Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 58-66    https://doi.org/10.1007/s11705-011-1160-6
RESEARCH ARTICLE
Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite)
Sandy1, Velycia MARAMIS1, Alfin KURNIAWAN1, Aning AYUCITRA1, Jaka SUNARSO2, Suryadi ISMADJI1()
1. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; 2. Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Institute for Technology Research and Innovation, Deakin University, Victoria 3125, Australia
 Download: PDF(174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Equilibrium, kinetic and thermodynamic aspects of the adsorption of copper ions from an aqueous solution using linear alkylbenzene sulfonate (LABORATORIES) modified bentonite (organo-bentonite) are reported. Modification of bentonite was performed via microwave heating with a concentration of LABORATORIES surfactant equivalent to 1.5 times that of the cation exchange capacity (CEC) of the raw bentonite. Experimental parameters affecting the adsorption process such as pH, contact time and temperature were studied. Several adsorption equations (e.g., Langmuir, Freundlich, Sips and Toth) with temperature dependency were used to correlate the equilibrium data. These models were evaluated based on the theoretical justifications of each isotherm parameter. The Sips model had the best fit for the adsorption of copper ions onto organo-bentonite. For the kinetic data, the pseudo-second order model was superior to the pseudo-first order model. Thermodynamically, the adsorption of copper ions occurs via chemisorption and the process is endothermic (ΔH0>0), irreversible (ΔS0>0) and nonspontaneous (ΔG0>0).

Keywords heavy metal      copper      adsorption      organo-bentonite      temperature dependent     
Corresponding Author(s): ISMADJI Suryadi,Email:suryadiismadji@yahoo.com   
Issue Date: 05 March 2012
 Cite this article:   
Sandy,Velycia MARAMIS,Alfin KURNIAWAN, et al. Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite)[J]. Front Chem Sci Eng, 2012, 6(1): 58-66.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1160-6
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/58
AssignmentsWavenumber /(cm-1)
Raw bentoniteOrgano-bentonite
Al–OH or Si–OH stretch36303624
Asymmetric C–H stretch of ( -CH2)n (symmetric vibration)-2925
2855
H–O–H bend16401647
C–H in plane binding (for alkyl groups)-1465
O–H bend bounded with 2Al3+948955
Si–O bend of quartz780795
Tab.1  FTIR assignments of raw bentonite and organo-bentonite
Fig.1  Effect of pH on the adsorption of Cu(II) ions onto organo-bentonite
(Operation conditions: = 400 mg/L, adsorbent mass= 0.8 g, = 303.15 K)
Fig.2  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (Langmuir model)
Equilibrium plot of the adsorption of Cu(II) onto organo-bentonite at various temperatures–Langnuir model
Adsorption equationParameterValue
Langmuirq0 /(mmol·g-1)0.285
KL0/(L·mmol-1)1036.8
Q/(kJ·mol-1)-8.94
δ /(K-1)9.5 × 10-3
FreundlichKF0/[(mmol/g)·(mmol/L)-n]0.0061
α/A0-0.0016
A0 /(kJ·mol-1)9.57
Sipsq0 /(mmol·g-1)0.326
KS0/(L·mmol-1)17.59
Q /(kJ·mol-1)-13.67
δ /(K-1)7.8 × 10-3
n01.458
H1.371
Tothq0 /(mmol·g-1)0.3441
b0 /(L·mmol-1)59.205
Q /(kJ·mol-1)4.02
δ /(K-1)6.7 × 10-3
n00.5443
H1.8025
Tab.2  Fitted temperature dependent parameters for several adsorption equations for the adsorption of Cu(II) ions onto organo-bentonite
Fig.3  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (Freundlich model)
Equilibrium plot of the adsorption of Cu(II) ions onto organo-bentonite at various temperatures–Freundich model
Fig.4  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (Sips model)
Equilibrium plot of the adsorption of onto Cu(II) organo-bentonite at various temperatures–Sip smodel
Fig.5  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (Toth model)
Equilibrium plot of the adsorption of Cu(II) ions onto organo-bentonite at various temperatures–Toth model
T /Kqe,exp/(mmol·g-1)Pseudo-first orderPseudo-second order
qe/(mmol·g-1)k1/(min-1)R2qe/(mmol·g-1)k2/(g·mmol-1·min-1)R2
303.150.29720.29030.16120.94860.30741.12710.9849
313.150.32430.31750.17950.92490.33351.26560.9928
323.150.36320.35500.19060.91660.37101.28680.9933
Tab.3  Fitted kinetic parameters for the adsorption of Cu(II) ions onto organo-bentonite
Fig.6  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (pseudo-first order model)
Kinetic plot for the adsorption of Cu(II) ions onto organo-bentonite at various temperatures
Fig.7  ? ( = 303.15 K); ○ ( = 313.15 K); ? ( = 323.15 K); — (pseudo-second order model)
Kinetic plot for the adsorption of Cu(II) ions onto organo-bentonite at various temperatures
T /KΔG0/(J·mol-1)ΔH0 /(kJ·mol-1)ΔS0 /(J·mol-1·K-1)R2
303.152005.5421.9665.870.9833
313.151346.82
323.15688.1
Tab.4  Thermodynamic parameters for the adsorption of Cu(II) ions onto organo-bentonite
Fig.8  van’t Hoff plot for adsorption of Cu(II) ions onto organo-bentonite
1 Huang C C, Su Y J. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths. Journal of Hazardous Materials , 2010, 175(1-3): 477-483
doi: 10.1016/j.jhazmat.2009.10.030 pmid:19896268
2 Zhao G, Zhang H, Fan Q, Ren X, Li J, Chen Y, Wang X. Sorption of copper(II) onto super-adsorbent of bentonite-polyacrylamide composites. Journal of Hazardous Materials , 2010, 173(1-3): 661-668
doi: 10.1016/j.jhazmat.2009.08.135 pmid:19766390
3 Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management , 2011, 92(3): 407-418
doi: 10.1016/j.jenvman.2010.11.011 pmid:21138785
4 G?k O, Ozcan A, Erdem B, Ozcan A S. Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxyquinoline immobilized bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 317(1-3): 174-185
doi: 10.1016/j.colsurfa.2007.10.009
5 Liu Y, Cao Q, Luo F, Chen J. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. Journal of Hazardous Materials , 2009, 163(2-3): 931-938
doi: 10.1016/j.jhazmat.2008.07.046 pmid:18755544
6 Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. Journal of Hazardous Materials , 2008, 155(1-2): 327-333
doi: 10.1016/j.jhazmat.2007.11.064 pmid:18178002
7 Anirudhan T S, Radhakrishnan P G. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. Journal of Chemical Thermodynamics , 2008, 40(4): 702-709
doi: 10.1016/j.jct.2007.10.005
8 Nathaniel E, Kurniawan A, Soetaredjo F E, Ismadji S. Organo-bentonite for the adsorption of Pb(II) from aqueous solution: temperature dependent parameters of several adsorption equations. Desalination and Water Treatment 2011, 36: 1-9
9 Kurniawan A, Sisnandy V O A, Trilestari K, Sunarso J, Indraswati N, Ismadji S. Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater. Ecological Engineering , 2011, 37(6): 940-947
doi: 10.1016/j.ecoleng.2011.01.019
10 Monier M, Ayad D M, Wei Y, Sarhan A A. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. Journal of Hazardous Materials , 2010, 177(1-3): 962-970
doi: 10.1016/j.jhazmat.2010.01.012 pmid:20122793
11 Acharya J, Sahu J N, Mohanty C R, Meikap B C. Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal , 2009, 149(1-3): 249-262
doi: 10.1016/j.cej.2008.10.029
12 Erdem E, Karapinar N, Donat R. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science , 2004, 280(2): 309-314
doi: 10.1016/j.jcis.2004.08.028 pmid:15533402
13 Yesi, Sisnandy F P, Ju Y H, Soetaredjo F E, Ismadji S. Adsorption of acid blue 129 from aqueous solutions onto raw and surfactant-modified bentonite. Adsorption Science and Technology , 2010, 28: 847-868
doi: 10.1260/0263-6174.28.10.847
14 Rahardjo A K, Susanto M J J, Kurniawan A, Indraswati N, Ismadji S. Modified Ponorogo bentonite for the removal of ampicillin from wastewater. Journal of Hazardous Materials , 2011, 190(1-3): 1001-1008
doi: 10.1016/j.jhazmat.2011.04.052 pmid:21550716
15 Do D D. Adsorption Analysis: equilibria and kinetics. London: Imperial College Press, 1998
16 Ismadji S, Bhatia S K. A modified pore-filling isotherm for liquid-phase adsorption in activated carbon. Langmuir , 2001, 17(5): 1488-1498
doi: 10.1021/la0009339
17 Bhattacharyya K G, Gupta S S. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology , 2006, 50(3): 388-397
doi: 10.1016/j.seppur.2005.12.014
18 Lin S H, Juang R S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials , 2002, 92(3): 315-326
doi: 10.1016/S0304-3894(02)00026-2 pmid:12031615
19 álvarez-Ayuso E, Garcia-Sanchez A. Removal of heavy metals from waste waters by natural and Na-exchanged bentonites. Clays and Clay Minerals , 2003, 51(5): 475-480
doi: 10.1346/CCMN.2003.0510501
20 Karapinar N, Donat R. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination , 2009, 249(1): 123-129
doi: 10.1016/j.desal.2008.12.046
21 Ijagbemi C O, Baek M H, Kim D S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials , 2009, 166(1): 538-546
doi: 10.1016/j.jhazmat.2008.11.085 pmid:19131158
22 Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar , 1898, 24: 1-39
23 Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Research , 1984, 18(12): 1501-1507
doi: 10.1016/0043-1354(84)90124-6
24 Plazinski W, Rudzinski W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in Colloid and Interface Science , 2009, 152(1-2): 2-13
doi: 10.1016/j.cis.2009.07.009 pmid:19735907
25 Kul A R, Koyuncu H. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study. Journal of Hazardous Materials , 2010, 179(1-3): 332-339
doi: 10.1016/j.jhazmat.2010.03.009 pmid:20356674
26 Schneider R M, Cavalin C F, Barros M A S D, Tavares C R G. Adsorption of chromium ions in activated carbon. Chemical Engineering Journal , 2007, 132(1-3): 355-362
doi: 10.1016/j.cej.2007.01.031
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[3] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[4] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[5] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[6] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[7] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[8] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[9] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[10] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[11] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[12] Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami. Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents[J]. Front. Chem. Sci. Eng., 2020, 14(1): 105-111.
[13] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[14] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[15] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed