Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 59-69    https://doi.org/10.1007/s11705-018-1712-0
RESEARCH ARTICLE
Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings
Dongjie Yang1, Shengyu Wang1, Ruisheng Zhong1, Weifeng Liu1(), Xueqing Qiu1,2()
1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
 Download: PDF(2089 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple method using a water soluble lignin quaternary ammonium salt (LQAS) and TiO2 has been developed for the preparation of lignin/TiO2 nanocomposites in an aqueous medium under mild conditions. The LQAS/TiO2 nanocomposites contain well-dispersed small particles with excellent ultraviolet (UV) shielding abilities and good compatibilities with waterborne polyurethane (WPU). When the LQAS/TiO2 nanocomposites were blended with WPU, the UV absorbance and the tensile ductility of the WPU increased significantly. The composite WPU hybrid film containing 6 wt-% LQAS/TiO2 nanocomposite had the highest visible light transmittance and had excellent ultraviolet aging properties. After 192 h of UV light irradiation, the tensile strength of the composite film was above 8 MPa and the elongation at break was 800%. This work highlights new possibilities for the utilization of alkali lignin.

Keywords lignin      TiO2      nanocomposite particle      polyurethane film     
Corresponding Author(s): Weifeng Liu,Xueqing Qiu   
Just Accepted Date: 09 February 2018   Online First Date: 19 April 2018    Issue Date: 25 February 2019
 Cite this article:   
Dongjie Yang,Shengyu Wang,Ruisheng Zhong, et al. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1712-0
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/59
Fig.1  The preparation method for the LQAS/TiO2 nanocomposites
Fig.2  FTIR spectra of AL and LQAS-50
LQAS-50 /g H2O /mL H2SO4 /mL Tetrabutyl titanate /mL Ethanol /mL Particle size /mL
1.5 2.5 2 10 30 >1 µm
1 2.5 2 10 30 >500 nm
0.5 2.5 2 10 30 >500 nm
0.5 3.5 2 10 30 328.5
0.5 4.5 2 10 30 257.2
0.5 6.5 2 10 30 243.3
0.5 6.5 1.5 10 30 314.6
0.5 6.5 1 10 30 190.2
0.5 6.5 0.5 10 30 258.0
Tab.1  Effect of different preparation conditions on the particle size of LQAS/TiO2 nanocomposites
Fig.3  TGA/DSC curves of LQAS-60/TiO2
Sample Lignin content/%
LQAS-50/TiO2 34.5
LQAS-60/TiO2 35.3
LQAS-70/TiO2 33.6
LQAS-80/TiO2 32.8
Tab.2  Lignin content for the LQAS/TiO2 nanocomposites
Fig.4  XRD patterns of TiO2 and LQAS/TiO2 nanocomposites
Sample Cell parameters Crystallinity/%
a /Å b /Å c /Å
TiO2 4.59 4.59 2.96 85.9
LQAS-50/TiO2 3.78 3.78 9.52 4.10
LQAS-60/TiO2 3.77 3.77 9.50 4.55
LQAS-70/TiO2 3.79 3.79 9.51 3.69
LQAS-80/TiO2 3.79 3.78 9.51 3.41
LQAS-60/TiO2 (180 °C) 3.77 3.78 9.49 26.8
Tab.3  Cell parameters and the crystallinity of the LQAS/TiO2 nanocomposites
Fig.5  SEM images of TiO2 and LQAS/TiO2 nanocomposites (a) TiO2, (b) LQAS-50/TiO2, (c) LQAS-60/TiO2, (d) LQAS-70/TiO2, and (e) LQAS-80/TiO2
Fig.6  TEM images of TiO2 and LQAS/TiO2 nanocomposites (a) TiO2, (b) LQAS-50/TiO2, (c) LQAS-60/TiO2, (d) LQAS-70/TiO2, and (e) LQAS-80/TiO2
Fig.7  Particle size distributions in the LQAS/TiO2 nanocomposites
Sample Average size /nm
TiO2 150.0
LQAS-50/TiO2 191.2
LQAS-60/TiO2 184.5
LQAS-70/TiO2 195.7
LQAS-80/TiO2 198.6
Tab.4  The average size of the LQAS/TiO2 nanocomposites
Fig.8  N2 adsorption-desorption isotherms of TiO2 and the LQAS/TiO2 nanocomposites
Fig.9  BJH pore size distribution curves of TiO2 and the LQAS/TiO2 nanocomposites
Sample BET specific surface area /(m2?g?1)
TiO2 53.8
LQAS-50/TiO2 321.4
LQAS-60/TiO2 339.7
LQAS-70/TiO2 299.9
LQAS-80/TiO2 284.3
Tab.5  BET specific surface areas of TiO2 and the LQAS/TiO2 nanocomposites
Fig.10  Ti2p XPS spectra test for TiO2 and LQAS-60/TiO2
Fig.11  SEM images of the WPU-based blended films: (a) WPU+ 6 wt-% TiO2, (b) WPU+ 4.2 wt-% TiO2 + 1.8 wt-% LQAS-60, (c) WPU+ LQAS-50/TiO2, (d) WPU+ LQAS-60/TiO2, (e) WPU+ LQAS-70/TiO2, (f) WPU+ LQAS-80/TiO2
Fig.12  UV-Vis transmittance spectra of the WPU-based blended films
Fig.13  Digital photos of the WPU-based blended films: (a) WPU+ 6 wt-% TiO2, (b) WPU+ 4.2 wt-% TiO2 +1.8 wt-% LQAS-60, (c) WPU+ 6 wt-% LQAS-60/TiO2
Sample Tensile strength /MPa Elongation at break /%
WPU 22.4 ± 1.0 510 ± 25
WPU+ 6 wt-% TiO2 25.6 ± 0.7 440 ± 27
WPU+ 4.2 wt-% TiO2+1.8 wt-% LQAS-60 17.4 ± 0.8 362 ± 25
WPU+ 6 wt-% LQAS-50/TiO2 13.6 ± 0.2 961 ± 24
WPU+ 6 wt-% LQAS-60/TiO2 14.1 ± 0.6 1066 ± 25
WPU+ 6 wt-% LQAS-70/TiO2 13.5 ± 0.4 833 ± 25
WPU+ 6 wt-% LQAS-80/TiO2 13.1 ± 0.2 824 ± 25
WPU+ 6 wt-% LQAS-60/TiO2 (180 °C) 18.6 ± 0.4 889 ± 25
Tab.6  Mechanical properties of WPU-based blended films
Fig.14  The mechanical properties of the WPU-based blended films during UV aging process
1 OVBelyaeva, OV Korkina, AVStetsenko, NYKedishvili. Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity. FEBS J 2008; 275(1): 138–147
https://doi.org/10.1111/j.1742-4658.2007.06184.x pmid: 18039331
2 KLKavanagh, H Jörnvall, BPersson, UOppermann. Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008; 65(24): 3895–3906
https://doi.org/10.1007/s00018-008-8588-y pmid: 19011750
3 UOppermann, C Filling, MHult, NShafqat, XWu, M Lindh, JShafqat, ENordling, YKallberg, BPersson, HJörnvall. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 2003; 143-144: 247–253
https://doi.org/10.1016/S0009-2797(02)00164-3 pmid: 12604210
4 HJörnvall, B Persson, MKrook, SAtrian, RGonzàlez-Duarte, JJeffery, DGhosh. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995; 34(18): 6003–6013
https://doi.org/10.1021/bi00018a001 pmid: 7742302
5 AKramm, M Kisiela, RSchulz, EMaser. Short-chain dehydrogenases/reductases in cyanobacteria. FEBS J 2012; 279(6): 1030–1043
https://doi.org/10.1111/j.1742-4658.2012.08494.x pmid: 22251568
6 ASimon, U Hellman, CWernstedt, UEriksson. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 1995; 270(3): 1107–1112
https://doi.org/10.1074/jbc.270.3.1107 pmid: 7836368
7 CADriessen, BP Janssen, HJWinkens, AHvan Vugt, TLde Leeuw, JJJanssen. Cloning and expression of a cDNA encoding bovine retinal pigment epithelial 11-cis retinol dehydrogenase. Invest Ophthalmol Vis Sci 1995; 36(10): 1988–1996
pmid: 7544779
8 FHaeseleer, GF Jang, YImanishi, CAGGDriessen, MMatsumura, PSNelson, KPalczewski. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 2002; 277(47): 45537–45546
https://doi.org/10.1074/jbc.M208882200 pmid: 12226107
9 HWang, X Cui, QGu, YChen, J Zhou, YKuang, ZWang, X Xu. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. Mol Vis 2012; 18: 1021–1030
pmid: 22605914
10 KKuniyoshi, H Sakuramoto, KYoshitake, KAbe, K Ikeo, MFuruno, KTsunoda, SKusaka, YShimomura, TIwata. Longitudinal clinical course of three Japanese patients with Leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation. Doc Ophthalmol 2014; 128(3): 219–228
https://doi.org/10.1007/s10633-014-9436-z pmid: 24752437
11 KKovalovich, RA DeAngelis, WLi, EEFurth, GCiliberto, RTaub. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology 2000; 31(1): 149–159
https://doi.org/10.1002/hep.510310123 pmid: 10613740
12 TOtsuka, H Takagi, NHoriguchi, MToyoda, KSato, H Takayama, MMori. CCl4-induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK2 overexpression. FEBS Lett 2002; 532(3): 391–395
https://doi.org/10.1016/S0014-5793(02)03714-6 pmid: 12482598
13 CYu, F Wang, CJin, XWu, WK Chan, WLMcKeehan. Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. Am J Pathol 2002; 161(6): 2003–2010
https://doi.org/10.1016/S0002-9440(10)64478-1 pmid: 12466116
14 CGHuh, VM Factor, ASánchez, KUchida, EAConner, SSThorgeirsson. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 2004; 101(13): 4477–4482
https://doi.org/10.1073/pnas.0306068101 pmid: 15070743
15 YYamada, N Fausto. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol 1998; 152(6): 1577–1589
pmid: 9626061
16 SBisht, MA Khan, MBekhit, HBai, T Cornish, MMizuma, MARudek, MZhao, A Maitra, BRay, DLahiri, AMaitra, RAAnders. A polymeric nanoparticle formulation of curcumin (NanoCurcTM) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Lab Invest 2011; 91(9): 1383–1395
https://doi.org/10.1038/labinvest.2011.86 pmid: 21691262
17 FZhang, R Shu, XWu, XZhao, D Feng, LWang, SLu, Q Liu, YXiang, JFei, L Huang, ZWang. Delayed liver injury and impaired hepatocyte proliferation after carbon tetrachloride exposure in BPOZ2-deficient mice. Toxicol Lett 2009; 188(3): 201–207
https://doi.org/10.1016/j.toxlet.2009.04.009 pmid: 19393728
18 MNatsume, H Tsuji, AHarada, MAkiyama, TYano, H Ishikura, INakanishi, KMatsushima, SKaneko, NMukaida. Attenuated liver fibrosis and depressed serum albumin levels in carbon tetrachloride-treated IL-6-deficient mice. J Leukoc Biol 1999, 66: 601–608
pmid: 10534116
19 MBBansal, K Kovalovich, RGupta, WLi, A Agarwal, BRadbill, CEAlvarez, RSafadi, MIFiel, SLFriedman, RATaub. Interleukin-6 protects hepatocytes from CCl4-mediated necrosis and apoptosis in mice by reducing MMP-2 expression. J Hepatol 2005; 42(4): 548–556
https://doi.org/10.1016/j.jhep.2004.11.043 pmid: 15763341
20 EPGomez-Sanchez, V Ganjam, YJChen, YLiu, SA Clark, CEGomez-Sanchez. The 11β hydroxysteroid dehydrogenase 2 exists as an inactive dimer. Steroids 2001; 66(11): 845–848
https://doi.org/10.1016/S0039-128X(01)00119-2 pmid: 11576624
21 OVBelyaeva, NY Kedishvili. Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues. FEBS Lett 2002; 531(3): 489–493
https://doi.org/10.1016/S0014-5793(02)03588-3 pmid: 12435598
22 TSKim, A Maeda, TMaeda, CHeinlein, NKedishvili, KPalczewski, PSNelson. Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo. J Biol Chem 2005; 280(10): 8694–8704
https://doi.org/10.1074/jbc.M413172200 pmid: 15634683
23 AIannaccone, SA Tedesco, KTGallaher, HYamamoto, SCharles, TPDryja. Fundus albipunctatus in a 6-year old girl due to compound heterozygous mutations in the RDH5 gene. Doc Ophthalmol 2007; 115(2): 111–116
https://doi.org/10.1007/s10633-007-9054-0 pmid: 17476461
24 MAjmal, MI Khan, KNeveling, YMKhan, SHAli, W Ahmed, MSIqbal, MAzam, AI den Hollander, RWCollin, RQamar, FPCremers. Novel mutations in RDH5 cause fundus albipunctatus in two consanguineous Pakistani families. Mol Vis 2012; 18: 1558–1571
pmid: 22736946
25 JHAlbrecht, LK Hansen. Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth Differ 1999; 10: 397–404
26 FVégran, R Boidot, ESolary, SLizard-Nacol. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 2011; 6(12): e29058
https://doi.org/10.1371/journal.pone.0029058 pmid: 22216167
27 RWJohnstone, AA Ruefli, SWLowe. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108(2): 153–164
https://doi.org/10.1016/S0092-8674(02)00625-6 pmid: 11832206
28 PJDlugosz, LP Billen, MGAnnis, WZhu, Z Zhang, JLin, BLeber, DWAndrews. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 2006; 25(11): 2287–2296
https://doi.org/10.1038/sj.emboj.7601126 pmid: 16642033
29 JHAlbrecht, LK Hansen. Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth Differ 1999; 10(6): 397–404
pmid: 10392901
30 NFausto. Liver regeneration. J Hepatol 2000; 32(1 Suppl): 19–31
https://doi.org/10.1016/S0168-8278(00)80412-2 pmid: 10728791
31 OCoqueret. Linking cyclins to transcriptional control. Gene 2002; 299(1-2): 35–55
https://doi.org/10.1016/S0378-1119(02)01055-7 pmid: 12459251
32 NFausto, JS Campbell, KJRiehle. Liver regeneration. Hepatology 2006; 43(Suppl 1): S45–S53
https://doi.org/10.1002/hep.20969 pmid: 16447274
33 YXie, H Hao, HWang, CGuo, A Kang, GWang. Reversing effects of lignans on CCl4-induced hepatic CYP450 down regulation by attenuating oxidative stress. J Ethnopharmacol 2014; 155(1): 213–221
https://doi.org/10.1016/j.jep.2014.05.016
34 DWRosenberg, GS Drummond, TJSmith. Depletion of cytochrome P-450 by thyroid hormone and cobalt-protoporphyrin IX in rat liver: evidence that susceptibility varies among forms of the heme protein. Pharmacology 1995; 51(4): 254–262
https://doi.org/10.1159/000139367 pmid: 8577819
[1] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[2] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[3] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[4] Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams[J]. Front. Chem. Sci. Eng., 2017, 11(3): 328-337.
[5] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[6] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[7] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[8] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[9] Mingyu LIN,Yao Hsiang TSENG,Chin-Pao HUANG. Interactions between nano-TiO2 particles and algal cells at moderate particle concentration[J]. Front. Chem. Sci. Eng., 2015, 9(2): 242-257.
[10] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[11] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
[12] Weixin ZHANG, Jie XING, Zeheng YANG, Mei KONG, Hongxu YAO. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity[J]. Front Chem Sci Eng, 2013, 7(2): 192-201.
[13] Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE. Effective regeneration of thermally deactivated commercial V-W-Ti catalysts[J]. Front Chem Sci Eng, 2012, 6(1): 38-46.
[14] John TELLAM, Xu ZONG, Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
[15] S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles[J]. Front Chem Sci Eng, 2012, 6(1): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed