Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 364-368    https://doi.org/10.1007/s11783-009-0027-2
Research articles
Emergency drinking water treatment in source water pollution incident-technology and practice in China
Xiaojian ZHANG , Chao CHEN ,
Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(106 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An investigation into emergency potable water treatment technologies was conducted to investigate China’s water pollution situation. In order to confirm optimum parameters, the technological efficiency of each pollutant was obtained. About 100 contaminants were tested to find the emergency treatment technologies, most of which were found to be positive. This paper presents the three largest and most significant water pollution incidents in China to date, analyzing cases such as the nitrobenzene pollution incident in the Songhua River in November 2005, the cadmium pollution incident in the Beijiang River in December 2005, and the water crisis with odorous tap water in Wuxi City in May 2007.
Keywords emergency drinking water treatment      water pollution      adsorption      oxidation      precipitation      
Issue Date: 05 September 2009
 Cite this article:   
Xiaojian ZHANG,Chao CHEN. Emergency drinking water treatment in source water pollution incident-technology and practice in China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 364-368.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0027-2
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/364
Zhang X J. Emergent drinking water treatment in the water pollution accidentsin Songhua River and Beijiang River. Waterand Wastewater, 2006, 32(6): 6―12 (in Chinese)
Zhang X J, Zhang Y, Wang H, Zhang S X, Jia R B. Emergent drinking water treatment fortaste and odor control in Wuxi City water pollution incident. Water and Wastewater, 2008, 33(9): 7―12 (in Chinese)
Zhang X J, Chen C, Li Y. A new approach of emergency treatment of drinking waterand its application in an arsenic pollution accident in Duliu Creek,Guizhou Province. Water and Wastewater, 2008, 34(6): 14―18 (in Chinese)
Zhang X J, Chen C, Li W, Cheng J, Chen Y M, Qi Y, Zhang J S, Zhou S D, Jia R B. Water qualityrisk and emergent treatment of municipal water supply after the WenchuanEarthquake. Water and Wastewater, 2008, 34(7): 7―13 (in Chinese)
WHO. Guideline forDrinking Water Quality. 3rd ed. 2006
Chen C, Zhang X J, He W J, Lu W, Han H D. Comparison of seven kinds of drinkingwater treatment processes to enhance organic material removal: a pilottest. Science of the Total Environment, 2007, 382: 93―102

doi: 10.1016/j.scitotenv.2007.04.012
Blum D J W, Suffet I H, Duguet J P. Quantitative structure-activity relationship using molecularconnectivity for the activated carbon adsorption of organic chemicalsin water. Water Research, 1994, 28(3): 687―699

doi: 10.1016/0043-1354(94)90149-X
Arbuckle W B. Estimating equilibrium adsorption of organic compounds on activatedcarbon from aqueous solution. EnvironmentalScience and Technology, 1981, 15: 812―819

doi: 10.1021/es00089a006
Guo L. Doingbattles with green monster of Taihu Lake. Science, 2007, 317: 1166

doi: 10.1126/science.317.5842.1166
Kiene R P, Capone D G. Microbial transformationof methylated sulphur compounds in anoxic salt marsh sediments. Microbial Ecology, 1988, 15: 275―291

doi: 10.1007/BF02012642
Ginzburg B, Chalifa I, Gun J, Dor I, Hadas O, Lev O. DMSformation by dimethylsulfoniopropionate route in freshwater. Environmental Science and Technology, 1998, 32: 2130―2136

doi: 10.1021/es9709076
Li L, Wan N, Gan N Q, Xia B D, Song L R. Annual dynamics and origins of the odorouscompounds in the pilot experimental area of Lake Dianchi, China. Water Science and Technology, 2007, 55: 43―50

doi: 10.2166/wst.2007.160
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[4] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[5] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[6] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[7] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[8] Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 53-.
[9] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[10] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[11] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[12] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[13] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[14] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[15] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed