Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (4) : 471-477    https://doi.org/10.1007/s11705-014-1449-3
RESEARCH ARTICLE
Preparation and characterization of lithium λ-MnO2 ion-sieves
Chang WANG1,*(),Yanlong ZHAI2,Xi WANG1,Ming ZENG1
1. College of Marine Science & Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
2. College of Material Science & Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
 Download: PDF(597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lithium λ-MnO2 ion-sieves were prepared from spinel LiMn2O4 via treatment with nitric acid. The LiMn2O4 was synthesized by a solid state reaction between LiOH·H2O and MnO2. The effects of the calcination time and temperature on the preparation of the LiMn2O4 precursor and the lithium ion-sieve were investigated. In addition, the Li+ extraction ratio, the Mn2+ dissolving ratio and the adsorption properties of the lithium ion-sieve were all measured. The lithium ion-sieve had a high exchange capacity and was selective for Li+. Specifically, at pH= 13, the ion exchange capacity of Li+ was 30.9 mg/g in 10 mmol/L LiCl solution and the lithium extraction ratio and manganese dissolving ratio were 95% and 25%, respectively.

Keywords lithium ion-sieve      solid state reaction      adsorption      LiMn2O4     
Corresponding Author(s): Chang WANG   
Online First Date: 11 December 2014    Issue Date: 14 January 2015
 Cite this article:   
Chang WANG,Yanlong ZHAI,Xi WANG, et al. Preparation and characterization of lithium λ-MnO2 ion-sieves[J]. Front. Chem. Sci. Eng., 2014, 8(4): 471-477.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1449-3
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I4/471
1 Ebensperger A, Maxwell P, Moscoso C. The lithium industry: Its recent evolution and future prospects. Resources Policy, 2005, 30(3): 218–231
2 Bernhart W. 24: The Lithium-Ion Battery Value Chain-Status, Trends and Implications. In: Pistoia G, ed. Lithium-Ion Batteries. Amsterdam: Elsevier, 1981, 2014: 553–565
3 Hartley J N, Gore B F, Young J R. Potential lithium requirements for fusion power plants. Energy, 1978, 3(3): 337–346
4 Chung K S, Lee J C, Kim E J, Lee K C, Kim Y S, Ooi K. Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process. Materials Science Forum, 2004, 449: 277–280
5 Wang L, Meng C, Ma W. Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater. Frontiers of Chemical Engineering in China, 2009, 3(1): 65–67
6 Hunter J C. Preparation of a new crystal form of manganese dioxide λ-MnO2. Journal of Solid State Chemistry, 1981, 39(2): 142–147
7 Shen M, Clearfield A. Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. Journal of Solid State Chemistry, 1986, 64(3): 270–282
8 Wang L, Meng C G, Ma W. Study on Li+ uptake by lithium ion-sieve via the pH technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334(1–3): 34–39
9 Wang L, Meng C G, Han M, Ma W. Lithium uptake in fixed-pH solution by ion sieves. Journal of Colloid and Interface Science, 2008, 325(1): 31–40
10 Shi X C, Yu L L, Chen B Z. Preparation and adsorption property of spinel-type lithium ion-sieve. Journal of Central South University, 2011, 42(8): 2198–2203
11 Chitrakar R, Kanoh H, Miyai Y, Ooi K. A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chemistry of Materials, 2000, 12: 3151–3157
12 Gao T, Fjellv?g H, Norby P. A comparison study on Raman scattering properties of α- and β-MnO2. Analytica Chimica Acta, 2009, 648(2): 235–239
13 Feng Q, Miyai Y, Kanoh H, Ooi K. Li+ extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir, 1992, 8(7): 1861–1867
14 Ma L W, Chen B Z, Shi X C, Zhang W, Yang X Y. Structure and stability of Li-Mn-Ni composite oxides as lithium ion sieve precursors in acidic medium. Journal of Central South University of Technology, 2011, 18(2): 314–318
15 Yuan A, Wang X L, Wang Y Q, Hu J. Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route. Electrochimica Acta, 2009, 54: 1021–1026
16 Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. Journal of Electroanalytical Chemistry, 2003, 559: 77–81
17 Lei J H, Chen Y X, Gong Q X, Sun Y B, Zhao J, Yuan Q H. Preparation of λ-MnO2 by column method and its ion-sieve property. Journal of Wuhan University of Technology- Materials. Science Editor, 2002, 17: 9–12
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[5] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[6] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[9] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[10] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[11] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[12] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[13] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
[14] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[15] Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed