Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 85    https://doi.org/10.1007/s11705-024-2438-9
Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification
Xiaoling Xian, Biying Li, Shiyong Feng, Jiale Huang, Xinyuan Fu, Ting Wu, Xiaoqing Lin()
School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
 Download: PDF(3329 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the present study, a sustainable pretreatment methodology combining liquid hot water and deep eutectic solvent is proposed for the efficient fractionation of hemicellulose, cellulose, and lignin from sugarcane bagasse, thereby facilitating the comprehensive utilization of both C5 and C6 sugars. The application of this combined pretreatment strategy to sugarcane bagasse led to notable enhancements in enzymatic saccharification and subsequent fermentation. Experiment results demonstrate that liquid hot water-deep eutectic solvent pretreatment yielded 85.05 ± 0.66 g·L–1 of total fermentable sugar (glucose: 60.96 ± 0.21 g·L–1, xylose: 24.09 ± 0.87 g·L–1) through enzymatic saccharification of sugarcane bagasse. Furthermore, fermentation of the pretreated sugarcane bagasse hydrolysate yielded 34.33 ± 3.15 g·L–1 of bioethanol. These findings confirm the effectiveness of liquid hot water-deep eutectic solvent pretreatment in separating lignocellulosic components, thus presenting a sustainable and promising pretreatment method for maximizing the valuable utilization of biomass resources.

Keywords sugar cane bagasse      synergistic pretreatment      enzymatic saccharification      ethanol     
Corresponding Author(s): Xiaoqing Lin   
Just Accepted Date: 29 April 2024   Issue Date: 17 June 2024
 Cite this article:   
Xiaoling Xian,Biying Li,Shiyong Feng, et al. Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification[J]. Front. Chem. Sci. Eng., 2024, 18(8): 85.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2438-9
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/85
Fig.1  Results of enzymatic saccharification of LHW liquid after LHW pretreatment at different times and temperatures. (a) 130 °C; (b) 150 °C; (c) 170 °C; (d) 190 °C.
Temperature/°CTime/hUtilization/%Ethanol
GlucoseXyloseConcentration/(g?L?1)Yield/%
130099.65 ± 0.2577.09 ± 4.2312.73 ± 0.3891.53 ± 2.69
199.70 ± 0.2193.24 ± 4.0513.18 ± 0.0187.70 ± 0.70
299.60 ± 0.2897.23 ± 1.9613.00 ± 0.0688.04 ± 1.18
499.58 ± 0.3090.60 ± 3.2314.50 ± 0.1487.67 ± 0.06
1500100.00 ± 0.0088.23 ± 0.5213.45 ± 0.6598.01 ± 0.77
199.58 ± 0.3096.05 ± 2.7916.26 ± 0.2598.59 ± 0.05
299.37 ± 0.4590.83 ± 3.4516.60 ± 1.3497.93 ± 7.02
4N.A a)N.AN.AN.A
170099.79 ± 0.1596.78 ± 2.2814.01 ± 0.2294.74 ± 0.58
1N.AN.AN.AN.A
2N.AN.AN.AN.A
4N.AN.AN.AN.A
190099.58 ± 0.3089.11 ± 5.2015.63 ± 0.7490.84 ± 4.37
1N.AN.AN.AN.A
2N.AN.AN.AN.A
4N.AN.AN.AN.A
Tab.1  Fermentation results of LHW liquid
Temperature/°CTime/hSolid yield/%Content/%Cellulose retention/% a)Hemicellulose removal/% b)Lignin removal/% c)
CelluloseHemicelluloseLignin
Untreated SCB10045.81 ± 1.7924.76 ± 0.7826.53 ± 1.05---
130096.57 ± 0.6442.63 ± 1.1224.58 ± 0.6727.47 ± 0.6593.22 ± 4.9115.64 ± 2.300.01 ± 2.36
194.70 ± 0.3942.28 ± 0.7423.93 ± 0.3927.24 ± 0.8295.50 ± 9.4519.43 ± 1.302.76 ± 2.94
293.30 ± 0.1843.99 ± 0.7324.02 ± 0.4026.96 ± 0.0394.62 ± 5.9420.33 ± 1.335.20 ± 0.09
488.88 ± 0.6546.28 ± 0.5022.32 ± 0.3228.53 ± 0.2995.02 ± 6.0729.48 ± 1.024.42 ± 0.96
150091.27 ± 0.9641.97 ± 0.0723.89 ± 0.0828.09 ± 0.5285.61 ± 2.4822.49 ± 0.253.37 ± 1.79
182.34 ± 0.6846.51 ± 0.2020.33 ± 0.1727.76 ± 0.2989.28 ± 6.5940.50 ± 0.5013.82 ± 0.89
277.18 ± 0.6151.51 ± 0.1516.77 ± 0.0930.50 ± 0.2887.26 ± 1.2253.98 ± 0.2411.26 ± 0.81
474.85 ± 1.2554.78 ± 1.1312.36 ± 0.4232.13 ± 0.0291.18 ± 2.6267.11 ± 1.119.34 ± 0.06
170090.34 ± 0.3442.98 ± 0.6323.45 ± 0.3127.56 ± 0.1588.92 ± 0.1324.68 ± 1.006.14 ± 0.51
169.57 ± 0.5865.05 ± 1.3210.26 ± 0.2134.22 ± 0.7098.79 ± 2.0071.17 ± 0.5810.26 ± 1.84
267.39 ± 1.0462.66 ± 2.225.89 ± 0.2036.94 ± 0.4192.17 ± 3.2783.97 ± 0.546.16 ± 1.04
466.75 ± 1.2157.98 ± 1.183.12 ± 0.0540.36 ± 0.7884.48 ± 1.7291.58 ± 0.14-1.54 ± 1.96
190082.83 ± 0.6452.94 ± 0.5120.86 ± 0.3430.89 ± 0.7095.72 ± 0.9130.21 ± 1.143.55 ± 2.18
166.87 ± 0.9363.52 ± 0.272.08 ± 0.0642.12 ± 0.0392.72 ± 0.4094.39 ± 0.17-6.17 ± 0.07
265.17 ± 0.3461.18 ± 0.781.31 ± 0.0244.92 ± 0.4387.03 ± 1.1196.55 ± 0.06-10.34 ± 1.06
464.23 ± 0.7253.75 ± 0.531.31 ± 0.5748.55 ± 0.7475.36 ± 0.7496.61 ± 1.49-17.53 ± 1.80
Tab.2  Contents of component, retention rate and removal rate of LHW residue.
Temperature/°CSolid yield/%Content/%Cellulose retention/% a)Hemicellulose removal/% b)Lignin removal/% c)
CelluloseHemicelluloseLignin
6082.56 ± 0.5856.39 ± 0.2915.86 ± 0.0025.29 ± 0.1184.59 ± 6.1659.19 ± 0.0139.25 ± 0.27
8078.09 ± 0.8564.84 ± 7.3214.08 ± 0.4222.88 ± 0.6185.31 ± 9.6365.72 ± 1.0248.01 ± 1.39
10070.03 ± 0.4464.84 ± 2.3211.87 ± 0.4419.00 ± 0.4776.51 ± 2.7474.08 ± 0.9761.29 ± 0.96
12062.33 ± 0.5472.48 ± 0.4310.81 ± 0.1513.15 ± 0.5276.12 ± 0.4578.99 ± 0.2976.16 ± 0.94
14056.47 ± 0.4972.79 ± 2.057.61 ± 0.0616.13 ± 4.1176.44 ± 2.1585.22 ± 0.1270.75 ± 7.45
Tab.3  Contents of component, retention rate and removal rate of 150 °C-2 h LHW-pretreated-SCB pretreated by DES for 90 min at different temperatures
Fig.2  Results of enzymatic saccharification of 150 °C-2 h LHW-pretreated SCB after DES pretreatment at different temperatures (Enzymatic condition: SLR of 1:10; the cellulase loadings of 27 FPU·(g SCB)–1, the xylanase loading of 1170 FXU·(g SCB)–1). (a) Concentration of fermentable sugar; (b) enzymatic conversion.
Time/minSolid yield/%Content/%Cellulose retention/% a)Hemicellulose removal/% b)Lignin removal/% c)
CelluloseHemicelluloseLignin
3064.93 ± 0.9170.83 ± 2.1511.80 ± 0.3615.41 ± 0.4783.87 ± 1.2074.51 ± 0.3369.35 ± 1.86
6060.92 ± 0.8362.84 ± 5.319.35 ± 0.9412.84 ± 0.2379.07 ± 1.4777.18 ± 2.3976.18 ± 0.60
9062.33 ± 0.5471.77 ± 1.0910.45 ± 0.5314.32 ± 1.2276.12 ± 0.4578.99 ± 0.2976.16 ± 0.94
12062.91 ± 0.8258.93 ± 0.138.95 ± 0.1013.62 ± 1.1962.46 ± 0.1382.46 ± 0.1975.07 ± 2.17
15060.67 ± 0.4856.00 ± 3.018.17 ± 0.2510.75 ± 0.5157.25 ± 3.0784.55 ± 0.4781.03 ± 0.90
Tab.4  Contents of component, retention rate and removal rate of 150 °C-2 h LHW-pretreated-SCB pretreated by DES at 120 °C for different time.
Fig.3  Results of enzymatic saccharification of 150 °C-2 h LHW-pretreated SCB after DES pretreatment at 120 °C for different time (Enzymatic condition: SLR of 1:10; the cellulase loadings of 27 FPU·(g SCB)–1, the xylanase loading of 1170 FXU·(g SCB)–1). (a) Concentration of fermentable sugar; (b) enzymatic conversion.
Fig.4  Results of enzymatic saccharification of untreated SCB, LHW-pretreated SCB, DES-pretreated SCB and LHW-DES pretreated SCB (Enzymatic condition: SLR of 1:10; the cellulase loadings of 27 FPU·(g SCB)–1, the xylanase loading of 1170 FXU·(g SCB)–1).
Fig.5  Effects of cellulase loadings on enzymatic hydrolysis of LHW-DES pretreated SCB. (a) The change of glucose concentration with time; (b) conversion of glucose, xylose, and total fermentable sugar on enzymatic hydrolysis for 120 h.
Fig.6  (a) Results of enzymatic saccharification of SCB before and after combined pretreatment at cellulase loadings of 27 FPU·g–1; (b) fermentation curves of SCB; (c) fermentation curves of LHW-DES pretreated SCB (no pH adjustment); (d) fermentation curves of LHW-DES pretreated SCB (initial pH = 6).
Fig.7  Mass balances of SCB for different pretreatments at the optimal conditions.
Fig.8  FTIR spectra of untreated SCB, LHW pretreated SCB and LHW-DES pretreated SCB (LHW pretreatment was performed at 150 °C for 2 h (at the SLR of 1:6). DES pretreatment was performed with TEBAC:LA (1:7 mol ratio), at 120 °C for 90 min).
Fig.9  XRD spectra of untreated SCB, LHW pretreated SCB and LHW-DES pretreated SCB (LHW pretreatment was performed at 150 °C for 2 h (at the SLR of 1:6). DES pretreatment was performed with TEBAC:LA (1:7 mol ratio), at 120 °C for 90 min).
Fig.10  SEM images of different SCBs. (a) Untreated SCB; (b) LHW pretreated SCB; (c) LHW-DES pretreated SCB.
1 N Gaurav , S Sivasankari , G S Kiran , A Ninawe , J Selvin . Utilization of bioresources for sustainable biofuels: a review. Renewable & Sustainable Energy Reviews, 2017, 73(7): 205–214
https://doi.org/10.1016/j.rser.2017.01.070
2 P Bórawski , Bórawska A Bełdycka , E J Szymańska , K J Jankowski , B Dubis , J W Dunn . Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production, 2019, 228: 467–484
https://doi.org/10.1016/j.jclepro.2019.04.242
3 R D Ashby , N Qureshi , G D Strahan , D B Johnston , J Msanne , X Lin . Corn stover hydrolysate and levulinic acid: mixed substrates for short-chain polyhydroxyalkanoate production. Biocatalysis and Agricultural Biotechnology, 2022, 43: 102391
https://doi.org/10.1016/j.bcab.2022.102391
4 G De Bhowmick , A K Sarmah , R Sen . Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 2018, 247: 1144–1154
https://doi.org/10.1016/j.biortech.2017.09.163
5 A I Osman , U Qasim , F Jamil , A H Al-Muhtaseb , A A Jrai , M Al-Riyami , S Al-Maawali , L Al-Haj , A Al-Hinai , M Al-Abri . et al.. Bioethanol and biodiesel: bibliometric mapping, policies and future needs. Renewable & Sustainable Energy Reviews, 2021, 152: 111677
https://doi.org/10.1016/j.rser.2021.111677
6 M Ebadian , S van Dyk , J D McMillan , J Saddler . Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy, 2020, 147: 111906
https://doi.org/10.1016/j.enpol.2020.111906
7 J Chen , B Zhang , L Luo , F Zhang , Y Yi , Y Shan , B Liu , Y Zhou , X Wang , X Lü . A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 2021, 149: 111370
https://doi.org/10.1016/j.rser.2021.111370
8 S Rezania , B Oryani , J Cho , A Talaiekhozani , F Sabbagh , B Hashemi , P F Rupani , A A Mohammadi . Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 2020, 199: 117457
https://doi.org/10.1016/j.energy.2020.117457
9 D Sawhney , S Vaid , R Bangotra , S Sharma , H C Dutt , N Kapoor , R Mahajan , B K Bajaj . Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresource Technology, 2023, 375: 128791
https://doi.org/10.1016/j.biortech.2023.128791
10 J Huang , M T Khan , D Perecin , S T Coelho , M Zhang . Sugarcane for bioethanol production: potential of bagasse in Chinese perspective. Renewable & Sustainable Energy Reviews, 2020, 133: 110296
https://doi.org/10.1016/j.rser.2020.110296
11 S Vieira , M V Barros , A C N Sydney , C M Piekarski , A C de Francisco , L P S Vandenberghe , E B Sydney . Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, 2020, 299: 122635
https://doi.org/10.1016/j.biortech.2019.122635
12 C Sun , G Song , Z Pan , M Tu , M Kharaziha , X Zhang , P L Show , F Sun . Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 2023, 368: 128356
https://doi.org/10.1016/j.biortech.2022.128356
13 J Dharmaraja , S Shobana , S Arvindnarayan , R R Francis , R B Jeyakumar , R G Saratale , V Ashokkumar , S K Bhatia , V Kumar , G Kumar . Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource Technology, 2023, 369: 128328
https://doi.org/10.1016/j.biortech.2022.128328
14 X Zheng , X Xian , L Hu , S Tao , X Zhang , Y Liu , X Lin . Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresource Technology, 2021, 339: 125575
https://doi.org/10.1016/j.biortech.2021.125575
15 Y Liu , X Zheng , S Tao , L Hu , X Zhang , X Lin . Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 2021, 177: 259–267
https://doi.org/10.1016/j.renene.2021.05.131
16 L Zhao , Z F Sun , C C Zhang , J Nan , N Q Ren , D J Lee , C Chen . Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresource Technology, 2022, 343: 126123
https://doi.org/10.1016/j.biortech.2021.126123
17 A R Mankar , A Pandey , A Modak , K K Pant . Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresource Technology, 2021, 334: 125235
https://doi.org/10.1016/j.biortech.2021.125235
18 B Basak , R Kumar , A Bharadwaj , T H Kim , J R Kim , M Jang , S E Oh , H S Roh , B H Jeon . Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 2023, 369: 128413
https://doi.org/10.1016/j.biortech.2022.128413
19 M Wu , L Gong , C Ma , Y C He . Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technology, 2021, 340: 125695
https://doi.org/10.1016/j.biortech.2021.125695
20 F Xia , J Gong , J Lu , Y Cheng , S Zhai , Q An , H Wang . Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresource Technology, 2020, 297: 122498
https://doi.org/10.1016/j.biortech.2019.122498
21 C Huang , Y Zhan , J Wang , J Cheng , X Meng , L Liang , F Liang , Y Deng , G Fang , A J Ragauskas . Valorization of bamboo biomass using combinatorial pretreatments. Green Chemistry, 2022, 24(9): 3736–3749
https://doi.org/10.1039/D2GC00301E
22 X Xian , X Zheng , J Huang , N Qureshi , B Li , J Liu , Y Zeng , N N Nichols , X Lin . Detoxification of high solid-liquid hydrothermal pretreated sugar cane bagasse by chromatographic adsorption for cellulosic ethanol production. Industrial Crops and Products, 2023, 202: 117048
https://doi.org/10.1016/j.indcrop.2023.117048
23 X Xian , L Fang , Y Zhou , B Li , X Zheng , Y Liu , X Lin . Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation (Basel, Switzerland), 2022, 8(8): 371
https://doi.org/10.3390/fermentation8080371
24 A SluiterB HamesR RuizC ScarlataJ SluiterD TempletonD Crocker. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510–42618. 2008
25 S Diaz , Z Ortega , A N Benitez , D Costa , F Carvalheiro , M C Fernandes , L C Duarte . Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. Waste Management (New York, N.Y.), 2021, 119: 306–314
https://doi.org/10.1016/j.wasman.2020.09.034
26 X J Ma , S L Cao , L Lin , X L Luo , H C Hu , L H Chen , L L Huang . Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresource Technology, 2013, 148: 408–413
https://doi.org/10.1016/j.biortech.2013.09.021
27 G Batista , R B A Souza , B Pratto , M S R Dos Santos-Rocha , A J G Cruz . Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 2019, 275: 321–327
https://doi.org/10.1016/j.biortech.2018.12.073
28 H M Zabed , S Akter , J Yun , G Zhang , F N Awad , X Qi , J N Sahu . Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable & Sustainable Energy Reviews, 2019, 105: 105–128
https://doi.org/10.1016/j.rser.2019.01.048
29 S D Shinde , X Meng , R Kumar , A J Ragauskas . Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205
https://doi.org/10.1039/C8GC00353J
30 F Hu , S Jung , A Ragauskas . Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 2012, 117: 7–12
https://doi.org/10.1016/j.biortech.2012.04.037
31 R Wu , X Wang , Y Zhang , Y Fu , M Qin . Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 126533
https://doi.org/10.1016/j.biortech.2021.126533
32 R Ceaser , S Rosa , D Montane , M Constanti , F Medina . Optimization of softwood pretreatment by microwave-assisted deep eutectic solvents at high solids loading. Bioresource Technology, 2023, 369: 128470
https://doi.org/10.1016/j.biortech.2022.128470
33 A Varilla-Mazaba , J A Raggazo-Sánchez , M Calderón-Santoyo , J Gómez-Rodríguez , M G Aguilar-Uscanga . Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Industrial Crops and Products, 2022, 184: 115040
https://doi.org/10.1016/j.indcrop.2022.115040
34 A Lu , X Yu , L Chen , C E Okonkwo , P Otu , C Zhou , Q Lu , Q Sun . Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells. Renewable Energy, 2023, 205: 617–626
https://doi.org/10.1016/j.renene.2023.01.075
35 Y Wang , X Meng , K Jeong , S Li , G Leem , K H Kim , Y Pu , A J Ragauskas , C G Yoo . Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12542–12553
https://doi.org/10.1021/acssuschemeng.0c03533
36 M Jin , L da Costa Sousa , C Schwartz , Y He , C Sarks , C Gunawan , V Balan , B E Dale . Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 2016, 18(4): 957–966
https://doi.org/10.1039/C5GC02433A
37 B V Ayodele , M A Alsaffar , S I Mustapa . An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. Journal of Cleaner Production, 2020, 245: 118857
https://doi.org/10.1016/j.jclepro.2019.118857
38 B Shen , S Hou , Y Jia , C Yang , Y Su , Z Ling , C Huang , C Lai , Q Yong . Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresource Technology, 2021, 341: 125787
https://doi.org/10.1016/j.biortech.2021.125787
39 R Orij , S Brul , G J Smits . Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta. G, General Subjects, 2011, 1810(10): 933–944
https://doi.org/10.1016/j.bbagen.2011.03.011
40 N P Mira , M Palma , J F Guerreiro , I Sa-Correia . Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 2010, 9(1): 79–91
https://doi.org/10.1186/1475-2859-9-79
41 X Liu , B Jia , X Sun , J Ai , L Wang , C Wang , F Zhao , J Zhan , W Huang . Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 2015, 80(4): M800–M808
https://doi.org/10.1111/1750-3841.12813
42 V Kumar , S K Yadav , J Kumar , V Ahluwalia . A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 2020, 299: 122633
https://doi.org/10.1016/j.biortech.2019.122633
43 L J Jonsson , B Alriksson , N O Nilvebrant . Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6(1): 16
https://doi.org/10.1186/1754-6834-6-16
44 S Y Lee , H U Kim , T U Chae , J S Cho , J W Kim , J H Shin , D I Kim , Y S Ko , W D Jang , Y S Jang . Jang Y S. A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2(1): 18–33
https://doi.org/10.1038/s41929-018-0212-4
45 R Wang , K Wang , M Zhou , J Xu , J Jiang . Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresource Technology, 2021, 328: 124873
https://doi.org/10.1016/j.biortech.2021.124873
46 Q Ji , X Yu , A E G A Yagoub , L Chen , C Zhou . Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 2020, 149: 112357
https://doi.org/10.1016/j.indcrop.2020.112357
47 V Z Ong , T Y Wu , K K L Chu , W Y Sun , K P Y Shak . A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Industrial Crops and Products, 2021, 160: 112974
https://doi.org/10.1016/j.indcrop.2020.112974
48 G Shang , C Zhang , F Wang , L Qiu , X Guo , F Xu . Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environmental Science and Pollution Research International, 2019, 26(28): 29424–29434
https://doi.org/10.1007/s11356-019-06111-z
49 J Xu , P Zhou , X Liu , L Yuan , C Zhang , L Dai . Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem, 2021, 14(13): 2740–2748
https://doi.org/10.1002/cssc.202100765
[1] FCE-23116-OF-XX_suppl_1 Download
[1] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[2] Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis[J]. Front. Chem. Sci. Eng., 2024, 18(7): 77-.
[3] Jibin Zhou, Xue Li, Duiping Liu, Feng Wang, Tao Zhang, Mao Ye, Zhongmin Liu. A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process[J]. Front. Chem. Sci. Eng., 2024, 18(4): 42-.
[4] Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang, Ningbo Gao. Machine learning facilitated the modeling of plastics hydrothermal pretreatment toward constructing an on-ship marine litter-to-methanol plant[J]. Front. Chem. Sci. Eng., 2024, 18(10): 117-.
[5] Quan Liu, Xian Wang, Yanan Guo, Gongping Liu, Kai-Ge Zhou. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation[J]. Front. Chem. Sci. Eng., 2023, 17(3): 347-357.
[6] Deng Pan, Jiahua Zhou, Bo Peng, Shengping Wang, Yujun Zhao, Xinbin Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid[J]. Front. Chem. Sci. Eng., 2022, 16(3): 397-407.
[7] Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma. Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde yield in methanol partial oxidation[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1099-1110.
[8] Chaoli Tong, Jiachang Zuo, Danlu Wen, Weikun Chen, Linmin Ye, Youzhu Yuan. Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1075-1087.
[9] Quan Liu, Mingqiang Chen, Yangyang Mao, Gongping Liu. Theoretical study on Janus graphene oxide membrane for water transport[J]. Front. Chem. Sci. Eng., 2021, 15(4): 913-921.
[10] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[11] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[12] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[13] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[14] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[15] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed