|
|
|
COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans |
Wajid Arshad Abbasi1( ), Syed Ali Abbas1, Saiqa Andleeb2, Maryum Bibi1, Fiaz Majeed3, Abdul Jaleel4, Muhammad Naveed Akhtar5 |
1. Computational Biology and Data Analysis Lab, Department of Computer Sciences & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K 13100, Pakistan 2. Biotechnology Lab, Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K 13100, Pakistan 3. Department of Software Engineering, University of Gujrat, Gujrat 50700, Pakistan 4. Department of Computer Science, (RCET), UET, Lahore 54000, Pakistan 5. Computational and Internet Services Division, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan |
|
|
|
|
Abstract Background: Coronavirus disease (COVID-19) is a contagious infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) and it has infected and killed millions of people across the globe. Objective: In the absence or inadequate provision of therapeutic treatments of COVID-19 and the limited convenience of diagnostic techniques, there is a necessity for some alternate spontaneous screening systems that can easily be used by the physicians to rapidly recognize and isolate the infected patients to circumvent onward surge. A chest X-ray (CXR) image can effortlessly be used as a substitute modality to diagnose the COVID-19. Method: In this study, we present an automatic COVID-19 diagnostic and severity prediction system (COVIDX) that uses deep feature maps of CXR images along with classical machine learning algorithms to identify COVID-19 and forecast its severity. The proposed system uses a three-phase classification approach (healthy vs unhealthy, COVID-19 vs pneumonia, and COVID-19 severity) using different conventional supervised classification algorithms. Results: We evaluated COVIDX through 10-fold cross-validation, by using an external validation dataset, and also in a real setting by involving an experienced radiologist. In all the adopted evaluation settings, COVIDX showed strong generalization power and outperforms all the prevailing state-of-the-art methods designed for this purpose. Conclusions: Our proposed method (COVIDX), with vivid performance in COVID-19 diagnosis and its severity prediction, can be used as an aiding tool for clinical physicians and radiologists in the diagnosis and follow-up studies of COVID-19 infected patients. Availability: We made COVIDX easily accessible through a cloud-based webserver and python code available at the site of google and the website of Github.
|
| Keywords
coronavirus
COVID-19
radiology
machine learning
chest X-ray
contagious infection
|
|
Corresponding Author(s):
Wajid Arshad Abbasi
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Just Accepted Date: 17 December 2021
Online First Date: 17 March 2022
Issue Date: 07 July 2022
|
|
| 1 |
C., Huang, Y., Wang, X., Li, L., Ren, J., Zhao, Y., Hu, L., Zhang, G., Fan, J., Xu, X. Gu, et al.. ( 2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 : 497– 506
https://doi.org/10.1016/S0140-6736(20)30183-5
|
| 2 |
S., Kooraki, M., Hosseiny, L. Myers, ( 2020). Coronavirus (COVID-19) outbreak: what the department of radiology should know. J. Am. Coll. Radiol., 17 : 447– 451
https://doi.org/10.1016/j.jacr.2020.02.008
|
| 3 |
COVID-19 Map, Johns Hopkins Coronavirus Resource Center. (n.d.). . Accessed: November 27, 2020
|
| 4 |
Coronavirus disease (COVID-19) – World Health Organization, (n.d.). Available from the website of World Health Organization
|
| 5 |
S. Cheng, Y. Chang, Y. Fan Chiang, Y. Chien, M., Cheng, C. Yang, C. Huang, Y. Hsu, ( 2020). First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc., 119 : 747– 751
https://doi.org/10.1016/j.jfma.2020.02.007
|
| 6 |
O. Commissioner. ( 2020). Available from the website of U.S. Food & Drug Administration
|
| 7 |
E., Sheikhzadeh, S., Eissa, A. Ismail, ( 2020). Diagnostic techniques for COVID-19 and new developments. Talanta, 220 : 121392
https://doi.org/10.1016/j.talanta.2020.121392
|
| 8 |
M. E. H., Chowdhury T., Rahman A., Khandakar R., Mazhar M. A., Kadir Z. B., Mahbub K. R., Islam M. S., Khan A., Iqbal N., Al-Emadi ( 2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665–132676
|
| 9 |
T. B., Chandra, K., Verma, B. K., Singh, D. Jain, S. Netam, ( 2021). Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble. Expert Syst. Appl., 165 : 113909
https://doi.org/10.1016/j.eswa.2020.113909
|
| 10 |
T. B. Chandra, ( 2020). Pneumonia detection on chest X-ray using machine learning paradigm. In: Proceedings of 3rd International Conference on Computer Vision and Image Processing, 21
https://doi.org/10.1007/978-981-32-9088-4_3
|
| 11 |
N., Zhang, L., Wang, X., Deng, R., Liang, M., Su, C., He, L., Hu, Y., Su, J., Ren, F. Yu, et al.. ( 2020). Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol., 92 : 408– 417
https://doi.org/10.1002/jmv.25674
|
| 12 |
K. E., Asnaoui Y. Chawki. ( 2020) Automated methods for detection and classification pneumonia based on X-ray images using deep learning. ArXiv, 2003.14363
|
| 13 |
A. K., Jaiswal, P., Tiwari, S., Kumar, D., Gupta, A. Khanna, J. J. P. Rodrigues, ( 2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145 : 511– 518
https://doi.org/10.1016/j.measurement.2019.05.076
|
| 14 |
E., Pesce, S., Joseph Withey, P. Ypsilantis, R., Bakewell, V. Goh, ( 2019). Learning to detect chest radiographs containing pulmonary lesions using visual attention networks. Med. Image Anal., 53 : 26– 38
https://doi.org/10.1016/j.media.2018.12.007
|
| 15 |
Z., Xue S., Jaeger S., Antani L. R., Long A., Karargyris J., Siegelman L. R. Folio G. Thoma. ( 2018) Localizing tuberculosis in chest radiographs with deep learning. In: Proc. SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790U
|
| 16 |
Y., LeCun P., Haffner. and Bengio, Y. ( 1999) Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision, Forsyth, D.A., Mundy, J.L., di Gesú, V. and Cipolla, R. (Eds.), pp. 319–345. Springer, Berlin, Heidelberg
|
| 17 |
D., Wang, J., Mo, G., Zhou, L. Xu, ( 2020). An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS One, 15 : e0242535
https://doi.org/10.1371/journal.pone.0242535
|
| 18 |
A. I., Khan, J. L. Shah, M. Bhat, ( 2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed., 196 : 105581
https://doi.org/10.1016/j.cmpb.2020.105581
|
| 19 |
S., Minaee, R., Kafieh, M., Sonka, S. Yazdani, ( 2020). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal., 65 : 101794
https://doi.org/10.1016/j.media.2020.101794
|
| 20 |
M. R., Zare D. O. Alebiosu S. Lee. ( 2018) Comparison of handcrafted features and deep learning in classification of medical X-ray images. In: 2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP), pp. 1– 5
|
| 21 |
A., Abbas, M. M. Abdelsamea, M. Gaber, ( 2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell., 51 : 854– 864
https://doi.org/10.1007/s10489-020-01829-7
|
| 22 |
P., Afshar, S., Heidarian, F., Naderkhani, A., Oikonomou, K. N. Plataniotis, ( 2020). COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett., 138 : 638– 643
https://doi.org/10.1016/j.patrec.2020.09.010
|
| 23 |
A. S., Al-Waisy, S., Al-Fahdawi, M. A., Mohammed, K. H., Abdulkareem, S. A., Mostafa, M. S., Maashi, M. Arif, ( 2020). COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Comput., 1– 16
https://doi.org/10.1007/s00500-020-05424-3
|
| 24 |
A. A., Ardakani, A. R., Kanafi, U. R., Acharya, N. Khadem, ( 2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med., 121 : 103795
https://doi.org/10.1016/j.compbiomed.2020.103795
|
| 25 |
R., Jain, M., Gupta, S. Taneja, D. Hemanth, ( 2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell., 51 : 1690– 1700
https://doi.org/10.1007/s10489-020-01902-1
|
| 26 |
S. Karakanis, ( 2021). Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Comput. Biol. Med., 130 : 104181
https://doi.org/10.1016/j.compbiomed.2020.104181
|
| 27 |
R. Murugan, ( 2021). E-DiCoNet: Extreme learning machine based classifier for diagnosis of COVID-19 using deep convolutional network. J. Ambient Intell. Human Comput., 12 : 8887– 8898
https://doi.org/10.1007/s12652-020-02688-3
|
| 28 |
T., Ozturk, M., Talo, E. A., Yildirim, U. B., Baloglu, O. Yildirim, ( 2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 121 : 103792
https://doi.org/10.1016/j.compbiomed.2020.103792
|
| 29 |
H., Panwar, P. K., Gupta, M. K., Siddiqui, R. Morales-Menendez, ( 2020). Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solit. Frac., 138 : 109944
https://doi.org/10.1016/j.chaos.2020.109944
|
| 30 |
M., ar, B. Ergen, ( 2020). COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med., 121 : 103805
https://doi.org/10.1016/j.compbiomed.2020.103805
|
| 31 |
L., Wang, Z. Q. Lin, ( 2020). COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep., 10 : 19549
https://doi.org/10.1038/s41598-020-76550-z
|
| 32 |
J. P., Cohen P., Morrison L., Dao K., Roth T. Q. Duong. ( 2020) COVID-19 image data collection: prospective predictions are the future. ArXiv, 2006.11988
|
| 33 |
T. B. Chandra, ( 2020). Analysis of quantum noise-reducing filters on chest X-ray images: A review. Measurement, 153 : 107426
https://doi.org/10.1016/j.measurement.2019.107426
|
| 34 |
W. A., Abbasi, S. A., Abbas, S., Andleeb, G., Ul Islam, S. A., Ajaz, K., Arshad, S., Khalil, A., Anjam, K., Ilyas, M. Saleem, et al.. ( 2021). COVIDC: An expert system to diagnose COVID-19 and predict its severity using chest CT scans: application in radiology. Inform. Med. Unlocked, 23 : 100540
https://doi.org/10.1016/j.imu.2021.100540
|
| 35 |
G., Huang Z., Liu L. van der Maaten K. Weinberger. ( 2018) Densely connected convolutional networks. ArXiv, 1608.06993
|
| 36 |
K., He X., Zhang S. Ren. ( 2015) Deep residual learning for image recognition. ArXiv, 1512.03385
|
| 37 |
F. Chollet, ( 2017). Xception: Deep learning with depthwise separable convolutions. ArXiv, 1610.02357
https://doi.org/10.1109/CVPR.2017.195
|
| 38 |
C., Szegedy V., Vanhoucke S., Ioffe J. Shlens. ( 2015) Rethinking the inception architecture for computer vision. ArXiv, 1512.00567
|
| 39 |
K. Simonyan. ( 2015) Very deep convolutional networks for large-scale image recognition. ArXiv, 1409.1556
|
| 40 |
B., Zoph V., Vasudevan J. Shlens Q. Le. ( 2018) Learning transferable architectures for scalable image recognition. ArXiv, 1707.07012
|
| 41 |
L. Breiman, ( 2001). Random forests. Mach. Learn., 45 : 5– 32
https://doi.org/10.1023/A:1010933404324
|
| 42 |
C. Cortes, ( 1995). Support-vector networks. Mach. Learn., 20 : 273– 297
https://doi.org/10.1007/BF00994018
|
| 43 |
J. Friedman, ( 2001). Greedy function approximation: A gradient boosting machine. Ann. Stat., 29 : 1189– 1232
https://doi.org/10.1214/aos/1013203451
|
| 44 |
F., Pedregosa, G., Varoquaux, A., Gramfort, V., Michel, B., Thirion, O., Grisel, M., Blondel, P., Prettenhofer, R., Weiss, V. Dubourg, et al.. ( 2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res., 12 : 2825– 2830
|
| 45 |
J. Bergstra, ( 2012). Random search for hyper-parameter optimization. J. Mach. Learn. Res., 13 : 281– 305
|
| 46 |
W. A., Abbasi, F. U., Hassan, A. Yaseen, F. U. A. Minhas, ( 2020). ISLAND: In-silico prediction of proteins binding affinity using sequence descriptors. BioData Min., 13 : 20
https://doi.org/10.1186/s13040-020-00231-w
|
| 47 |
H., Li, K. Leung, M. Wong, P. Ballester, ( 2014). Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: cyscore as a case study. BMC Bioinformatics, 15 : 291
https://doi.org/10.1186/1471-2105-15-291
|
| 48 |
P. J. Ballester, J. B. Mitchell, ( 2010). A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 26 : 1169– 1175
https://doi.org/10.1093/bioinformatics/btq112
|
| 49 |
I. H., Moal, R. Agius, P. Bates, ( 2011). Protein-protein binding affinity prediction on a diverse set of structures. Bioinformatics, 27 : 3002– 3009
https://doi.org/10.1093/bioinformatics/btr513
|
| 50 |
T. Chen, ( 2016). XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM : 785
https://doi.org/10.1145/2939672.2939785
|
| 51 |
W. A. Abbasi, F. U. A. Minhas, ( 2016). Issues in performance evaluation for host-pathogen protein interaction prediction. J. Bioinform. Comput. Biol., 14 : 1650011
https://doi.org/10.1142/S0219720016500116
|
| 52 |
J. Davis, ( 2006). The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ACM : 233
https://doi.org/10.1145/1143844.1143874
|
| 53 |
A. Tharwat., ( 2018) Classification assessment methods. App. Comput. and Inform., 17, 168–192
|
| 54 |
F. Wilcoxon ( 1992) Individual comparisons by ranking methods. In: Breakthroughs in Statistics: Methodology and Distribution. Kotz, S. and Johnson, N. L. (Eds.), pp. 196– 196. Springer, New York
|
| 55 |
I., Rodriguez-Fdez A., Canosa M. Mucientes. ( 2015) STAC: A web platform for the comparison of algorithms using statistical tests. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1– 8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|