Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (4) : 684-694    https://doi.org/10.1007/s11705-019-1817-0
RESEARCH ARTICLE
Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity
Evelyn Chalmers, Yi Li, Xuqing Liu()
School of Materials, The University of Manchester, Manchester M13 9PL, UK
 Download: PDF(3696 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research looks at ways of tailoring and improving the stiffness of polypyrrole hydrogels for use as flexible supercapacitor electrodes. Molecules providing additional cross-linking between polypyrrole chains are added post-polymerisation but before gelation, and are found to increase gel stiffness by up to 600%, with the degree of change dependent on reactant type and proportion. It was also found that addition of phytic acid led to an increase in pseudocapacitive behaviour of the hydrogel, and thus a maximum specific capacitance of 217.07 F·g1 could be achieved. This is an increase of 140% compared to pristine polypyrrole hydrogels produced by this method.

Keywords supercapacitor      polypyrrole      hydrogel      strengthening      electrochemical     
Corresponding Author(s): Xuqing Liu   
Just Accepted Date: 18 April 2019   Online First Date: 26 June 2019    Issue Date: 04 December 2019
 Cite this article:   
Evelyn Chalmers,Yi Li,Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1817-0
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I4/684
Fig.1  SEM images taken of polypyrrole hydrogels made with a 1:1 molar ratio of pyrrole:Fe(NO3)3. (A) with 1 mmol·L−1 Fe(NO3)3 added, (B) with 1 mmol·L−1 phytic acid added, (C) with 1 mmol·L−1 KOH added, (D) with 1 mmol·L−1 NaHCO3 added
Fig.2  SEM images taken of polypyrrole hydrogels made with a 1:1 molar ratio of pyrrole:Fe2(SO4)3. (A) with 1 mol·L−1 Fe2(SO4)3 added, (B) with 1 mol·L−1 phytic acid added
Fig.3  FTIR spectra of polypyrrole hydrogels. (a) with Fe(NO3)3 added, (b) with phytic acid added to hydrogels made with Fe(NO3)3, (c) with NaHCO3 added to hydrogels made with Fe(NO3)3, (d) with KOH added to hydrogels made with Fe(NO3)3, (e) with Fe2(SO4)3 added, (f) with phytic acid added to hydrogels made with Fe2(SO4)3
Fig.4  A representative plot showing the variation of measured current across a sample with an applied stepped voltage (in increments of 0.1 V every 5 s)
Fig.5  A plot of the DC conductivity of gels made initially with a 1:1 molar ratio of pyrrole:Fe(NO3)3 with respect to applied voltage and molecular addition. Inset: table detailing the conductivities of each gel
Fig.6  A plot of the DC conductivity of gels made initially with a 1:1 molar ratio of pyrrole:Fe2(SO4)3 with respect to applied voltage and molecular addition. Inset: table detailing the conductivities of each gel
Fig.7  Cyclic voltammograms showing the hysteretic response of polypyrrole hydrogels, made initially with Fe(NO3)3, with Fe(NO3)3 and phytic acid added. Scan rate 10 mV·s?1
Fig.8  Cyclic voltammograms showing the hysteretic response of polypyrrole hydrogels, made initially with Fe(NO3)3, with tannic acid, P106, and KOH added. Scan rate 10 mV·s?1
Fig.9  Cyclic voltammograms showing the hysteretic response of polypyrrole hydrogels made initially with Fe2(SO4)3. Scan rate 10 mV·s?1
Fig.10  Bar chart comparing the storage and loss moduli of polypyrrole hydrogels. (a) with 1 mmol·L−1 Fe(NO3)3 added to gels initially made with 1:1 pyrrole: Fe(NO3)3; (b) with 1 mmol·L−1 phytic acid added to these hydrogels; (c) with 2 mmol·L−1 phytic acid added to these hydrogels; (d) with 1 mmol·L−1 KOH added to these hydrogels; (e) with 1 mmol·L−1 NaHCO3 added to these hydrogels; (f) with 1 mmol·L−1 Fe2(SO4)3 added to gels initially made with 1:1 pyrrole: Fe2(SO4)3; (g) with 1 mmol·L−1 phytic acid added to these hydrogels; (h) with 2 mmol·L−1 phytic acid added to these hydrogels
Fig.11  Plots of the storage (G') and loss (G'') moduli with increasing applied rotational frequency of polypyrrole hydrogels initially made with 1:1 molar ratio of pyrrole:Fe2(SO4)3
Fig.12  Plots of the storage (G') and loss (G'') moduli with increasing applied rotational frequency of polypyrrole hydrogels initially made with 1:1 molar ratio of pyrrole:Fe2(SO4)3
1 A González, E Goikolea, J A Barrena, R Mysyk. Review on supercapacitors: Technologies and material. Renewable & Sustainable Energy Reviews, 2016, 58: 1189–1206
https://doi.org/10.1016/j.rser.2015.12.249
2 I Shown, A Ganguly, L C Chen, K H Chen. Conducting polymer-based flexible supercapacitor. Energy Science & Engineering, 2015, 3(1): 2–26
https://doi.org/10.1002/ese3.50
3 G Wang, L Zhang, J Zhang. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
https://doi.org/10.1039/C1CS15060J
4 Y Shi, G Yu. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chemistry of Materials, 2016, 28(8): 2466–2477
https://doi.org/10.1021/acs.chemmater.5b04879
5 J Stejskal, M Trchovä, P Bober, Z Moràvkovà, D Kopecký, M Vrňata, J Prokeš, M Varga, E Watzlovà. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Advances, 2016, 6(91): 88382–88391
https://doi.org/10.1039/C6RA19461C
6 X Zhang, J Zhang, W Song, Z Lu. Controllable synthesis of conducting polypyrrole nanostructures. Journal of Physical Chemistry B, 2006, 110(3): 1158–1165
https://doi.org/10.1021/jp054335k
7 A Kaynak. Electrical conductivity of polypyrrole films at a temperature range of 70 K to 350 K. Materials Research Bulletin, 1998, 33(1): 81–88
https://doi.org/10.1016/S0025-5408(97)00195-5
8 J L Brédas, B Thémans, J M André. Bipolarons in polypyrrole chains. Physical Review. B, 1983, 27(12): 7827–7830
https://doi.org/10.1103/PhysRevB.27.7827
9 J U Otaigbe. The processing, structure and properties of elastomeric fibres. Handbook of Textile Fibre Structure. Volume 1: Fundamentals and Manufactured Polymer Fibres. Cambridge: Elsevier, Woodhead Publishing, 2009, 1–528
10 Y Tan, K Ghandi. Kinetics and mechanism of pyrrole chemical polymerization. Synthetic Metals, 2013, 175: 183–191
https://doi.org/10.1016/j.synthmet.2013.05.014
11 H Kang, K Geckeler. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive. Polymer, 2000, 41(18): 6931–6934
https://doi.org/10.1016/S0032-3861(00)00116-6
12 L Pan, A Chortos, G Yu, Y Wang, S Isaacson, R Allen, Y Shi, R Dauskardt, Z Bao. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5(1): 1–8
https://doi.org/10.1038/ncomms4002
13 Y Shi, L Pan, B Liu, Y Wang, Y Cui, Z Bao, G Yu. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(17): 6086–6091
https://doi.org/10.1039/C4TA00484A
14 M Rajesh, J C Raj, B C Kim, B B Cho, M Ko, K H Yu. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochimica Acta, 2016, 220: 373–383
https://doi.org/10.1016/j.electacta.2016.10.118
15 H Zhou, T Ni, X Qing, X Yue, G Li, Y Lu. One-step construction of graphene-polypyrrole hydrogels and their superior electrochemical performance. RSC Advances, 2013, 4(8): 4134–4139
https://doi.org/10.1039/C3RA44647F
16 H Bai, K Sheng, P Zhang, C Li, G Shi. Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry, 2011, 21(46): 18653–18658
https://doi.org/10.1039/c1jm13918e
17 Y Lu, W He, T Cao, H Guo, Y Zhang, Q Li, Z Shao, Y Cui, X Zhang. Elastic, conductive, polymeric hydrogels and sponges. Scientific Reports, 2014, 4: 1–8
18 X Zhou, T Li, J Wang, F Chen, D Zhou, Q Liu, L Zhang, J Shena, X Zhou. Shape morphing of anisotropy-encoded tough hydrogels enabled by asymmetrically-induced swelling and site-specific mechanical strengthening. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 29(29): 4731–4737
https://doi.org/10.1039/C8TB01372A
19 X Zhou, T Li, J Wang, F Chen, D Zhou, Q Liu, B Li, J Cheng, X Zhou, B Zheng. Mechanochemical regulated origami with tough hydrogels by ion transfer printing. ACS Applied Materials & Interfaces, 2018, 10(10): 9077–9084
https://doi.org/10.1021/acsami.8b01610
20 T Li, J Wang, L Zhang, J Yang, M Yang, D Zhu, X Zhou, S Handschuh-Wang, Y Liua, X Zhou. “Freezing”, morphing, and folding of stretchy tough hydrogels. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 29(29): 5726–5732
https://doi.org/10.1039/C7TB01265A
21 T Dai, X Qing, H Zhou, C Shen, J Wang, Y Lu. Mechanically strong conducting hydrogels with special double network structure. Synthetic Metals, 2010, 160(7-8): 791–796
https://doi.org/10.1016/j.synthmet.2010.01.024
22 J L Bredas, J C Scott, K Yakushi, G B Street. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doping. Physical Review. B, 1984, 30(2): 1023–1025
https://doi.org/10.1103/PhysRevB.30.1023
23 Y Wang, Y Shi, L Pan, Y Ding, Y Zhao, Y Li, Y Shi, G Yu. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Letters, 2015, 15(11): 7736–7741
https://doi.org/10.1021/acs.nanolett.5b03891
24 S Ghosh, O Inganäs. Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors. Advanced Materials, 1999, 11(14): 1214–1218
https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO;2-3
25 K G Neoh, T T Young, E T Kang, K L Tan. Structural and mechanical degradation of polypyrrole films due to aqueous media and heat treatment and the subsequent redoping characteristics. Journal of Applied Polymer Science, 1997, 64(3): 519–526
https://doi.org/10.1002/(SICI)1097-4628(19970418)64:3<519::AID-APP8>3.0.CO;2-N
26 Q Xie, S Kuwabata, H Yoneyama. EQCM studies on polypyrrole in aqueous solutions. Journal of Electroanalytical Chemistry, 1997, 420(1-2): 219–225
https://doi.org/10.1016/S0022-0728(96)04777-8
27 A G MacDiarmid, R J Mammone, R B Kaner, S J Porter, R Pethig, A J Heeger, D R Rosseinsky. The concept of ‘doping’ of conducting polymers: The role of reduction potentials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 314(1528): 3–15
https://doi.org/10.1098/rsta.1985.0004
28 A Diaz, J Crowley, J Bargon, G Gardini, J Torrance. Electrooxidation of aromatic oligomers and conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 121: 355–361
https://doi.org/10.1016/S0022-0728(81)80592-X
[1] Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang. Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1322-1331.
[2] Wei Wang, Haijun Lv, Juan Du, Aibing Chen. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1312-1321.
[3] Yunrui Tian, Haishun Du, Shatila Sarwar, Wenjie Dong, Yayun Zheng, Shumin Wang, Qingping Guo, Jujie Luo, Xinyu Zhang. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach[J]. Front. Chem. Sci. Eng., 2021, 15(4): 1021-1032.
[4] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[5] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[6] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[9] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[10] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[11] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[12] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[13] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[14] Huaping Zhao, Long Liu, Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Front. Chem. Sci. Eng., 2018, 12(3): 481-493.
[15] Huaping Zhao, Long Liu, Yaoguo Fang, Ranjith Vellacheri, Yong Lei. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance[J]. Front. Chem. Sci. Eng., 2018, 12(3): 339-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed