Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (11) : 1584-1594    https://doi.org/10.1007/s11705-022-2189-4
RESEARCH ARTICLE
Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy
Na Wang1,2, Fujian Li2,3(), Bangyu Fan2,3,4, Suojiang Zhang2,3, Lu Bai2,3, Xiangping Zhang2,3()
1. College of Chemical and Engineering, Zhengzhou University, Zhengzhou 450001, China
2. CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering and Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
3. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
4. College of Chemistry, Nanchang University, Nanchang 330031, China
 Download: PDF(7884 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The separation of rare earth elements is particularly difficult due to their similar physicochemical properties. Based on the tiny differences of ionic radius, solvent extraction has been developed as the “mass method” in industry with hundreds of stages, extremely intensive chemical consumption and large capital investments. The differences of the ionic magnetic moment among rare earths are greater than that of ionic radius. Herein, a novel method based on the large ionic magnetic moment differences of rare earth elements was proposed to promote the separation efficiency. Rare earths were firstly dissolved in the ionic liquid, then the ordering degree of them was improved with the Z-bond effect, and finally the magnetic moment differences between paramagnetic and diamagnetic rare earths in quasi-liquid system were enhanced. Taking the separation of Er/Y, Ho/Y and Er/Ho as examples, the results showed that Er(III) and Ho(III) containing ionic liquids had obvious magnetic response, while ionic liquids containing Y(III) had no response. The separation factors of Er/Y and Ho/Y were achieved at 9.0 and 28.82, respectively. Magnetic separation via quasi-liquid system strategy provides a possibility of the novel, green, and efficient method for rare earth separation.

Keywords rare earth element      different magnetic moment      magnetic separation      ionic liquid     
Corresponding Author(s): Fujian Li,Xiangping Zhang   
Online First Date: 09 October 2022    Issue Date: 13 December 2022
 Cite this article:   
Na Wang,Fujian Li,Bangyu Fan, et al. Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1584-1594.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2189-4
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I11/1584
Fig.1  Chemical structure of the three ILs.
Fig.2  Volumetric magnetic susceptibility of RE(III) compounds in the three states.
Fig.3  Internal structure diagrams of the three states under the gradient magnetic field.
Fig.4  Raman spectroscopy of [P666,14][Cl], [P666,14]3[ErCl6](QL), ErCl3·6H2O(S) and ErCl3 in water solution(L).
Fig.5  Relationship between the magnetization and magnetic field of [P666,14]3[ErCl6], [P666,14]3[HoCl6] and [P666,14]3[YCl6].
Item IL 1 IL 2 IL 3 IL 4 IL 5 IL 6
Er(III)/mol % 0 20 40 60 80 100
Y(III)/mol % 100 80 60 40 20 0
Tab.1  Er(III)/Y(III) mixed ILs 1–6
Fig.6  Magnetization (black triangles) and average velocities (red squares) of the mixed ILs containing Er(III) and Y(III).
Fig.7  Magnetic separation of REEs in the QL system diagram.
Fig.8  Magnetic separation of Er(III)/Y(III) in QL system. (A) The magnetic induction phenomenon of [P666,14]3[ErCl6] and [P666,14]3[YCl6]. (B) The average velocity of [P666,14]3[ErCl6] and [P666,14]3[YCl6] in different time. (C) The average velocity of [P666,14]3[ErCl6] and [P666,14]3[YCl6] in different magnetic fields (from the distal to the proximal end of the magnets). (D) Separations of different liquid drops (0.1 mL each drop) of [P666,14]3[ErCl6] and [P666,14]3[YCl6]. a–d represent 1:1, 2:2, 4:4 and 8:8, respectively. The left graph: The initial state before magnetic movement, and the right graph: The final state when balance in motion is achieved. The two samples of each group were corrected for the proximal or distal end of the magnets and analysed for the concentration of [P666,14]3[ErCl6] and [P666,14]3[YCl6]. (E) The concentrations of [P666,14]3[ErCl6] and [P666,14]3[YCl6] at the proximal end of the magnet in the a–d group. (F) The concentrations of [P666,14]3[ErCl6] and [P666,14]3[YCl6] at the distal end of the magnet in the a–d group.
Fig.9  Magnetic separation of Ho(III)/Y(III) in QL system. (A) The magnetic induction phenomenon of [P666,14]3[HoCl6] and [P666,14]3[YCl6]. (B) The average velocity of [P666,14]3[HoCl6] and [P666,14]3[YCl6] in different time. (C) The average velocity of [P666,14]3[HoCl6] and [P666,14]3[YCl6] in different magnetic fields (from the distal to the proximal end of the magnets). (D) Separations of different liquid drops (0.1 mL each drop) of [P666,14]3[HoCl6] and [P666,14]3[YCl6]. a–d represent 1:1, 2:2, 4:4 and 8:8, respectively. The left graph: The initial state before magnetic movement, and the right graph: The final state when balance in motion is achieved. The two samples of each group were corrected for the proximal or distal end of the magnets and analyzed for the concentration of [P666,14]3[HoCl6] and [P666,14]3[YCl6]. (E) The concentrations of [P666,14]3[HoCl6] and [P666,14]3[YCl6] at the proximal end of the magnet in the a–d group. (F) The concentrations of [P666,14]3[HoCl6] and [P666,14]3[YCl6] at the distal end of the magnet in the a–d group.
Fig.10  Magnetic separation of Er(III)/Ho(III) in QL system. (A) The magnetic induction phenomenon of [P666,14]3[ErCl6] and [P666,14]3[HoCl6]. (B) The average velocity of [P666,14]3[ErCl6] and [P666,14]3[HoCl6] in different time. (C) The average velocity of [P666,14]3[ErCl6] and [P666,14]3[HoCl6] in different magnetic fields (from the distal to the proximal end of the magnets). (D) Separations of different liquid drops (0.1 mL each drop) of [P666,14]3[ErCl6] and [P666,14]3[HoCl6]. a–d represent 1:1, 2:2, 4:4 and 8:8, respectively. The left graph: The initial state before magnetic movement, and the right graph: The final state when balance in motion is achieved. The two samples of each group were corrected for the proximal or distal end of the magnets and analysed for the concentration of [P666,14]3[ErCl6] and [P666,14]3[HoCl6]. (E) The concentrations of [P666,14]3[ErCl6] and [P666,14]3[HoCl6] at the proximal end of the magnet in the a–d group. (F) The concentrations of [P666,14]3[ErCl6] and [P666,14]3[HoCl6] at the distal end of the magnet in the a–d group.
1 S V Eliseeva, J C G Bünzli. Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 2011, 35( 6): 1165– 1176
https://doi.org/10.1039/c0nj00969e
2 Q Jiang, J Y Cheng, Z Q Gao. Direct synthesis of dimethyl carbonate over rare earth oxide supported catalyst. Frontiers of Chemical Engineering in China, 2007, 1( 3): 300– 303
https://doi.org/10.1007/s11705-007-0055-z
3 S Massari, M Ruberti. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resources Policy, 2013, 38( 1): 36– 43
https://doi.org/10.1016/j.resourpol.2012.07.001
4 F Habashi. Extractive metallurgy of rare earths. Canadian Metallurgical Quarterly, 2013, 52( 3): 224– 233
https://doi.org/10.1179/1879139513Y.0000000081
5 F Xie, T A Zhang, D Dreisinger, F Doyle. A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014, 56 : 10– 28
https://doi.org/10.1016/j.mineng.2013.10.021
6 A Rout, K Binnemans. Liquid–liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Transactions (Cambridge, England), 2014, 43( 4): 1862– 1872
https://doi.org/10.1039/C3DT52285G
7 D Depuydt, W Dehaen, K Binnemans. Solvent extraction of scandium(III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2015, 54( 36): 8988– 8996
https://doi.org/10.1021/acs.iecr.5b01910
8 D Q Li. A review on yttrium solvent extraction chemistry and separation process. Journal of Rare Earths, 2017, 35( 2): 107– 119
https://doi.org/10.1016/S1002-0721(17)60888-3
9 Y H Chen, H Y Wang, Y C Pei, J J Wang. A green separation strategy for neodymium(III) from cobalt(II) and nickel(II) using an ionic liquid-based aqueous two-phase system. Talanta, 2018, 182 : 450– 455
https://doi.org/10.1016/j.talanta.2018.02.018
10 X Hérès, V Blet, Natale P Di, A Ouaattou, H Mazouz, D Dhiba, F Cuer. Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals, 2018, 8( 9): 682– 698
https://doi.org/10.3390/met8090682
11 F J Li, Y L Wang, X Su, X Q Sun. Towards zero-consumption of acid and alkali recycling rare earths from scraps: a precipitation-stripping-saponification extraction strategy using CYANEX®572. Journal of Cleaner Production, 2019, 228 : 692– 702
https://doi.org/10.1016/j.jclepro.2019.04.318
12 F J Li, J J Yan, X P Zhang, N Wang, H F Dong, L Bai, H S Gao. Removal of trace aluminum impurity for high-purity GdCl3 preparation using an amine-group-functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2021, 60( 30): 11241– 11250
https://doi.org/10.1021/acs.iecr.1c00870
13 J Zhang B D Zhao B Schreiner. Separation Hydrometallurgy of Rare Earth Elements. Heidelberg: Springer, 2016: 5– 7
14 X L Wang, W Li, S Meng, D Q Li. The extraction of rare earths using mixtures of acidic phosphorus-based reagents or their thio-analogues. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81( 5): 761– 766
https://doi.org/10.1002/jctb.1532
15 T Moeller. The Chemistry of the Lanthanides. Oxford: Pergamon Press, 1973: 6– 9
16 H J Yang, F Peng, D E Schier, S A Markotic, X Zhao, A N Hong, Y X Wang, P Y Feng, X H Bu. Selective crystallization of rare-earth ions into cationic metal–organic frameworks for rare-earth separation. Angewandte Chemie International Edition, 2021, 60( 20): 11148– 11152
https://doi.org/10.1002/anie.202017042
17 Noddack W, Noddack I, Wicht E. Separate the rare earths in the inhomogeneous magnetic field. Zeitschrift fur elektrochemie, 1958, 62(1): 77–85 (In German)
18 R F Higgins, T Cheisson, B E Cole, B C Manor, P J Carroll, E J Schelter. Magnetic field directed rare-earth separations. Angewandte Chemie International Edition, 2020, 59( 5): 1851– 1856
https://doi.org/10.1002/anie.201911606
19 X G Yang, K Tschulik, M Uhlemann, S Odenbach, K Eckert. Enrichment of paramagnetic ions from homogeneous solutions in inhomogeneous magnetic fields. Journal of Physical Chemistry Letters, 2012, 3( 23): 3559– 3564
https://doi.org/10.1021/jz301561q
20 N Faris, R Ram, J Tardio, S Bhargava, M I Pownceby. Characterisation of a ferruginous rare earth bearing lateritic ore and implications for rare earth mineral processing. Minerals Engineering, 2019, 134 : 23– 36
https://doi.org/10.1016/j.mineng.2019.01.019
21 G Pearse J Borduas T Gervais D Menard D Seddaoui B Ung. Method and system for magnetic separation of rare earths. US Patent, 166788A1, 2014– 06-19
22 K Y Wang, H Adidharma, M Radosz, P Y Wan, X Xu, C K Russell, H J Tian, M H Fan, J Yu. Recovery of rare earth elements with ionic liquids. Green Chemistry, 2017, 19( 19): 4469– 4493
https://doi.org/10.1039/C7GC02141K
23 D Prodius, A V Mudring. Rare earth metal-containing ionic liquids. Coordination Chemistry Reviews, 2018, 363 : 1– 16
https://doi.org/10.1016/j.ccr.2018.02.004
24 H Machida, R Taguchi, A Sato, L J Florusse, C J Peters, R L Jr Smith. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China, 2009, 3( 1): 12– 19
https://doi.org/10.1007/s11705-009-0151-3
25 A J Greer, J Jacquemin, C Hardacre. Industrial applications of ionic liquids. Molecules, 2020, 25( 21): 5207– 5237
https://doi.org/10.3390/molecules25215207
26 S N Zhang, X Y Wang, J Yao, H R Li. Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents. Green Energy & Environment, 2020, 5( 3): 341– 346
https://doi.org/10.1016/j.gee.2020.06.018
27 A A Shamsuri, K Abdan, S N A M Jamil. Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. e-Polymers, 2021, 21 : 869– 880
28 S Hayashi, H O Hamaguchi. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chemistry Letters, 2004, 33( 12): 1590– 1591
https://doi.org/10.1246/cl.2004.1590
29 S Hayashi, S Saha, H O Hamaguchi. A new class of magnetic fluids: [bmim]FeCl4 and n[bmim]FeCl4 ionic liquids. IEEE Transactions on Magnetics, 2006, 42( 1): 12– 14
https://doi.org/10.1109/TMAG.2005.854875
30 K Dong, S J Zhang, Q Wang. A new class of ion–ion interaction: Z-bond. Science China Chemistry, 2015, 58( 3): 495– 500
https://doi.org/10.1007/s11426-014-5147-2
31 S J Zhang, J Sun, X C Zhang, J Y Xin, Q Q Miao, J J Wang. Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43( 22): 7838– 7869
https://doi.org/10.1039/C3CS60409H
32 S J Zhang, Y L Wang, H Y He, F Huo, Y M Lu, X C Zhang, K Dong. A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2( 4): 329– 330
https://doi.org/10.1016/j.gee.2017.09.001
33 Y L Wang, H Y He, C L Wang, Y Lu, K Dong, F Huo, S J Zhang. Insights into ionic liquids: from Z-bonds to quasi-liquids. Journal of the American Chemical Society Au, 2022, 2( 3): 543– 561
https://doi.org/10.1021/jacsau.1c00538
34 Y M Lu, W Chen, Y L Wang, F Huo, L Zhang, H He, S J Zhang. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Physical Chemistry Chemical Physics, 2020, 22( 4): 1820– 1825
https://doi.org/10.1039/C9CP04467A
35 F Kubota, E Shigyo, W Yoshidai, M Goto. Extraction and separation of Pt and Pd by an imidazolium-based ionic liquid combined with phosphonium chloride. Solvent Extraction Research and Development, Japan, 2017, 24( 2): 97– 104
https://doi.org/10.15261/serdj.24.97
36 I D Hughes, M Dane, A Ernst, W Hergert, M Luders, J Poulter, J B Staunton, A Svane, Z Szotek, W M Temmerman. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature, 2007, 446( 7136): 650– 653
https://doi.org/10.1038/nature05668
37 Y T Li, Y J Li, Z X Yang, X J Zhang, F M Zeng, C Li, H Lin, Z M Su, C K Mahadevan, J H Liu. The structure and liquid flow effect of melt during NaCl crystal growth. Crystal Research and Technology, 2020, 55( 7): 1900229
https://doi.org/10.1002/crat.201900229
38 S Hayashi, R Ozawa, H O Hamaguchi. Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chemistry Letters, 2003, 32( 6): 498– 499
https://doi.org/10.1246/cl.2003.498
39 H Katayanagi, S Hayashi, H O Hamaguchi, K Nishikawa. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and raman spectroscopy. Chemical Physics Letters, 2004, 392( 4): 460– 464
https://doi.org/10.1016/j.cplett.2004.04.125
40 R Ozawa, S Hayashi, S Saha, A Kobayashi, H O Hamaguchi. Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chemistry Letters, 2003, 32( 10): 948– 949
https://doi.org/10.1246/cl.2003.948
41 S Saha, S Hayashi, A Kobayashi, H O Hamaguchi. Crystal structure of 1-butyl-3-methylimidazolium chloride. A clue to the elucidation of the ionic liquid structure. Chemistry Letters, 2003, 32( 8): 740– 741
https://doi.org/10.1246/cl.2003.740
42 A Habenschuss, F H Spedding. The coordination (hydration) of rare earth ions in aqueous chloride solutions from X-ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. Journal of Chemical Physics , 1979, 70( 6): 2797– 2806
https://doi.org/10.1063/1.437866
43 M Starzak, M Mathlouthi. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chemistry, 2003, 82( 1): 3– 22
https://doi.org/10.1016/S0308-8146(02)00584-8
44 I R Rodrigues, L Lukina, S Dehaeck, P Colinet, K Binnemans, J Fransaer. Magnetophoretic sprinting: a study on the magnetic properties of aqueous lanthanide solutions. Journal of Physical Chemistry C, 2018, 122( 41): 23675– 23682
https://doi.org/10.1021/acs.jpcc.8b06471
45 S Shirvani, M H Mallah, M A Moosavian, J Safdari. Magnetic ionic liquid in magmolecular process for uranium removal. Chemical Engineering Research & Design, 2016, 109 : 108– 115
https://doi.org/10.1016/j.cherd.2016.01.014
46 M J Trujillo-Rodriguez, O Nacham, K D Clark, V Pino, J L Anderson, J H Ayala, A M Afonso. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2016, 934 : 106– 113
https://doi.org/10.1016/j.aca.2016.06.014
[1] FCE-22017-OF-WN_suppl_1 Download
[1] Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
[2] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[3] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[4] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[5] Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik. Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium in gaining access to terpyridines[J]. Front. Chem. Sci. Eng., 2019, 13(3): 586-598.
[6] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[7] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[8] Zimeng HE,Ling YUE,Meng LI,Yazhuo SHANG,Honglai LIU. Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water[J]. Front. Chem. Sci. Eng., 2015, 9(2): 232-241.
[9] Rui YAO, Hua WANG, Jinyu HAN. Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions[J]. Front Chem Sci Eng, 2012, 6(3): 239-245.
[10] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[11] Beilei ZHOU, Yanxiong FANG, Hao GU, Saidan ZHANG, Baohua HUANG, Kun ZHANG. Ionic liquid mediated esterification of alcohol with acetic acid[J]. Front Chem Eng Chin, 2009, 3(2): 211-214.
[12] Hiroshi MACHIDA, Ryosuke TAGUCHI, Yoshiyuki SATO, Louw J. FLOURUSSE, Cor J. PETERS, Richard L. SMITH. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations[J]. Front Chem Eng Chin, 2009, 3(1): 12-19.
[13] BAI Shu, REN Mengyuan, WANG Lele, SUN Yan. Regioselective acylation of pyridoxine catalyzed by immobilized lipase in ionic liquid[J]. Front. Chem. Sci. Eng., 2008, 2(3): 301-307.
[14] QIAO Congzhen, CAI Yonghong, GUO Quanhui. Benzene alkylation with long chain olefins catalyzed by ionic liquids: a review[J]. Front. Chem. Sci. Eng., 2008, 2(3): 346-352.
[15] YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen. Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template[J]. Front. Chem. Sci. Eng., 2008, 2(2): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed