Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 110    https://doi.org/10.1007/s11705-024-2461-x
Polyethylene hydrogenolysis over bimetallic catalyst with suppression of methane formation
Xiangkun Zhang, Bingyan Sun, Zhigang Zhao, Tan Li, Marc Mate, Kaige Wang()
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 Download: PDF(1627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogenolysis has been explored as a promising approach for plastic chemical recycling. Noble metals, such as Ru and Pt, are considered effective catalysts for plastic hydrogenolysis, however, they result in a high yield of low-value gaseous products. In this research, an efficient bimetallic catalyst was developed by separate impregnation of Ni and Ru on SiO2 support resulting in liquid products yield of up to 83.1 C % under mild reaction conditions, compared to the 65.5 C % yield for the sole noble metal catalyst. The carbon distribution of the liquid products from low density polyethylene hydrogenolysis with Ni-modified catalyst also shifted to a heavier fraction, compared to that with Ru catalyst. Meanwhile, the NiRu catalyst exhibited excellent performance in suppressing the cleavage of the end-chain C–C bond, leading to a methane yield of only 10.4 C %, which was 69% lower than that of the Ru/SiO2 catalyst. Temperature programmed reduction and desorption of hydrogen and propane were further conducted to reveal the detailed mechanism of low density polyethylene hydrogenolysis over the bimetallic catalyst. The results suggested that the Ni-Ru alloy exhibited stronger H adsorption properties indicating improved hydrogen coverage on the catalyst surface thus enhancing the desorption of reaction intermediates. The carbon number distribution was ultimately skewed toward heavier liquid products.

Keywords hydrogenolysis      polyethylene      bimetallic catalyst      depolymerization mechanism     
Corresponding Author(s): Kaige Wang   
Just Accepted Date: 10 May 2024   Issue Date: 28 June 2024
 Cite this article:   
Xiangkun Zhang,Bingyan Sun,Zhigang Zhao, et al. Polyethylene hydrogenolysis over bimetallic catalyst with suppression of methane formation[J]. Front. Chem. Sci. Eng., 2024, 18(10): 110.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2461-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/110
Fig.1  XRD patterns of 5Ru/SiO2 (black), 0.5Ni5Ru/SiO2 (red), 1Ni5Ru/SiO2 (blue), 2Ni5Ru/SiO2 (green), and 3Ni5Ru/SiO2 (purple) catalysts with an expanded view of the (101) peaks.
Fig.2  Structural characterization of Ru/SiO2 catalyst and Ni-modified Ru/SiO2 catalyst. (a) TEM image of Ru/SiO2 catalyst with specific lattice structure of Ru (101) crystal plane. (b) Morphology of the Ru/SiO2 catalyst with particle size distribution statistics. (c) High magnification image of the 1Ni5Ru/SiO2 catalyst showing a lattice spacing of 0.203 nm, consistent with Ni (111), and a lattice spacing of 0.206, consistent with Ru (101), indicating a Ni-Ru alloy structure. (d) Morphology of the 1Ni5Ru/SiO2 catalyst with partical size distribution statistics. (e) Correspinding EDS elemental mapping images of Si, O, Ru, and Ni in 1Ni5Ru/SiO2 catalyst.
Fig.3  XPS pattern of (a) Ru and (b) Ni in the catalyst.
Fig.4  Effect of (a, b) temperature, (c, d) initial hydrogen pressure, and (e, f) reaction time on LDPE hydrogenolysis over Ru/SiO2 catalyst. The three graphs (a, c, and e) on the first line show yields of non-solid products, which consist of liquid (solid bars) and gaseous (faded bars) products, under different conditions. The left three graphs (b, d, and f) on the second line present the carbon distributions of the gas products. Reactions of (a, b) were conducted under 3 MPa H2 for 4 h. Reactions of (c, d) were conducted under 250 °C for 4 h. Reactions of (e, f) were conducted under 250 °C and 3 MPa H2. All reactions were performed with 1.5 g LDPE and 50 mg catalyst.
Fig.5  Effect of Ni loadings in NiRu/SiO2 catalyst on LDPE hydrogenolysis. Yields and selectivities for hydrogenolysis over 5Ru/SiO2 (pink), 0.5Ni5Ru/SiO2 (blue), 1Ni5Ru/SiO2 (green), 2Ni5Ru/SiO2 (purple), and 3Ni5Ru/SiO2 (yellow) catalyst. (a) Yields of non-solid products, which consist of liquid (solid bars) and gaseous (faded bars) products. (b) Yields to non-gas products by fuel range: light liquids, C4–C22; wax, C23–C45; solid residue, above C45. (c) Carbon distributions of the gas product. (d) Carbon distributions of the liquid products. Reactions were performed at 250 °C and 3 MPa H2 with 1.5 g LDPE and 50 mg catalyst for 4 h.
Fig.6  (a) H2-TPR and (b) H2-TPD results of 1Ni5Ru/SiO2 and 5Ru/SiO2 catalysts.
Fig.7  Mass selective detector signal graphs for nuclei with m/z ratios of (a) 28 and (b) 44.
Fig.8  Schematic of the proposed reaction mechanisms. (a) Conversion process from LDPE to desired liquid hydrocarbons over 1Ni5Ru/SiO2 catalyst. (b) Cascade hydrogenolysis converts LDPE to methane and light hydrocarbons over a 5Ru/SiO2 catalyst.
Fig.9  Carbon distribution of the reaction products of the model compound.
1 A Rahimi , J M García . Chemical recycling of waste plastics for new materials production. Nature Reviews. Chemistry, 2017, 1(6): 1–11
https://doi.org/10.1038/s41570-017-0046
2 W Liu , H Feng , Y Yang , Y Niu , L Wang , P Yin , S Hong , B Zhang , X Zhang , M Wei . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
https://doi.org/10.1038/s41467-022-30536-9
3 X Chen , Y Wang , L Zhang . Recent progress in the chemical upcycling of plastic wastes. ChemSusChem, 2021, 14(19): 4137–4151
https://doi.org/10.1002/cssc.202100868
4 J E Rorrer , Valls C Troyano , G T Beckham , Leshkov Y Román . Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. ACS Sustainable Chemistry & Engineering, 2021, 9(35): 11661–11666
https://doi.org/10.1021/acssuschemeng.1c03786
5 K L Sánchez-Rivera , G W Huber . Catalytic hydrogenolysis of polyolefins into alkanes. ACS Central Science, 2021, 7(1): 17–19
https://doi.org/10.1021/acscentsci.0c01637
6 R Chen , L Cheng , J Gu , H Yuan , Y Chen . Mechanistic understanding of metal-acid synergetic hydroconversion of polyethylene under mild conditions over a Ru/MOR catalyst. Energy Conversion and Management, 2024, 300: 117983
https://doi.org/10.1016/j.enconman.2023.117983
7 J Yang , Y Yang , W M Wu , J Zhao , L Jiang . Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48(23): 13776–13784
https://doi.org/10.1021/es504038a
8 S MukherjeeU RoyChaudhuriP P KunduU RoyChaudhuriP P Kundu. Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. Journal of Chemical Technology and Biotechnology, 2018, 93(5): 1300–1311
9 J E Rorrer , G T Beckham , Leshkov Y Román . Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au, 2021, 1(1): 8–12
https://doi.org/10.1021/jacsau.0c00041
10 M Tamura , S Miyaoka , Y Nakaji , M Tanji , S Kumagai , Y Nakagawa , T Yoshioka , K Tomishige . Structure-activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts. Applied Catalysis B: Environmental, 2022, 318: 121870
https://doi.org/10.1016/j.apcatb.2022.121870
11 L Chen , L C Meyer , L Kovarik , D Meira , Hernandez X I Pereira , H Shi , K Khivantsev , O Y Gutiérrez , J Szanyi . Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catalysis, 2022, 12(8): 4618–4627
https://doi.org/10.1021/acscatal.2c00684
12 T Kim , H Nguyen Phu , T Kwon , K H Kang , I Ro . Investigating the impact of TiO2 crystalline phases on catalytic properties of Ru/TiO2 for hydrogenolysis of polyethylene plastic waste. Environmental Pollution, 2023, 331: 121876
https://doi.org/10.1016/j.envpol.2023.121876
13 J E Rorrer , A M Ebrahim , Y Questell Santiago , J Zhu , C Troyano Valls , A S Asundi , A E Brenner , S R Bare , C J Tassone , G T Beckham . et al.. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catalysis, 2022, 12(22): 13969–13979
https://doi.org/10.1021/acscatal.2c03596
14 H Nguyen-Phu , T Kwon , T Kim , L Thi Do , K Hyuk Kang , I Ro . Investigating the influence of Ru structures and supports on hydrogenolysis of polyethylene plastic waste. Chemical Engineering Journal, 2023, 475: 146076
https://doi.org/10.1016/j.cej.2023.146076
15 X Wu , A Tennakoon , R Yappert , M Esveld , M S Ferrandon , R A Hackler , A M LaPointe , A Heyden , M Delferro , B Peters . et al.. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. Journal of the American Chemical Society, 2022, 144(12): 5323–5334
https://doi.org/10.1021/jacs.1c11694
16 C Wang , T Xie , P A Kots , B C Vance , K Yu , P Kumar , J Fu , S Liu , G Tsilomelekis , E A Stach . et al.. Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia. JACS Au, 2021, 1(9): 1422–1434
https://doi.org/10.1021/jacsau.1c00200
17 F F Tao . Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chemical Society Reviews, 2012, 41(24): 7977–7979
https://doi.org/10.1039/c2cs90093a
18 Z Luo , Z Zheng , L Li , Y T Cui , C Zhao . Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures. ACS Catalysis, 2017, 7(12): 8304–8313
https://doi.org/10.1021/acscatal.7b02317
19 T Li , J Su , H Wang , C Wang , W Xie , K Wang . Catalytic hydropyrolysis of lignin using NiMo-doped catalysts: catalyst evaluation and mechanism analysis. Applied Energy, 2022, 316: 119115
https://doi.org/10.1016/j.apenergy.2022.119115
20 W Li , L Ye , P Long , J Chen , H Ariga , K Asakura , Y Yuan . Efficient Ru-Fe catalyzed selective hydrogenolysis of carboxylic acids to alcoholic chemicals. RSC Advances, 2014, 4(55): 29072–29082
https://doi.org/10.1039/C4RA03201B
21 Ş SayanŞ SüzerD O Uner. XPS and in-situ IR investigation of catalyst. Journal of Molecular Structure, 1997, 410–411: 111–114
22 A Khaniya , S Ezzat , Q Cumston , K R Coffey , W Kaden . Ru(0001) and SiO2/Ru(0001): XPS study. Surface Science Spectra, 2020, 27(2): 024009
https://doi.org/10.1116/6.0000172
23 P A Kots , S Liu , B C Vance , C Wang , J D Sheehan , D G Vlachos . Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catalysis, 2021, 11(13): 8104–8115
https://doi.org/10.1021/acscatal.1c00874
24 Y Nakagawa , S Oya , D Kanno , Y Nakaji , M Tamura , K Tomishige . Regioselectivity and reaction mechanism of Ru-catalyzed hydrogenolysis of squalane and model alkanes. ChemSusChem, 2017, 10(1): 189–198
https://doi.org/10.1002/cssc.201601204
25 G Leclercq , L Leclercq , L M Bouleau , S Pietrzyk , R Maurel . Hydrogenolysis of saturated hydrocarbons: IV. Kinetics of the hydrogenolysis of ethane, propane, butane, and isobutane over nickel. Journal of Catalysis, 1984, 88(1): 8–17
https://doi.org/10.1016/0021-9517(84)90044-7
26 Y Nakaji , Y Nakagawa , M Tamura , K Tomishige . Regioselective hydrogenolysis of alga-derived squalane over silica-supported ruthenium-vanadium catalyst. Fuel Processing Technology, 2018, 176: 249–257
https://doi.org/10.1016/j.fuproc.2018.03.038
27 C Jia , S Xie , W Zhang , N N Intan , J Sampath , J Pfaendtner , H Lin . Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catalysis, 2021, 1(2): 437–455
https://doi.org/10.1016/j.checat.2021.04.002
28 B C Vance , P A Kots , C Wang , J E Granite , D G Vlachos . Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism. Applied Catalysis B: Environmental, 2023, 322: 122138
https://doi.org/10.1016/j.apcatb.2022.122138
29 S D Jackson , G J Kelly , G Webb . Supported nickel catalysts: hydrogenolysis of ethane, propane, n-butane and iso-butane over alumina-, molybdena-, and silica-supported nickel catalysts. Physical Chemistry Chemical Physics, 1999, 1(10): 2581–2587
https://doi.org/10.1039/a809297d
30 Y Geng , H Li . Hydrogen spillover-enhanced heterogeneously catalyzed hydrodeoxygenation for biomass upgrading. ChemSusChem, 2022, 15(8): e202102495
https://doi.org/10.1002/cssc.202102495
31 H Wang , H Ruan , M Feng , Y Qin , H Job , L Luo , C Wang , M H Engelhard , E Kuhn , X Chen . et al.. One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on zeolite Y. ChemSusChem, 2017, 10(8): 1846–1856
https://doi.org/10.1002/cssc.201700160
32 K Shun , K Mori , S Masuda , N Hashimoto , Y Hinuma , H Kobayashi , H Yamashita . Revealing hydrogen spillover pathways in reducible metal oxides. Chemical Science, 2022, 13(27): 8137–8147
https://doi.org/10.1039/D2SC00871H
33 R Prins . Hydrogen spillover. Facts and fiction. Chemical Reviews, 2012, 112(5): 2714–2738
https://doi.org/10.1021/cr200346z
34 W Karim , C Spreafico , A Kleibert , J Gobrecht , J VandeVondele , Y Ekinci , J A van Bokhoven . Catalyst support effects on hydrogen spillover. Nature, 2017, 541(7635): 68–71
https://doi.org/10.1038/nature20782
35 M Xiong , Z Gao , Y Qin . Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catalysis, 2021, 11(5): 3159–3172
https://doi.org/10.1021/acscatal.0c05567
36 S Yang , H Kim , D H Kim . Improving the efficiency of Ru metal supported on SiO2 in liquid-phase hydrogenation of gluconic acid by adding activated carbon. Chemical Engineering Journal, 2022, 450: 138149
https://doi.org/10.1016/j.cej.2022.138149
37 H Kim , S Yang , Y H Lim , J Lee , J M Ha , D H Kim . Enhancement in the metal efficiency of Ru/TiO2 catalyst for guaiacol hydrogenation via hydrogen spillover in the liquid phase. Journal of Catalysis, 2022, 410: 93–102
https://doi.org/10.1016/j.jcat.2022.04.017
38 B CoqF Figueras. Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coordination Chemistry Reviews, 1998, 178–180: 1753–1783
39 C Li , M Yang , Z Liu , Z Zhang , T Zhu , X Chen , Y Dong , H Cheng . Ru-Ni/Al2O3 bimetallic catalysts with high catalytic activity for N-propylcarbazole hydrogenation. Catalysis Science & Technology, 2020, 10(7): 2268–2276
https://doi.org/10.1039/C9CY02528F
40 Q Kang , M Chu , P Xu , X Wang , S Wang , M Cao , O Ivasenko , T K Sham , Q Zhang , Q Sun . et al.. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angewandte Chemie International Edition, 2023, 62(47): e202313174
https://doi.org/10.1002/anie.202313174
41 C Wang , K Yu , B Sheludko , T Xie , P A Kots , B C Vance , P Kumar , E A Stach , W Zheng , D G Vlachos . A general strategy and a consolidated mechanism for low-methane hydrogenolysis of polyethylene over ruthenium. Applied Catalysis B: Environmental, 2022, 319: 121899
https://doi.org/10.1016/j.apcatb.2022.121899
42 J A Sun , P A Kots , Z R Hinton , N S Marinkovic , L Ma , S N Ehrlich , W Zheng , T H I III Epps , L T J Korley , D G Vlachos . Size and structure effects of carbon-supported ruthenium nanoparticles on waste polypropylene hydrogenolysis activity, selectivity, and product microstructure. ACS Catalysis, 2024, 14(5): 3228–3240
https://doi.org/10.1021/acscatal.3c05927
43 H Ji , X Wang , X Wei , Y Peng , S Zhang , S Song , H Zhang . Boosting polyethylene hydrogenolysis performance of Ru-CeO2 catalysts by finely regulating the Ru sizes. Small, 2023, 19(35): 2300903
https://doi.org/10.1002/smll.202300903
44 P A Kots , T Xie , B C Vance , C M Quinn , M D de Mello , J A Boscoboinik , C Wang , P Kumar , E A Stach , N S Marinkovic . et al.. Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts. Nature Communications, 2022, 13(1): 5186
https://doi.org/10.1038/s41467-022-32934-5
[1] FCE-24015-OF-ZX_suppl_1 Download
[1] Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong. Synergistic effects and kinetics analysis for co-pyrolysis of vacuum residue and plastics[J]. Front. Chem. Sci. Eng., 2024, 18(5): 55-.
[2] Rohan Ali, Yifei Zhang. Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases[J]. Front. Chem. Sci. Eng., 2024, 18(12): 149-.
[3] Huaping Lin, Likai Zhu, Ye Liu, Vasilevich Sergey Vladimirovich, Bilainu Oboirien, Yefeng Zhou. Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41[J]. Front. Chem. Sci. Eng., 2024, 18(11): 125-.
[4] Gianluca Landi, Giulia Sorbino, Fortunato Migliardini, Giovanna Ruoppolo, Almerinda Di Benedetto. Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic effect[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1962-1972.
[5] Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 709-719.
[6] Yong Luo, Yuhui Xie, Renjie Chen, Ruizhi Zheng, Hua Wu, Xinxin Sheng, Delong Xie, Yi Mei. A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1332-1345.
[7] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[8] Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
[9] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[10] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
[11] Jiquan MA, Junhong ZHAO, Zhongbin REN, Lei LI. Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes[J]. Front Chem Sci Eng, 2012, 6(3): 301-310.
[12] Liuzhong LI, Aiyou HAO, Ruihua CHENG, Boping LIU. Gas phase ethylene polymerization over SiO2-supported organosilyl chromate UCC S-2 catalyst using a high-speed stirred-autoclave reactor[J]. Front Chem Sci Eng, 2011, 5(1): 89-95.
[13] Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI. Ni-Co bimetallic catalyst for CH4 reforming with CO2[J]. Front Chem Eng Chin, 2010, 4(4): 476-480.
[14] ZHANG Mei, CUI Zhenyu, ZHU Baoku, HAN Gaige, XU Youyi, ZHANG Aiqing. Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction[J]. Front. Chem. Sci. Eng., 2008, 2(1): 89-94.
[15] CHEN Gufeng, ZHANG Yi, XU Jiarui, ZHU Yafei. Grafting of PEG400 onto the surface of LLDPE/SMA film[J]. Front. Chem. Sci. Eng., 2007, 1(2): 128-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed