaochen Bo, Hebing Chen. 3D genomic organization in cancers[J]. Quant. Biol., 2023, 11(2): 109-121.
[4] Yuwei Huang, Huidan Chang, Xiaoyi Chen, Jiayue Meng, Mengyao Han, Tao Huang, Liyun Yuan, Guoqing Zhang. A cell marker-based clustering strategy (cmCluster) for precise cell type identification of scRNA-seq data[J]. Quant. Biol., 2023, 11(2): 163-174.
[5] Chunliang Feng, Frank Krueger, Ruolei Gu, Wenbo Luo. Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data[J]. Quant. Biol., 2022, 10(4): 390-402.
[6] HyeongChan Jo, Juhyun Kim, Tzu-Chen Huang, Yu-Li Ni. condLSTM-Q: A novel deep learning model for predicting COVID-19 mortality in fine geographical scale[J]. Quant. Biol., 2022, 10(2): 125-138.
[7] Georgios D. Barmparis, Giorgos P. Tsironis. Physics-informed machine learning for the COVID-19 pandemic: Adherence to social distancing and short-term predictions for eight countries[J]. Quant. Biol., 2022, 10(2): 139-149.
[8] Wajid Arshad Abbasi, Syed Ali Abbas, Saiqa Andleeb, Maryum Bibi, Fiaz Majeed, Abdul Jaleel, Muhammad Naveed Akhtar. COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans[J]. Quant. Biol., 2022, 10(2): 208-220.
[9] Aishwarza Panday, Muhammad Ashad Kabir, Nihad Karim Chowdhury. A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging[J]. Quant. Biol., 2022, 10(2): 188-207.
[10] Lei Zhang, Ji Lv, Ming Xiao, Li Yang, Le Zhang. Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment[J]. Quant. Biol., 2021, 9(3): 292-303.
[11] Yawei Li, Yuan Luo. Performance-weighted-voting model: An ensemble machine learning method for cancer type classification using whole-exome sequencing mutation[J]. Quant. Biol., 2020, 8(4): 347-358.
[12] Olha Kholod, Chi-Ren Shyu, Jonathan Mitchem, Jussuf Kaifi, Dmitriy Shin. Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations[J]. Quant. Biol., 2020, 8(4): 336-346.
[13] Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao, Edwin Wang. Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response[J]. Quant. Biol., 2020, 8(3): 216-227.
[14] Biaobin Jiang, Dong Song, Quanhua Mu, Jiguang Wang. CELLO: a longitudinal data analysis toolbox untangling cancer evolution[J]. Quant. Biol., 2020, 8(3): 256-266.
[15] Xiaotu Ma, Sasi Arunachalam, Yanling Liu. Applications of probability and statistics in cancer genomics[J]. Quant. Biol., 2020, 8(2): 95-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed