Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (4) : 1008-1020    https://doi.org/10.1007/s11705-020-1996-8
RESEARCH ARTICLE
Trihydrazinotriazine-grafting Fe3O4/SiO2 core-shell nanoparticles with expanded porous structure for organic reactions
Jamal Rahimi, Seyedeh Shadi Mirmohammadi, Ali Maleki()
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
 Download: PDF(4484 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study focuses on the synthesis and characterization of a novel magnetic nanocomposite 2,4,6-trihydrazino-1,3,5-triazine (THDT)-functionalized with silica-coated iron oxide magnetic nanoparticles (MNPs). This nanocomposite has porous morphology decorated with the spherical MNPs. Through co-precipitation of iron salts, MNPs were obtained. The prepared THDT was placed on the chlorine surface-modified MNPs. The present environment-friendly nanocatalyst intensely accelerated the synthesis of highly functionalized tetrahydrobenzo[b]pyran derivatives as well as reduced the reaction times and increased yields of the products.

Keywords trihydrazino-triazine      porous      magnetic nanocatalyst      green chemistry      tetrahydrobenzo[b]pyrans     
Corresponding Author(s): Ali Maleki   
Just Accepted Date: 05 November 2020   Online First Date: 16 December 2020    Issue Date: 04 June 2021
 Cite this article:   
Jamal Rahimi,Seyedeh Shadi Mirmohammadi,Ali Maleki. Trihydrazinotriazine-grafting Fe3O4/SiO2 core-shell nanoparticles with expanded porous structure for organic reactions[J]. Front. Chem. Sci. Eng., 2021, 15(4): 1008-1020.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1996-8
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I4/1008
Fig.1  Scheme 1 Fe3O4@SiO2—THDT catalyst used in the synthesis of tetrahydrobenzo[b]pyrans 4a-4p.
Fig.2  Comparison of FTIR spectra for (a) Fe3O4, (b) Fe3O4@SiO2, (c) Fe3O4@SiO2-Cl, (d) Fe3O4@SiO2-THDT and (e) recycled-Fe3O4@SiO2-THDT.
Fig.3  EDX spectra of (a) Fe3O4@SiO2, (b) Fe3O4@SiO2-Cl, (c) Fe3O4@SiO2-THDT and (d)recycled-Fe3O4-SiO2@THDT; (e) elemental maps of Fe, O, Si, C, and N atoms (The scale bar is 1 mm. y-axis: number of counts (intensity), x-axis: energy (keV)).
Fig.4  SEM images of (a) Fe3O4@SiO2-Cl microsphere, (b, c) Fe3O4@SiO2—THDT.
Fig.5  VSM magnetization curves of (a) Fe3O4, (b) Fe3O4@SiO2-Cl, (c) Fe3O4@SiO2-THDT and (d) recycled-Fe3O4@SiO2-THDT.
Fig.6  TGA curve of Fe3O4@SiO2—THDT.
Fig.7  The XRD pattern for Fe3O4@SiO2—THDT.
Fig.8  Raman spectra of (a) Fe3O4, (b) Fe3O4@SiO2, (c) Fe3O4@SiO2-Cl, (d) Fe3O4@SiO2-THDT and (e) recycled-Fe3O4@SiO2—THDT.
Entry Solvent Catalyst Catalyst/g Time/min Yield/% a)
1 H2O ? ? 60 Trace
2 H2O Fe3O4@SiO2-THDT 0.04 60 21
3 EtOH THDT 0.04 60 36
4 EtOH Fe3O4 0.04 60 27
5 EtOH Fe3O4@SiO2 0.04 60 45
6 EtOH Fe3O4@SiO2-Cl 0.04 60 75
7 EtOH Fe3O4@SiO2-Cl 0.06 60 65
8 EtOH Fe3O4@SiO2-THDT 0.03 60 90
9 EtOH Fe3O4@SiO2-THDT 0.04 60 93
10 EtOH Fe3O4@SiO2-THDT 0.04 10 94b)
11 EtOH Fe3O4@SiO2-THDT 0.06 10 90
Tab.1  Reaction optimization of 4h catalyzed by the Fe3O4@SiO2-THDT
Fig.9  Scheme 2 Synthesis of tetrahydrobenzo[b]pyrans 4a?4p using as-prepared catalyst Fe3O4@SiO2-THDT at 75 °C.
Entry Ar 1,3- Dicarbonyl compound Product Time/min Yield/% a) Mp/°C
Found Reported
1 4-Chlorophenyl Dimedone 4a 10 94 218?220 217?219 [22]
2 2-Methoxyphenyl Dimedone 4b 16 84 203?205 200?201[22]
3 4-Hydroxyphenyl Dimedone 4c 15 87 206?210 205?206 [24]
4 3-Hydroxyphenyl Dimedone 4d 20 80 229-233 231?234 [22]
5 2-Methylphenyl Dimedone 4e 25 82 207?210 205?207 [25]
6 3-Flourophenyl Dimedone 4f 5 96 209?211 210?212 [23]
7 3-Nitrophenyl Dimedone 4g 9 95 212?214 213-216 [22]
8 Phenyl Dimedone 4h 10 93 231?233 229?231 [24]
9 2,4-Dichlorophenyl Dimedone 4i 10 84 180?184 183?186 [23]
10 4-Cyanophenyl Dimedone 4j 6 97 231?232 230?232 [22]
11 2-Nitrophenyl Ethyl acetoacetate 4k 15 91 181?183 177?180 [26]
12 3-Bromophenyl Ethyl acetoacetate 4l 12 86 169?171 166-167 [27]
13 2-Chlorophenyl Dimedone 4m 15 80 290?292 289?291 [24]
14 3-Bromophenyl Dimedone 4n 10 90 229?231 228?230 [23]
15 4-(Dimethylamino)phenyl Dimedone 4o 7 93 214?216 212?213 [22]
16 Phenyl Ethyl acetoacetate 4p 9 95 190?192 191?193 [25]
Tab.2  Reaction optimization of the synthesis of tetrahydrobenzo[b]pyrans 4a?4p using as-prepared catalyst Fe3O4@SiO2-THDT at 75 °C
Fig.10  Scheme 3 Proposed mechanism for the synthesis of 4a–4p using Fe3O4@SiO2-THDT.
Fig.11  Diagram of the recycled Fe3O4@SiO2-THDT nanocatalyst in the synthesis of 4h.
1 L Wu, A Mendoza-Garcia, Q Li, S Sun. Organic phase syntheses of magnetic nanoparticles and their applications. Chemical Reviews, 2016, 116: 10473–10512
2 V Polshettiwar, R Luque, A Fihri, H Zhu, M Bouhrara, J M Basset. Magnetically recoverable nanocatalysts. Chemical Reviews, 2011, 111: 3036–3075
3 A Maleki, J Rahimi, O M Demchuk, A Z Wilczewska, R Jasiński. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrasonics Sonochemistry, 2018, 43: 262–271
4 D Wang, D Astruc. Fast-growing field of magnetically recyclable nanocatalysts. Chemical Reviews, 2014, 114: 6949–6985
5 Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
6 E Yuan, X Ren, L Wang, W Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst. Frontiers of Chemical Science and Engineering, 2017, 11(2): 177–184
https://doi.org/10.1007/s11705-016-1604-0
7 D Wu, F Xu, B Sun, R Fu, H He, K Matyjaszewski. Design and preparation of porous polymers. Chemical Reviews, 2012, 112(7): 3959–4015
https://doi.org/10.1021/cr200440z
8 L Bo, S Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392
https://doi.org/10.1007/s11705-018-1738-3
9 M Mohapatra, S Anand. Synthesis and applications of nano-structured iron oxides/hydroxides—a review. International Journal of Engineering Science and Technology, 2010, 2(8): 127–146
10 A Maleki, S Azadegan, J Rahimi. Gallic acid grafted to amine-functionalized magnetic nanoparticles as a proficient catalyst for environmentally friendly synthesis of a-aminonitriles. Applied Organometallic Chemistry, 2019, 33(5): e4810
https://doi.org/10.1002/aoc.4810
11 A A Mohammadi, M R Asghariganjeh, A Hadadzahmatkesh. Synthesis of tetrahydrobenzo[b]pyran under catalysis of NH4Al(SO4)2·12H2O (Alum). Arabian Journal of Chemistry, 2017, 10: 2213–2216
https://doi.org/10.1016/j.arabjc.2013.07.055
12 A Maleki, J Rahimi, Z Hajizadeh, M Niksefat. Synthesis and characterization of an acidic nanostructure based on magnetic polyvinyl alcohol as an efficient heterogeneous nanocatalyst for the synthesis of a-aminonitriles. Journal of Organometallic Chemistry, 2019, 881: 58–65
https://doi.org/10.1016/j.jorganchem.2018.12.002
13 A Maleki, M Niksefat, J Rahimi, Z Hajizadeh. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chemistry, 2019, 13(1): 19
https://doi.org/10.1186/s13065-019-0538-2
14 A Maleki, J Rahimi. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. Journal of Porous Materials, 2018, 25(6): 1–8
https://doi.org/10.1007/s10934-018-0592-5
15 D Elhamifar, Z Ramazani, M Norouzi, R Mirbagheri. Magnetic iron oxide/phenylsulfonic acid: a novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. Journal of Colloid and Interface Science, 2018, 511: 392–401
https://doi.org/10.1016/j.jcis.2017.10.013
16 A Maleki, N Hamidi, S Maleki, J Rahimi. Surface modified SPIONs-Cr (VI) ions-immobilized organic-inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent-free conditions at room temperature. Applied Organometallic Chemistry, 2017, 32(4): e4245
https://doi.org/10.1002/aoc.4245
17 M Dinari, M Hatami. Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal. Journal of Environmental Chemical Engineering, 2019, 7(1): 102907
https://doi.org/10.1016/j.jece.2019.102907
18 R Taheri-Ledari, J Rahimi, A Maleki. Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: highlighting the efficiency of ultrasonication. Materials Research Express, 2020, 7(1): 015067
https://doi.org/10.1088/2053-1591/ab69cc
19 F Yaoting, L Gang, L Zifeng, H Hongwei, M Hairong. Synthesis, structure and third-order nonlinear optical properties of 1,3,5-triazine-based Zn(II) three-dimensional supramolecule. Journal of Molecular Structure, 2004, 693(1-3): 217–224
https://doi.org/10.1016/j.molstruc.2004.03.008
20 L Zhuang, W Zhang, Y Zhao, H Shen, H Lin, J Liang. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Scientific Reports, 2015, 5(1): 9320
https://doi.org/10.1038/srep09320
21 H Huang, C Shende, A Sengupta, F Inscore, C Brouillette, W Smith, S Farquharson. Surface-enhanced Raman spectra of melamine and other chemicals using a 1550 nm (retina-safe) laser. Journal of Raman Spectroscopy : JRS, 2012, 43(6): 701–705
https://doi.org/10.1002/jrs.3079
22 A Maleki, R Ghalavand, R Firouzi Haji. Synthesis and characterization of the novel diamine-functionalized Fe3O4@SiO2 nanocatalyst and its application for one-pot three-component synthesis of chromenes. Applied Organometallic Chemistry, 2018, 32(1): e3916
https://doi.org/10.1002/aoc.3916
23 A Khazaei, F Gholami, V Khakyzadeh, A R Moosavi-Zare, J Afsar. Magnetic core-shell titanium dioxide nanoparticles as an efficient catalyst for domino Knoevenagel-Michael-cyclocondensation reaction of malononitrile, various aldehydes and dimedone. RSC Advances, 2015, 5(19): 14305–14310
https://doi.org/10.1039/C4RA16300A
24 A Maleki, S Azadegan. Preparation and characterization of silica-supported magnetic nanocatalyst and application in the synthesis of 2-amino-4-H-chromene-3-carbonitrile derivatives. Inorganic and Nano-Metal Chemistry, 2017, 47(6): 917–924
https://doi.org/10.1080/24701556.2016.1241266
25 A M Zonouz, S Okhravi, D Moghani. Ammonium acetate as a catalyst and/or reactant in the reaction of dimedone, aromatic aldehyde, and malononitrile: synthesis of tetrahydrobenzo[b]pyrans and hexahydroquinolines. Monatshefte für Chemie-Chemical Monthly, 2016, 147(10): 1819–1824
https://doi.org/10.1007/s00706-016-1683-0
26 M A Bodaghifard, A Mobinikhaledi, S Asadbegi. Bis(4-pyridylamino) triazine-stabilized magnetite nanoparticles: preparation, characterization and application as a retrievable catalyst for the green synthesis of 4H-pyran, 4H-thiopyran and 1,4-dihydropyridine derivatives. Applied Organometallic Chemistry, 2017, 31(2): e3557
https://doi.org/10.1002/aoc.3557
27 K Niknam, N Borazjani, R Rashidian, A Jamali. Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chinese Journal of Catalysis, 2013, 34(12): 2245–2254
https://doi.org/10.1016/S1872-2067(12)60693-7
[1] Jingbin Wen, Kuiyi You, Minjuan Chen, Jian Jian, Fangfang Zhao, Pingle Liu, Qiuhong Ai, He’an Luo. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase[J]. Front. Chem. Sci. Eng., 2021, 15(3): 654-665.
[2] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[3] Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas. Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid dynamics: mathematical and modelling aspects of porous media[J]. Front. Chem. Sci. Eng., 2021, 15(2): 399-409.
[4] Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 279-287.
[5] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[6] Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang. The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template[J]. Front. Chem. Sci. Eng., 2020, 14(6): 967-975.
[7] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[8] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[9] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[10] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[11] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[12] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[13] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
[14] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[15] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed