Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (2) : 131-136    https://doi.org/10.15302/J-FASE-2016096
RESEARCH ARTICLE
Expression profiles of genes and enzymes related to ascorbic acid metabolism in fruits of Ziziphus jujuba Mill. ‘Jinsixiaozao’
Yingying CHEN1,Zhihui ZHAO1,Jin ZHAO2,*(),Mengjun LIU1,*()
1. Research Center of Chinese Jujube, Agricultural University of Hebei, Baoding 071001, China
2. College of Life Science, Agricultural University of Hebei, Baoding 071000, China
 Download: PDF(283 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fruit of Chinese jujube (Ziziphus jujuba) possesses extremely high concentrations of ascorbic acid (AsA). The accumulation of AsA, the expression patterns of the nine genes related to AsA metabolism as well as the activities of five enzymes involved in AsA synthesis, oxidation and recycling were investigated during fruit development in Z. jujuba Mill. ‘Jinsixiaozao’. The results showed that the high level of AsA accumulation in jujube fruit is due to a contribution from both AsA biosynthesis and AsA recycling. It is suggested that L-galactono-1,4-lactone dehydrogenase, ascorbate peroxidase and monodehydro-ascorbate reductase are the crucial genes/enzymes of jujube AsA synthesis, oxidization and recycling, respectively. These results provide useful new insights into the regulatory mechanisms of AsA accumulation in Chinese jujube.

Keywords Chinese jujube      ascorbic acid      metabolism      gene      enzyme     
Corresponding Author(s): Jin ZHAO,Mengjun LIU   
Just Accepted Date: 25 April 2016   Online First Date: 10 May 2016    Issue Date: 05 July 2016
 Cite this article:   
Yingying CHEN,Zhihui ZHAO,Jin ZHAO, et al. Expression profiles of genes and enzymes related to ascorbic acid metabolism in fruits of Ziziphus jujuba Mill. ‘Jinsixiaozao’[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 131-136.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016096
https://academic.hep.com.cn/fase/EN/Y2016/V3/I2/131
Fig.1  Changes of fruit diameter and weight during fruit development (a) and ascorbic acid concentration of fruit during fruit development (b). a’, b’, c’ and d’ mean the significant level at 5%. I, young fruit stage; II, pre-white ripening stage; III, white ripening stage; IV, half-red ripening stage; V, full-red ripening stage.
Fig.2  Relative expressions of genes involved in AsA biosynthesis and recycling in jujube fruit. Enzymes studied were: GDP-D-mannose pyrophosphorylase (GMP), GDP-mannose 3′,5′-epimerase (GME), GDP-L-galactose phosphorylase (GGP); L-galactose-1-P phosphatase (GPP), L-galactose dehydrogenase (GLDH), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), ascorbate peroxidase (APX), ascorbate oxidase (AO). I, young fruit stage; II, pre-white ripening stage; III, white ripening stage; IV, half-red ripening stage; V, full-red ripening stage.
Enzyme Fruit development stage
I II III IV V
GLDH 2.52b 3.74a 2.04c 2.64b 1.86c
MDHAR 1.46b 1.62b 2.26a 2.50a 2.38a
DHAR 0.82ab 0.76b 0.92a 0.98a 0.70b
APX 2.40b 2.26bc 1.88c 2.48b 3.12a
AO 0.46b 0.52b 1.28a 1.36a 1.51a
Tab.1  Changes in the activity of five selected enzymes during jujube fruit development (U·g-1)
1 Veljovic-Jovanovic S D, Pignocchi C, Noctor G, Foyer C H. Low ascorbic acid in the vtc1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiology, 2001, 127(2): 426–435
https://doi.org/10.1104/pp.010141
2 Smirnoff N, Conklin P L, Loewus F A. Biosynthesis of ascorbic acid in plants: a renaissance. Annual Review of Plant Biology, 2001, 52(1): 437–467
https://doi.org/10.1146/annurev.arplant.52.1.437
3 Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Ye Z. Over expression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports, 2011, 30(3): 389–398
https://doi.org/10.1007/s00299-010-0939-0
4 Barth C, De T M, Conklin P. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 2006, 57(8): 1657–1665
https://doi.org/10.1093/jxb/erj198
5 De Tullio M C, Liso R, Arrigoni O. Ascorbic acid oxidase: an enzyme in search of a role. Biologia Plantarum, 2004, 48(2): 161–166
https://doi.org/10.1023/B:BIOP.0000033439.34635.a6
6 Davey M W, Montagu M V, Inzé D, Sanmartin M, Kanellis A, Smirnoff N,Benzie I J J, Strain J J, Favell D, Fletcher J. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 2000, 80(7): 825–860
https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
7 Gao Y R. Analysis of vitamins in Chinese jujube and wild jujube with high-performance liquid chromatography. Hebei: Agricultural University of Hebei, 2011 (in Chinese)
8 Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393(6683): 365–369
https://doi.org/10.1038/30728
9 Wolucka B A, Van Montagu M. GDP-mannose-3′, 5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry, 2003, 278(48): 47483–47490
https://doi.org/10.1074/jbc.M309135200
10 Agius F, González-Lamothe R, Caballero J L, Muñoz-Blanco J, Botella M A, Valpuesta V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 2003, 21(2): 177–181
https://doi.org/10.1038/nbt777
11 Lorence A, Chevone B I, Mendes P, Nessler C L. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200–1205
https://doi.org/10.1104/pp.103.033936
12 Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal, 2007, 52(4): 673–689
https://doi.org/10.1111/j.1365-313X.2007.03266.x
13 Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T. L-ascorbate biosynthesis in peach: Cloning of six L-galactose pathway related genes and their expression during peach fruit development. Physiologia Plantarum, 2009, 136(2): 139–149
https://doi.org/10.1111/j.1399-3054.2009.01213.x
14 Li M, Ma F, Guo C, Liu J. Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 2010, 48(4): 216–224
https://doi.org/10.1016/j.plaphy.2010.01.015
15 Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan A C, Laing W A. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal, 2012, 10(4): 390–397
https://doi.org/10.1111/j.1467-7652.2011.00668.x
16 Bulley S M, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765–778
https://doi.org/10.1093/jxb/ern327
17 Li M J, Ma F W, Zhang M, Pu F. Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv Gala). Plant Science, 2008, 174(6): 606–612
https://doi.org/10.1016/j.plantsci.2008.03.008
18 Cruz-Rus E, Amaya I, Sánchez-Sevilla J F, Botella M A, Valpuesta V. Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 2011, 62(12): 4191–4201
https://doi.org/10.1093/jxb/err122
19 Liu M J, Zhao J, Cai Q L, Liu G C, Wang J R, Zhao Z H, Liu P, Dai L, Yan G J, Wang W J, Li X S, Chen Y, Sun Y D, Liu Z G, Lin M J, Xiao J, Chen Y Y, Li X F, Wu B, Ma Y, Jian J B, Yang W, Yuan Z, Sun X C, Wei Y L, Yu L L, Zhang C, Liao S G, He R J, Guang X M, Wang Z, Zhang Y Y, Luo L H. The complex jujube genome provides insights into fruit tree biology. Nature Communications, 2014, 5: 5315
https://doi.org/10.1038/ncomms6315
20 Xu Q, Chen L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W, Hao B, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X, Cheng Y, Xu J, Liu J, Luo O, Tang Z, Guo W, Kuang H, Zhang H, Roose M, Nagarajan N, Deng X X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
https://doi.org/10.1038/ng.2472
21 Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, Han Y, Shi W, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, Huang L, Song J, Xu C, Li J, Ye K, Zhong S, Lu B, He G, Xiao F, Wang H, Zheng H, Fei Z, Liu Y. Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4: 2640
https://doi.org/10.1038/ncomms3640
22 Zhao J, Liu Z C, Dai L, Liu M J. Isolation of total RNA for different organs and tissues of Ziziphus jujuba Mill. Journal of Plant Genetic Resources, 2009, 10: 111–117 (in Chinese)
23 Sun H F, Meng Y P, Cui G M, Cao Q F, Li J, Liang A H. Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujuba Mill). Molecular Biology Reports, 2009, 36(8): 2183– 2190
https://doi.org/10.1007/s11033-008-9433-y
24 Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-DDCT method.Met<?Pub Caret?>hods, 2001, 25(4): 402–408
https://doi.org/10.1006/meth.2001.1262
25 An H M. Physiological mechanism of accumulating high level ascorbic acid and molecular cloning and expression of its key biosynthetic enyzme in Rosa roxburghii Tratt. Zhejiang: Zhejiang University, 2004 (in Chinese)
26 Esaka M, Hattori T, Fujisawa K, Sakajo S, Asahi T. Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. European Journal of Biochemistry, 1990, 191(3): 537–541
https://doi.org/10.1111/j.1432-1033.1990.tb19154.x
27 De Pinto M C, Francis D, De Gara L. The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 1999, 209(1–2): 90–97
https://doi.org/10.1007/BF01415704
28 Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum, 2009, 136(2): 139–149
https://doi.org/10.1111/j.1399-3054.2009.01213.x
29 Gournas C, Papageorgiou I, Diallinas G. The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Molecular BioSystems, 2008, 4(5): 404–416
https://doi.org/10.1039/b719777b
30 Bulley S M, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765–778
https://doi.org/10.1093/jxb/ern327
31 Cruz-Rus E, Botella M A, Valpuesta V, Gomez-Jimenez M C. Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. Journal of Plant Physiology, 2010, 167(9): 739–748
https://doi.org/10.1016/j.jplph.2009.12.017
32 Ioannidi E, Kalamaki M S, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis A K. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Journal of Experimental Botany, 2009, 60(2): 663–678
https://doi.org/10.1093/jxb/ern322
33 Cruz-Rus E, Amaya I, Sánchez-Sevilla J F, Botella M A, Valpuesta V. Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 2011, 62(12): 4191–4201
https://doi.org/10.1093/jxb/err122
34 Lunde C, Baumann U, Shirley N J, Drew D P, Fincher G B. Gene structure and expression pattern analysis of three monodehydroascorbate reductase (MDHAR) genes in Physcomitrella patens: implications for the evolution of the MDHAR family in plants. Plant Molecular Biology, 2006, 60(2): 259–275
https://doi.org/10.1007/s11103-005-3881-8
35 Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie A R, Rothan C, Baldet P. Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiology, 2007, 145(4): 1408–1422
https://doi.org/10.1104/pp.107.106500
[1] Zhaogui YAN, Shengyu LIU, Junlian ZHANG, Guan HUANG, Lijun DUAN, Yaomei YE. Optimizing hairy root production from explants of Phyllanthus hainanensis, a shrub used for traditional herbal medicine[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 513-522.
[2] Ziyao FAN, Tianwen WU, Kui WU, Yulian MU, Kui LI. Reflections on the system of evaluation of gene-edited livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 211-217.
[3] Alexandre Lima NEPOMUCENO, Renata FUGANTI-PAGLIARINI, Maria Sueli Soares FELIPE, Hugo Bruno Correa MOLINARI, Edivaldo Domingues VELINI, Eduardo Romano de Campos PINTO, Maria Lucia Zaidan DAGLI, Galdino ANDRADE FILHO, Patrícia Machado Bueno FERNANDES. Brazilian biosafety law and the new breeding technologies[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 204-210.
[4] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[5] Jan Pieter VAN DER BERG, Gijs A. KLETER, Evy BATTAGLIA, Martien A. M. GROENEN, Esther J. KOK. Developments in genetic modification of cattle and implications for regulation, safety and traceability[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 136-147.
[6] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[7] Zhonghu HE, Xianchun XIA, Yong ZHANG, Yan ZHANG, Yonggui XIAO, Xinmin CHEN, Simin LI, Yuanfeng HAO, Awais RASHEED, Zhiyong XIN, Qiaosheng ZHUANG, Ennian YANG, Zheru FAN, Jun YAN, Ravi SINGH, Hans-Joachim BRAUN. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
[8] Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG. The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 162-171.
[9] Shen LIU, Shengzhe SHANG, Xuezhen YANG, Huihua ZHANG, Dan LU, Ning LI. Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 382-389.
[10] Hongyuan ZHAO, Shanshan ZHANG, Feibing WANG, Ning ZHAO, Shaozhen HE, Qingchang LIU, Hong ZHAI. Comparative transcriptome analysis of purple-fleshed sweet potato provides insights into the molecular mechanism of anthocyanin biosynthesis[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 214-225.
[11] Weicheng LIU, Xiaoli WU, Xuelian BAI, Hong ZHANG, Dan DONG, Taotao ZHANG, Huiling WU. Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 262-270.
[12] Muhammad ZEESHAN, Waheed ARSHAD, Muhammad Imran KHAN, Shiraz ALI, Ali NAWAZ, Amina BATOOL, Muhammad TARIQ, Muhammad Imran AKRAM, Muhammad Amjad ALI. Breeding for pre-harvest sprouting resistance in bread wheat under rainfed conditions[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 253-261.
[13] Yuping ZHANG, Yanfei ZHOU, Xingxu ZHANG, Tingyu DUAN, Zhibiao NAN. Effects of Epichloë endophyte on antioxidant enzymes activities, photosynthesis and growth of three ecotypes of Elymus dahuricus[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 148-158.
[14] Chao SUN, Meng LAI, Shougong ZHANG, Xiaomei SUN. Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 482-492.
[15] Chuanping YANG. Research progress on genetic improvement of Betula platyphylla Suk.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 391-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed