Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (10) : 1476-1484    https://doi.org/10.1007/s11705-022-2165-z
RESEARCH ARTICLE
NOx removal by non-thermal plasma reduction: experimental and theoretical investigations
Yue Liu1,2, Ji-Wei Wang1,2, Jian Zhang3, Ting-Ting Qi1,2, Guang-Wen Chu1,2(), Hai-Kui Zou1,2, Bao-Chang Sun1,2()
1. State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
2. Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
3. Daqing Refining & Chemical Company, PetroChina Co., Ltd., Daqing 163411, China
 Download: PDF(11004 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Green and efficient NOx removal at low temperature is still desired. NOx removal via non-thermal plasma (NTP) reduction is one of such technique. This work presents the experimental and theoretical study on the NOx removal via NTP reduction (NTPRD) in dielectric barrier discharge reactor (DBD). The effect of O2 molar fraction on NOx species in the outlet of DBD, and effects of NH3/NO molar ratio and discharge power of DBD on NOx removal efficiency are investigated. Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NOx, and the NOx removal efficiency can be up to 98.5% under the optimal operating conditions. It is also found that adding NH3 is favorable for the reduction of NOx to N2 at lower discharge power. In addition, the NOx removal mechanism and energy consumption analysis for the NTPRD process are also studied. It is found that the reduced active species ( N, N, N+, N2, N H2+, etc.) generated in the NTPRD process play important roles for the reduction of NOx to N2. Our work paves a novel pathway for NOx removal from anaerobic gas in industrial application.

Keywords x removal      NTP reduction      mechanism      energy consumption     
Corresponding Author(s): Guang-Wen Chu,Bao-Chang Sun   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 27 June 2022    Issue Date: 17 October 2022
 Cite this article:   
Yue Liu,Ji-Wei Wang,Jian Zhang, et al. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1476-1484.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2165-z
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I10/1476
Fig.1  Schematic diagram of the DBD.
Fig.2  Experimental setup for the NTPRD process.
Fig.3  Outlet NOx molar fractions change with O2 molar fraction.
Fig.4  NOx removal efficiency changed with the NH3/NO molar ratio.
Fig.5  NOx removal efficiency changed with discharge power.
Fig.6  Transformation diagram and major species in NTPRD process.
Equation Free radical G/(molecules·100 eV–1)
N2 + e — N2* + e N2* 0.290
N2 + e — N* + N N*(2D) 0.885
N* (2P) 0.295
N* (4S) 1.18
N2 + e — N2+ + e N2+ 2.27
N2 + e — N+ + N + 2e N+ + N 0.69
O2 + e — O + O* + e O(3P) + O(1D) 1.82
O2 + e — O2* + e O2* 0.077
O2 + e — O2+ + 2e O(3P) + O* 0.180
O2 + e — O + O O(3P) + O+ + e 0.800
O2 + e — O + O O2+ + e 2.07
N2 (A) + O2 — O2* + N2 O(1D) + O+ + e 0.430
NH3 + e — NH + H2 + e NH 0.700
NH3 + H — NH2 + H2 NH2 5.40
Tab.1  Equations generating free radicals and their G values (in N2) [3537] a)
Species GAi/(molecules·100 eV–1) CAi/(molecules·cm–3)
N2* 0.290 2.43 × 1013
N* (2D) 0.885 7.42 × 1013
N* (2P) 0.295 2.47 × 1013
N* (4S) 1.18 9.89 × 1013
N2+ 2.27 1.90 × 1014
N+ + N 0.690 5.78 × 1013
NH 0.700 2.54 ×1011
NH2 5.40 1.96× 1012
O(3P) + O(1D) 1.82 1.15 × 1013
O2* 0.077 4.88 × 1011
O(3P) + O* 0.180 1.14 × 1012
O(3P) + O+ + e 0.800 5.07 × 1012
O(1D) + O+ + e 0.430 2.73 × 1012
O2+ + e 2.07 1.31× 1013
Tab.2   G Ai and CAi values of free radicals (aerobic condition)
Species GAi/(molecules·100 eV–1) CAi/(molecules·cm–3)
N2* 0.290 2.61 × 1013
N*(2D) 0.885 7.98 × 1013
N*(2P) 0.295 2.66 × 1013
N*(4S) 1.18 1.06 × 1014
N2+ 2.27 2.05 × 1014
N+ + N 0.690 6.22 × 1013
NH 0.700 2.54 × 1011
NH2 5.40 1.96 × 1012
Tab.3   G Ai and CAi values of free radicals (anaerobic condition)
No. Main reaction ki /(cm3·s–1) [23,33,37]
1 N+ + NO — NO+ + N 4.10 × 10–10
2 N+ + NO — N2+ + O 5.00 × 10–11
3 O2+ + NO — NO+ + O2 3.50 × 10–10
4 NO + O+ — NO+ + O 1.00 × 10–12
5 N2* + NO — N2 + NO 1.50 × 10–10
6 N* + NO — N2 + O 7.00 × 10–11
7 NO + N — N2 + O 3.25 × 10–11
8 NO + NH2 — N2 + H2O 10−6 × T–1.96 a)
9 NO + NH2 — N2H + OH 5.15 × 10–11
10 NO + NH — N2 + OH 5.15 × 10–11
11 NO + O — NO2 1.00 × 10–31
12 O* + NO — N + O2 1.70 × 10–10
13 N* + O2 — NO + O 2.00 × 10–12
Tab.4  Main reactions and corresponding ki in NO transformation
No. Main reaction ki/(cm3·s–1) CAi/(mol·cm–3) Ri/(mol·s–1·cm–3) Si
1 N+ + NO — NO+ + N 4.10 × 10–10 9.60 × 10–11 1.41 × 10–27 0.2696
2 N+ + NO — N2+ + O 5.00 × 10–11 9.60 × 10–11 1.71 × 10–28 0.0329
3 O2+ + NO — NO+ + O2 3.50 × 10–10 2.18 × 10–11 2.72 × 10–28 0.0522
4 NO + O+ — NO+ + O 1.00 × 10–12 1.30 × 10–11 4.63 × 10–31 0.0001
5 N2* + NO — N2 + NO 1.50 × 10–10 4.04 × 10–11 2.16 × 10–28 0.0415
6 N* + NO — N2 + O 7.00 × 10–11 3.28 × 10–10 8.21 × 10–28 0.1574
7 NO + N — N2 + O 3.25 × 10–11 9.60 × 10–11 1.11 × 10–28 0.0214
8 NO + NH2 — N2 + H2O 1.40 × 10–11 3.25 × 10–12 1.62 × 10–30 0.0003
9 NO + NH2 — N2H + OH 5.15 × 10–11 3.25 × 10–12 5.98 × 10–30 0.0011
10 NO + NH — N2 + OH 5.15 × 10–11 4.21 × 10–13 7.75 × 10–31 0.0001
11 NO + O — NO2 1.00 × 10–31 2.95 × 10–11 1.05 × 10–49 0.0000
12 O* + NO — N + O2 1.70 × 10–10 2.56 × 10–11 1.55 × 10–28 0.0298
13 N* + O2 — NO + O 2.00 × 10–12 3.28 × 10–10 2.05 × 10–28 0.3936
Tab.5  Ri and Si of the NO reactions (aerobic condition)
No. Main reaction ki/(cm3·s–1) CAi/(mol·cm–3) Ri/(mol·s–1·cm–3) Si
1 N+ + NO — NO+ + N 4.10 × 10–10 1.03 × 10–10 1.51 × 10–27 0.5143
2 N* + NO — N2+ + O 7.00 × 10–11 3.53 × 10–10 8.83 × 10–28 0.3003
3 N2* + NO — N2 + NO 1.50 × 10–10 4.34 × 10–11 2.33 × 10–28 0.0791
4 N+ + NO — N2+ + O 5.00 × 10–11 1.03 × 10–10 1.84 × 10–28 0.0627
5 NO + N — N2 + O 3.25 × 10–11 1.03 × 10–10 1.20 × 10–28 0.0408
6 NO + NH2 — N2H + OH 5.15 × 10–11 3.25 × 10–12 5.98 × 10–30 0.0020
7 NO + NH2 — N2 + H2O 1.40 × 10–11 3.25 × 10–12 1.62 × 10–30 0.0006
8 NO + NH — N2 + OH 5.15 × 10–11 4.21 × 10–13 7.75 × 10–31 0.0003
Tab.6  Ri and Si of the NO reactions (anaerobic condition)
Fig.7  (a) Effect of O2 molar fraction on energy efficiency; (b) effect of NH3/NO molar ratio on energy efficiency; (c) effect of discharge power on energy efficiency.
1 Q Yu, H Wang, T Liu, L Xiao, X Jiang, X Zheng. High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environmental Science & Technology, 2012, 46( 4): 2337– 2344
https://doi.org/10.1021/es203405c
2 I A Resitoglu, A Keskin. Hydrogen applications in selective catalytic reduction of NOx emissions from diesel engines. International Journal of Hydrogen Energy, 2017, 42( 36): 23389– 23394
https://doi.org/10.1016/j.ijhydene.2017.02.011
3 F Gholami, M Tomas, Z Gholami, M Vakili. Technologies for the nitrogen oxides reduction from flue gas: a review. Science of the Total Environment, 2020, 714 : 136712.1– 136712.26
4 P Talebizadeh, M Babaie, R Brown, H Rahimzadeh, Z Ristovski, M Arai. The role of non-thermal plasma technique in NOx treatment: a review. Renewable & Sustainable Energy Reviews, 2014, 40 : 886– 901
https://doi.org/10.1016/j.rser.2014.07.194
5 C Liang, Y Cai, K Li, Y Luo, Z Qian, G W Chu, J F Chen. Using dielectric barrier discharge and rotating packed bed reactor for NOx removal. Separation and Purification Technology, 2020, 235 : 116141
https://doi.org/10.1016/j.seppur.2019.116141
6 R F Ilmasani, J W Woo, D Creaser, L Olsson. Influencing the NOx stability by metal oxide addition to Pd/BEA for passive NOx adsorbers. Industrial & Engineering Chemistry Research, 2020, 59( 21): 9830– 9840
https://doi.org/10.1021/acs.iecr.9b06976
7 R K Srivastava, R E Hall, S Khan, K Culligan, B W Lani. Nitrogen oxides emission control options for coal-fired electric utility boilers. Journal of the Air & Waste Management Association, 2005, 55( 9): 1367– 1388
https://doi.org/10.1080/10473289.2005.10464736
8 D Li, X Tang, H H Yi, D Ma, F Gao. NOx removal over modified carbon molecular sieve catalysts using a combined adsorption-discharge plasma catalytic process. Industrial & Engineering Chemistry Research, 2015, 54( 37): 9097– 9103
https://doi.org/10.1021/acs.iecr.5b01672
9 C Zhang, Y Gao, Q Yan, Q Wang. Fundamental investigation on layered double hydroxides derived mixed metal oxides for selective catalytic reduction of NOx by H2. Catalysis Today, 2020, 355 : 450– 457
https://doi.org/10.1016/j.cattod.2019.07.006
10 M Seneque, F Can, D Duprez, X Courtois. NOx selective catalytic reduction (NOx-SCR) by urea: evidence of the reactivity of HNCO, including a specific reaction pathway for NOx reduction involving NO + NO2. ACS Catalysis, 2016, 6( 7): 4064– 4067
https://doi.org/10.1021/acscatal.6b00785
11 S M Ma, Y C Zhao, J P Yang, S B Zhang, J Y Zhang, C G Zheng. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable & Sustainable Energy Reviews, 2017, 67 : 791– 810
https://doi.org/10.1016/j.rser.2016.09.066
12 A M Harling, D J Glover, J C Whitehead, K Zhang. Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges. Environmental Science & Technology, 2008, 42( 12): 4546– 4550
https://doi.org/10.1021/es703213p
13 L W Chen, Y D Meng, J Shen, X S Shu, S D Fang, X Y Xiong. Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration. Journal of Physics. D, Applied Physics, 2009, 42( 5): 055505
https://doi.org/10.1088/0022-3727/42/5/055505
14 J Ma, B G Su, G D Wen, Q L Ren, Y W Yang, Q W Yang, H B Xing. Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International Journal of Hydrogen Energy, 2016, 41( 48): 22689– 22697
https://doi.org/10.1016/j.ijhydene.2016.09.044
15 B Wang, X Wang, B Zhang. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 687– 697
https://doi.org/10.1007/s11705-020-1974-1
16 Y K Kwon, D H Han. Microwave effect in the simultaneous removal of NOx and SO2 under electron beam irradiation and kinetic investigation of NOx removal rate. Industrial & Engineering Chemistry Research, 2010, 49( 17): 8147– 8156
https://doi.org/10.1021/ie100570q
17 J H Park, J W Ahn, K H Kim, Y S Son. Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas. Chemical Engineering Journal, 2019, 355 : 351– 366
https://doi.org/10.1016/j.cej.2018.08.103
18 J S Chang, S Masuda. Mechanism of pulse corona induced plasma chemical process for removal of NOx and SO2 from combustion gases. In IEEE Industry Applications Society Meeting, 1988, 2 : 1628– 1635
19 Y H Lee, J W Chung, Y R Choi, J S Chung, M H Cho, W Namkung. NOx removal characteristics in plasma plus catalyst hybrid process. Plasma Chemistry and Plasma Processing, 2004, 24( 2): 137– 154
https://doi.org/10.1023/B:PCPP.0000013195.87201.4a
20 G B Zhao, S V B Garikipati, X D Hu, M D Argyle, M Radosz. Effect of reactor configuration on nitric oxide conversion in nitrogen plasma. AIChE Journal, 2005, 51( 6): 1813– 1821
https://doi.org/10.1002/aic.10451
21 M R Khani, E Barzideh Pour, S Rashnoo, X Tu, B Ghobadian, B Shokri, A Khadem, S I Hosseini. Real diesel engine exhaust emission control: indirect non-thermal plasma and comparison to direct plasma for NOx, THC, CO, and CO2. Journal of Environmental Health Science & Engineering, 2020, 18( 2): 743– 754
https://doi.org/10.1007/s40201-020-00500-0
22 H Pan, Y Qiang. Promotion of non-thermal plasma on catalytic reduction of NOx by C3H8 over Co/BEA catalyst at low temperature. Plasma Chemistry and Plasma Processing, 2014, 34( 4): 811– 824
https://doi.org/10.1007/s11090-014-9522-8
23 G Yu, Z Yan, D Ye, X L Wang, P Gu, Y Q Xu. A Study on the NO removal mechanism through the plasma reaction of NO/N2 system. Journal of Engineering Thermophysics, 2003, 24( 02): 354– 356
24 C E Stere, W Adress, R Burch, S Chansai, A Goguet, W G Graham, F De Rosa, V Palma, C Hardacre. Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catalysis, 2014, 4( 2): 666– 673
https://doi.org/10.1021/cs4009286
25 H Wang, Y Y Cao, Z W Chen, Q Q Yu, S J Wu. High-efficiency removal of NOx over natural mordenite using an enhanced plasma-catalytic process at ambient temperature. Fuel, 2018, 224 : 323– 330
https://doi.org/10.1016/j.fuel.2018.03.065
26 X L Gong, R Zhao, J Q Qin, H M Wang, D Wang. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature. Chemical Engineering Journal, 2019, 358 : 291– 298
https://doi.org/10.1016/j.cej.2018.09.222
27 B M Penetrante, M C Hsiao, B T Merritt, G E Vogtlin, P H Wallman. Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2. IEEE Transactions on Plasma Science, 1995, 23( 4): 679– 687
https://doi.org/10.1109/27.467990
28 H Mätzing. Chemical kinetics of flue gas cleaning by irradiation with electrons. Advances in Chemical Physics, 2007, 80 : 315– 402
https://doi.org/10.1002/9780470141298.ch4
29 C Willis, A W Boyd. Excitation in the radiation chemistry of inorganic gases. International Journal for Radiation Physics and Chemistry, 1976, 8( 1-2): 71– 111
https://doi.org/10.1016/0020-7055(76)90061-9
30 J J Lowke, R Morrow. Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators. IEEE Transactions on Plasma Science, 1995, 23( 4): 661– 671
https://doi.org/10.1109/27.467988
31 C Willis, A W Boyd, M J Young, D A Armstrong. Radiation chemistry of gaseous oxygen: experimental and calculated yields. Canadian Journal of Chemistry, 1970, 48( 10): 1505– 1514
https://doi.org/10.1139/v70-246
32 B M Penetrante, M C Hsiao, B T Merritt, G E Vogtlin, P H Wallman, A Kuthi, C P Burkhart, J R Bayless. Electron-impact dissociation of molecular nitrogen in atmospheric-pressure nonthermal plasma reactors. Applied Physics Letters, 1995, 67( 21): 3096– 3098
https://doi.org/10.1063/1.114876
33 J T Herron, D S Green. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chemistry and Plasma Processing, 2001, 21( 3): 459– 481
https://doi.org/10.1023/A:1011082611822
34 G B Zhao, X D Hu, M D Argyle, M N Radosz. Atom radicals and N2(A3∑u+) found to be responsible for nitrogen oxides conversion in nonthermal nitrogen plasma. Industrial & Engineering Chemistry Research, 2004, 43( 17): 5077– 5088
https://doi.org/10.1021/ie049795z
35 G Michalski, R Jost, D Sugny, M Joyeux, M Thiemens. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules. Journal of Chemical Physics, 2004, 121( 15): 7153– 7161
https://doi.org/10.1063/1.1792233
36 X Tang, Y Hou, C Y Ng, B Ruscic. Pulsed field-ionization photoelectron-photoion coincidence study of the process N2 + → N+ + N + e–: bond dissociation energies of N2 and N2+. Journal of Chemical Physics, 2005, 123( 7): 074330
https://doi.org/10.1063/1.1995699
37 F Mansouri, A Khavanin, A J Jafari, H Asilian, H R Ghomi, S M Mousavi. Energy efficiency improvement in nitric oxide reduction by packed DBD plasma: optimization and modeling using response surface methodology (RSM). Environmental Science and Pollution Research International, 2020, 27( 14): 16100– 16109
https://doi.org/10.1007/s11356-020-07870-w
38 J S Chang, P C Looy, K Nagai, T Yoshioka, A Maezawa. Pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system. IEEE Transactions on Industry Applications, 1994, 21( 1): 131– 137
39 B M Penetrante, M C Hsiao, B T Merritt, G E Vogtlin, P H Wallman, M Neiger, O Wolf, T Hammer, S Broer. Pulsed corona and dielectric-barrier discharge processing of NO in N2. Applied Physics Letters, 1996, 68( 26): 3719– 3721
https://doi.org/10.1063/1.115984
40 Y S Mok, M N Chang, M H Cho, I S Nam. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes. IEEE Transactions on Plasma Science, 2002, 30( 1): 408– 416
https://doi.org/10.1109/TPS.2002.1003889
[1] Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
[2] Yuyao Han, Lei Xia, Xupin Zhuang, Yuxia Liang. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1387-1398.
[3] Jinjian Hou, Jinze Du, Hong Sui, Lingyu Sun. A review on the application of nanofluids in enhanced oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1165-1197.
[4] Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review[J]. Front. Chem. Sci. Eng., 2022, 16(6): 777-798.
[5] Xiangyu Liu, Yanling Pan, Peng Zhang, Yilin Wang, Guohao Xu, Zhaojie Su, Xuedong Zhu, Fan Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Front. Chem. Sci. Eng., 2022, 16(3): 384-396.
[6] Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li. Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2022, 16(3): 364-375.
[7] Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1561-1571.
[8] Ji Liu, Xinrui Fan, Wei Zhao, Shi-guan Yang, Wenluan Xie, Bin Hu, Qiang Lu. A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1217-1228.
[9] Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu. Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution[J]. Front. Chem. Sci. Eng., 2021, 15(3): 538-551.
[10] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[11] Kai Cai, Ying Li, Hongbao Shen, Zaizhe Cheng, Shouying Huang, Yue Wang, Xinbin Ma. A density functional theory study on the mechanism of dimethyl ether carbonylation over heteropolyacids catalyst[J]. Front. Chem. Sci. Eng., 2021, 15(2): 319-329.
[12] Xiangchun Liu, Jun Hu, Ruilun Xie, Bin Fang, Ping Cui. Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale[J]. Front. Chem. Sci. Eng., 2021, 15(2): 363-372.
[13] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[14] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[15] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed