Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2022, Vol. 10 Issue (2) : 208-220    https://doi.org/10.15302/J-QB-021-0278
RESEARCH ARTICLE
COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans
Wajid Arshad Abbasi1(), Syed Ali Abbas1, Saiqa Andleeb2, Maryum Bibi1, Fiaz Majeed3, Abdul Jaleel4, Muhammad Naveed Akhtar5
1. Computational Biology and Data Analysis Lab, Department of Computer Sciences & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K 13100, Pakistan
2. Biotechnology Lab, Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K 13100, Pakistan
3. Department of Software Engineering, University of Gujrat, Gujrat 50700, Pakistan
4. Department of Computer Science, (RCET), UET, Lahore 54000, Pakistan
5. Computational and Internet Services Division, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
 Download: PDF(3250 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Background: Coronavirus disease (COVID-19) is a contagious infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) and it has infected and killed millions of people across the globe.

Objective: In the absence or inadequate provision of therapeutic treatments of COVID-19 and the limited convenience of diagnostic techniques, there is a necessity for some alternate spontaneous screening systems that can easily be used by the physicians to rapidly recognize and isolate the infected patients to circumvent onward surge. A chest X-ray (CXR) image can effortlessly be used as a substitute modality to diagnose the COVID-19.

Method: In this study, we present an automatic COVID-19 diagnostic and severity prediction system (COVIDX) that uses deep feature maps of CXR images along with classical machine learning algorithms to identify COVID-19 and forecast its severity. The proposed system uses a three-phase classification approach (healthy vs unhealthy, COVID-19 vs pneumonia, and COVID-19 severity) using different conventional supervised classification algorithms.

Results: We evaluated COVIDX through 10-fold cross-validation, by using an external validation dataset, and also in a real setting by involving an experienced radiologist. In all the adopted evaluation settings, COVIDX showed strong generalization power and outperforms all the prevailing state-of-the-art methods designed for this purpose.

Conclusions: Our proposed method (COVIDX), with vivid performance in COVID-19 diagnosis and its severity prediction, can be used as an aiding tool for clinical physicians and radiologists in the diagnosis and follow-up studies of COVID-19 infected patients.

Availability: We made COVIDX easily accessible through a cloud-based webserver and python code available at the site of google and the website of Github.

Keywords coronavirus      COVID-19      radiology      machine learning      chest X-ray      contagious infection     
Corresponding Author(s): Wajid Arshad Abbasi   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 17 December 2021   Online First Date: 17 March 2022    Issue Date: 07 July 2022
 Cite this article:   
Wajid Arshad Abbasi,Syed Ali Abbas,Saiqa Andleeb, et al. COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans[J]. Quant. Biol., 2022, 10(2): 208-220.
 URL:  
https://academic.hep.com.cn/qb/EN/10.15302/J-QB-021-0278
https://academic.hep.com.cn/qb/EN/Y2022/V10/I2/208
Feature map SVC RFC XGBC
ROC PR F1 ROC PR F1 ROC PR F1
Resnet50 0.98±0.01 0.98±0.01 0.98 0.99±0.03 0.98±0.08 0.96 0.98±0.03 0.98±0.08 0.98
Xception 0.99±0.01 0.98±0.01 0.99 0.99±0.01 0.99±0.01 0.97 0.99±0.01 0.99±0.01 0.98
InceptionV3 0.98±0.01 0.99±0.01 0.97 0.99±0.01 0.99±0.02 0.97 0.99±0.02 0.99±0.01 0.97
VGG16 0.99±0.01 0.99±0.01 0.99 0.98±0.01 0.97±0.01 0.98 0.99±0.01 0.99±0.01 0.98
NASNetLarge 0.98±0.01 0.98±0.01 0.96 0.99±0.01 0.99±0.01 0.97 0.98±0.03 0.98±0.01 0.96
DenseNet121 0.99±0.01 0.99±0.01 0.99 0.99±0.01 0.99±0.01 0.98 0.96±0.03 0.96±0.01 0.97
Tab.1  Predictive performance for the classification of healthy vs un-healthy X-ray scans across different machine learning techniques and feature representations using 10-fold CV
Feature map SVC RFC XGBC
ROC PR F1 ROC PR F1 ROC PR F1
Resnet50 0.97 0.97 0.91 0.98 0.97 0.91 0.97 0.96 0.93
Xception 0.98 0.97 0.91 0.97 0.97 0.91 0.97 0.97 0.93
InceptionV3 0.96 0.95 0.89 0.97 0.98 0.88 0.97 0.98 0.90
VGG16 0.97 0.97 0.91 0.98 0.97 0.91 0.98 0.97 0.91
NASNetLarge 0.96 0.95 0.87 0.96 0.96 0.85 0.96 0.96 0.88
DenseNet121 0.99 0.98 0.98 0.98 0.97 0.94 0.99 0.98 0.96
Tab.2  Predictive performance for the classification of healthy vs un-healthy X-ray scans across different machine learning techniques and feature representations on an external validation dataset
Fig.1  ROC and PR curves showing predictive performance of COVIDX for the classification of CXR scans (healthy vs unhealthy and COVID-19 vs pneumonia) across different classifiers (SVC, RF, XGB) and DenseNet feature map on an external validation dataset
Feature map SVC RFC XGBC
ROC PR F1 ROC PR F1 ROC PR F1
Resnet50 0.98±0.01 0.97±0.01 0.97 0.99±0.03 0.98±0.08 0.96 0.98±0.03 0.98±0.08 0.98
Xception 0.98±0.01 0.97±0.01 0.98 0.99±0.01 0.99±0.01 0.97 0.99±0.01 0.99±0.01 0.98
InceptionV3 0.98±0.01 0.97±0.01 0.97 0.99±0.01 0.99±0.02 0.97 0.99±0.02 0.99±0.01 0.97
VGG16 0.98±0.01 0.97±0.01 0.98 0.98±0.01 0.97±0.01 0.98 0.99±0.01 0.99±0.01 0.98
NASNetLarge 0.97±0.01 0.97±0.01 0.96 0.99±0.01 0.99±0.01 0.97 0.98±0.03 0.98±0.01 0.96
DenseNet121 0.99±0.01 0.99±0.01 0.99 0.99±0.01 0.99±0.01 0.98 0.99±0.03 0.99±0.01 0.99
Tab.3  Predictive performance for the classification of COVID-19 vs pneumonia X-ray scans across different machine learning techniques and feature representations using 10-fold CV
Feature map SVC RFC XGBC
ROC PR F1 ROC PR F1 ROC PR F1
Resnet50 0.99 0.99 0.98 0.99 0.98 0.96 0.99 0.98 0.98
Xception 0.99 0.99 0.98 0.97 0.97 0.95 0.97 0.97 0.95
InceptionV3 0.99 0.99 0.98 0.97 0.98 0.96 0.97 0.98 0.96
VGG16 0.99 0.99 0.99 0.98 0.97 0.91 0.98 0.97 0.94
NASNetLarge 0.98 0.99 0.98 0.96 0.96 0.90 0.96 0.96 0.93
DenseNet121 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
Tab.4  Predictive performance for the classification of COVID-19 vs pneumonia X-ray scans across different machine learning techniques and feature representations on an external validation dataset
Feature map SVC RFC XGBC
ROC PR F1 ROC PR F1 ROC PR F1
Resnet50 0.92±0.12 0.82±0.28 0.86 0.85±0.23 0.73±0.31 0.80 0.96±0.11 0.89±0.17 0.90
Xception 0.87±0.14 0.74±0.28 0.82 0.81±0.25 0.67±0.29 0.78 0.86±0.28 0.78±0.29 0.82
InceptionV3 0.86±0.13 0.68±0.29 0.74 0.73±0.30 0.58±0.30 0.75 0.82±0.26 0.76±0.29 0.78
VGG16 0.90±0.24 0.88±0.26 0.83 0.81±0.24 0.70±0.24 0.77 0.82±0.26 0.72±0.31 0.80
NASNetLarge 0.80±0.31 0.76±0.30 0.76 0.80±0.26 0.65±0.30 0.76 0.79±0.26 0.68±0.31 0.75
DenseNet121 0.96±0.17 0.90±0.19 0.90 0.90±0.19 0.78±0.26 0.84 0.90±0.20 0.83±0.26 0.90
Tab.5  Predictive performance for the severity prediction of corono virus across different machine learning techniques and feature representations using 10-fold CV
Fig.2  Confusion matrix depicting COVIDX real performance under the observation of a qualified radiologist
Fig.3  An Adopted framework to develop computer-aided COVID-19 diagnostics and its severity prediction system using machine learning and X-ray scans.
Fig.4  Working flow of COVIDX for the diagnosis of COVID-19 and its severity prediction using chest X-ray scans.
1 C., Huang, Y., Wang, X., Li, L., Ren, J., Zhao, Y., Hu, L., Zhang, G., Fan, J., Xu, X. Gu, et al.. ( 2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 : 497– 506
https://doi.org/10.1016/S0140-6736(20)30183-5
2 S., Kooraki, M., Hosseiny, L. Myers, ( 2020). Coronavirus (COVID-19) outbreak: what the department of radiology should know. J. Am. Coll. Radiol., 17 : 447– 451
https://doi.org/10.1016/j.jacr.2020.02.008
3 COVID-19 Map, Johns Hopkins Coronavirus Resource Center. (n.d.). . Accessed: November 27, 2020
4 Coronavirus disease (COVID-19) – World Health Organization, (n.d.). Available from the website of World Health Organization
5 S. Cheng, Y. Chang, Y. Fan Chiang, Y. Chien, M., Cheng, C. Yang, C. Huang, Y. Hsu, ( 2020). First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc., 119 : 747– 751
https://doi.org/10.1016/j.jfma.2020.02.007
6 O. Commissioner. ( 2020). Available from the website of U.S. Food & Drug Administration
7 E., Sheikhzadeh, S., Eissa, A. Ismail, ( 2020). Diagnostic techniques for COVID-19 and new developments. Talanta, 220 : 121392
https://doi.org/10.1016/j.talanta.2020.121392
8 M. E. H., Chowdhury T., Rahman A., Khandakar R., Mazhar M. A., Kadir Z. B., Mahbub K. R., Islam M. S., Khan A., Iqbal N., Al-Emadi ( 2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665–132676
9 T. B., Chandra, K., Verma, B. K., Singh, D. Jain, S. Netam, ( 2021). Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble. Expert Syst. Appl., 165 : 113909
https://doi.org/10.1016/j.eswa.2020.113909
10 T. B. Chandra, ( 2020). Pneumonia detection on chest X-ray using machine learning paradigm. In: Proceedings of 3rd International Conference on Computer Vision and Image Processing, 21
https://doi.org/10.1007/978-981-32-9088-4_3
11 N., Zhang, L., Wang, X., Deng, R., Liang, M., Su, C., He, L., Hu, Y., Su, J., Ren, F. Yu, et al.. ( 2020). Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol., 92 : 408– 417
https://doi.org/10.1002/jmv.25674
12 K. E., Asnaoui Y. Chawki. ( 2020) Automated methods for detection and classification pneumonia based on X-ray images using deep learning. ArXiv, 2003.14363
13 A. K., Jaiswal, P., Tiwari, S., Kumar, D., Gupta, A. Khanna, J. J. P. Rodrigues, ( 2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145 : 511– 518
https://doi.org/10.1016/j.measurement.2019.05.076
14 E., Pesce, S., Joseph Withey, P. Ypsilantis, R., Bakewell, V. Goh, ( 2019). Learning to detect chest radiographs containing pulmonary lesions using visual attention networks. Med. Image Anal., 53 : 26– 38
https://doi.org/10.1016/j.media.2018.12.007
15 Z., Xue S., Jaeger S., Antani L. R., Long A., Karargyris J., Siegelman L. R. Folio G. Thoma. ( 2018) Localizing tuberculosis in chest radiographs with deep learning. In: Proc. SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U
16 Y., LeCun P., Haffner. and Bengio, Y. ( 1999) Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision, Forsyth, D.A., Mundy, J.L., di Gesú, V. and Cipolla, R. (Eds.), pp. 319–345. Springer, Berlin, Heidelberg
17 D., Wang, J., Mo, G., Zhou, L. Xu, ( 2020). An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS One, 15 : e0242535
https://doi.org/10.1371/journal.pone.0242535
18 A. I., Khan, J. L. Shah, M. Bhat, ( 2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed., 196 : 105581
https://doi.org/10.1016/j.cmpb.2020.105581
19 S., Minaee, R., Kafieh, M., Sonka, S. Yazdani, ( 2020). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal., 65 : 101794
https://doi.org/10.1016/j.media.2020.101794
20 M. R., Zare D. O. Alebiosu S. Lee. ( 2018) Comparison of handcrafted features and deep learning in classification of medical X-ray images. In: 2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP), pp. 1– 5
21 A., Abbas, M. M. Abdelsamea, M. Gaber, ( 2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell., 51 : 854– 864
https://doi.org/10.1007/s10489-020-01829-7
22 P., Afshar, S., Heidarian, F., Naderkhani, A., Oikonomou, K. N. Plataniotis, ( 2020). COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett., 138 : 638– 643
https://doi.org/10.1016/j.patrec.2020.09.010
23 A. S., Al-Waisy, S., Al-Fahdawi, M. A., Mohammed, K. H., Abdulkareem, S. A., Mostafa, M. S., Maashi, M. Arif, ( 2020). COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Comput., 1– 16
https://doi.org/10.1007/s00500-020-05424-3
24 A. A., Ardakani, A. R., Kanafi, U. R., Acharya, N. Khadem, ( 2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med., 121 : 103795
https://doi.org/10.1016/j.compbiomed.2020.103795
25 R., Jain, M., Gupta, S. Taneja, D. Hemanth, ( 2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell., 51 : 1690– 1700
https://doi.org/10.1007/s10489-020-01902-1
26 S. Karakanis, ( 2021). Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Comput. Biol. Med., 130 : 104181
https://doi.org/10.1016/j.compbiomed.2020.104181
27 R. Murugan, ( 2021). E-DiCoNet: Extreme learning machine based classifier for diagnosis of COVID-19 using deep convolutional network. J. Ambient Intell. Human Comput., 12 : 8887– 8898
https://doi.org/10.1007/s12652-020-02688-3
28 T., Ozturk, M., Talo, E. A., Yildirim, U. B., Baloglu, O. Yildirim, ( 2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 121 : 103792
https://doi.org/10.1016/j.compbiomed.2020.103792
29 H., Panwar, P. K., Gupta, M. K., Siddiqui, R. Morales-Menendez, ( 2020). Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solit. Frac., 138 : 109944
https://doi.org/10.1016/j.chaos.2020.109944
30 M., ar, B. Ergen, ( 2020). COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med., 121 : 103805
https://doi.org/10.1016/j.compbiomed.2020.103805
31 L., Wang, Z. Q. Lin, ( 2020). COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep., 10 : 19549
https://doi.org/10.1038/s41598-020-76550-z
32 J. P., Cohen P., Morrison L., Dao K., Roth T. Q. Duong. ( 2020) COVID-19 image data collection: prospective predictions are the future. ArXiv, 2006.11988
33 T. B. Chandra, ( 2020). Analysis of quantum noise-reducing filters on chest X-ray images: A review. Measurement, 153 : 107426
https://doi.org/10.1016/j.measurement.2019.107426
34 W. A., Abbasi, S. A., Abbas, S., Andleeb, G., Ul Islam, S. A., Ajaz, K., Arshad, S., Khalil, A., Anjam, K., Ilyas, M. Saleem, et al.. ( 2021). COVIDC: An expert system to diagnose COVID-19 and predict its severity using chest CT scans: application in radiology. Inform. Med. Unlocked, 23 : 100540
https://doi.org/10.1016/j.imu.2021.100540
35 G., Huang Z., Liu L. van der Maaten K. Weinberger. ( 2018) Densely connected convolutional networks. ArXiv, 1608.06993
36 K., He X., Zhang S. Ren. ( 2015) Deep residual learning for image recognition. ArXiv, 1512.03385
37 F. Chollet, ( 2017). Xception: Deep learning with depthwise separable convolutions. ArXiv, 1610.02357
https://doi.org/10.1109/CVPR.2017.195
38 C., Szegedy V., Vanhoucke S., Ioffe J. Shlens. ( 2015) Rethinking the inception architecture for computer vision. ArXiv, 1512.00567
39 K. Simonyan. ( 2015) Very deep convolutional networks for large-scale image recognition. ArXiv, 1409.1556
40 B., Zoph V., Vasudevan J. Shlens Q. Le. ( 2018) Learning transferable architectures for scalable image recognition. ArXiv, 1707.07012
41 L. Breiman, ( 2001). Random forests. Mach. Learn., 45 : 5– 32
https://doi.org/10.1023/A:1010933404324
42 C. Cortes, ( 1995). Support-vector networks. Mach. Learn., 20 : 273– 297
https://doi.org/10.1007/BF00994018
43 J. Friedman, ( 2001). Greedy function approximation: A gradient boosting machine. Ann. Stat., 29 : 1189– 1232
https://doi.org/10.1214/aos/1013203451
44 F., Pedregosa, G., Varoquaux, A., Gramfort, V., Michel, B., Thirion, O., Grisel, M., Blondel, P., Prettenhofer, R., Weiss, V. Dubourg, et al.. ( 2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res., 12 : 2825– 2830
45 J. Bergstra, ( 2012). Random search for hyper-parameter optimization. J. Mach. Learn. Res., 13 : 281– 305
46 W. A., Abbasi, F. U., Hassan, A. Yaseen, F. U. A. Minhas, ( 2020). ISLAND: In-silico prediction of proteins binding affinity using sequence descriptors. BioData Min., 13 : 20
https://doi.org/10.1186/s13040-020-00231-w
47 H., Li, K. Leung, M. Wong, P. Ballester, ( 2014). Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: cyscore as a case study. BMC Bioinformatics, 15 : 291
https://doi.org/10.1186/1471-2105-15-291
48 P. J. Ballester, J. B. Mitchell, ( 2010). A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 26 : 1169– 1175
https://doi.org/10.1093/bioinformatics/btq112
49 I. H., Moal, R. Agius, P. Bates, ( 2011). Protein-protein binding affinity prediction on a diverse set of structures. Bioinformatics, 27 : 3002– 3009
https://doi.org/10.1093/bioinformatics/btr513
50 T. Chen, ( 2016). XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM : 785
https://doi.org/10.1145/2939672.2939785
51 W. A. Abbasi, F. U. A. Minhas, ( 2016). Issues in performance evaluation for host-pathogen protein interaction prediction. J. Bioinform. Comput. Biol., 14 : 1650011
https://doi.org/10.1142/S0219720016500116
52 J. Davis, ( 2006). The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ACM : 233
https://doi.org/10.1145/1143844.1143874
53 A. Tharwat., ( 2018) Classification assessment methods. App. Comput. and Inform., 17, 168–192
54 F. Wilcoxon ( 1992) Individual comparisons by ranking methods. In: Breakthroughs in Statistics: Methodology and Distribution. Kotz, S. and Johnson, N. L. (Eds.), pp. 196– 196. Springer, New York
55 I., Rodriguez-Fdez A., Canosa M. Mucientes. ( 2015) STAC: A web platform for the comparison of algorithms using statistical tests. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1– 8
[1] Aishwarza Panday, Muhammad Ashad Kabir, Nihad Karim Chowdhury. A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging[J]. Quant. Biol., 2022, 10(2): 188-207.
[2] Georgios D. Barmparis, Giorgos P. Tsironis. Physics-informed machine learning for the COVID-19 pandemic: Adherence to social distancing and short-term predictions for eight countries[J]. Quant. Biol., 2022, 10(2): 139-149.
[3] Ayman Mourad, Fatima Mroue. Discrete spread model for COVID-19: the case of Lebanon[J]. Quant. Biol., 2022, 10(2): 157-171.
[4] Pavel Grinchuk, Sergey Fisenko. Power-law multi-wave model for COVID-19 propagation in countries with nonuniform population density[J]. Quant. Biol., 2022, 10(2): 150-156.
[5] HyeongChan Jo, Juhyun Kim, Tzu-Chen Huang, Yu-Li Ni. condLSTM-Q: A novel deep learning model for predicting COVID-19 mortality in fine geographical scale[J]. Quant. Biol., 2022, 10(2): 125-138.
[6] Chen Tang, Tiandong Wang, Panpan Zhang. Functional data analysis: An application to COVID-19 data in the United States in 2020[J]. Quant. Biol., 2022, 10(2): 172-187.
[7] Rudra Banerjee, Srijit Bhattacharjee, Pritish Kumar Varadwaj. A study of the COVID-19 epidemic in India using the SEIRD model[J]. Quant. Biol., 2021, 9(3): 317-328.
[8] Yuehui Zhang, Lin Chen, Qili Shi, Zhongguang Luo, Libing Shen. Forecasting the development of the COVID-19 epidemic by nowcasting: when did things start to get better?[J]. Quant. Biol., 2021, 9(1): 93-99.
[9] Saroj K Biswas, Nasir U Ahmed. Mathematical modeling and optimal intervention of COVID-19 outbreak[J]. Quant. Biol., 2021, 9(1): 84-92.
[10] Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su. Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein[J]. Quant. Biol., 2021, 9(1): 61-72.
[11] Hanshuang Pan, Nian Shao, Yue Yan, Xinyue Luo, Shufen Wang, Ling Ye, Jin Cheng, Wenbin Chen. Multi-chain Fudan-CCDC model for COVID-19 -- a revisit to Singapore’s case[J]. Quant. Biol., 2020, 8(4): 325-335.
[12] Xiaofei Yang, Tun Xu, Peng Jia, Han Xia, Li Guo, Lei Zhang, Kai Ye. Transportation, germs, culture: a dynamic graph model of COVID-19 outbreak[J]. Quant. Biol., 2020, 8(3): 238-244.
[13] Jie Ren, Kai Song, Chao Deng, Nathan A. Ahlgren, Jed A. Fuhrman, Yi Li, Xiaohui Xie, Ryan Poplin, Fengzhu Sun. Identifying viruses from metagenomic data using deep learning[J]. Quant. Biol., 2020, 8(1): 64-77.
[14] Hailin Meng, Yingfei Ma, Guoqin Mai, Yong Wang, Chenli Liu. Construction of precise support vector machine based models for predicting promoter strength[J]. Quant. Biol., 2017, 5(1): 90-98.
[15] Yasen Jiao, Pufeng Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quant. Biol., 2016, 4(4): 320-330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed