Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 145    https://doi.org/10.1007/s11705-024-2496-z
Kinetic study of the effect of thermal hysteresis on pyrolysis of vacuum residue
Chao Wang1, Xiaogang Shi1(), Aijun Duan1, Xingying Lan1, Jinsen Gao1, Qingang Xiong2()
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
 Download: PDF(1502 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Investigating the thermal hysteresis and its effect on the kinetic behaviors and reaction model of vacuum residue pyrolysis is of significant importance in industry and scientific research. Effects of heating rate and heating transfer resistance on the pyrolysis process were examined with the thermogravimetric analysis. The kinetic characteristics of the vacuum residue pyrolysis were estimated using the iso-conversional method and integral master-plots method based on a three-stage reaction model through the deconvolution of Fraser-Suzuki function. Results showed that the reaction order models for the first and second stages were associated with the evaporation of vapor, while the nucleation and growth models for the third stage were linked to char formation. During the pyrolysis, the thermal hysteresis led to an increase in the reaction order in the first stage, which resulted in a delayed release of generated hydrocarbons due to high heating rate and enhanced heat transfer resistance. The reaction in the last stage primarily involved coking, where the presence of an inert solid acted as a nucleating agent, facilitating char formation and reducing the activation energy. The optimization results suggest that the obtained three-stage reaction model and kinetic triplets have the potential to effectively describe the active pyrolysis behavior of vacuum residue under high thermal hysteresis.

Keywords vacuum residue      pyrolysis      thermogravimetric analysis      thermal hysteresis      kinetic mechanism     
Corresponding Author(s): Xiaogang Shi,Qingang Xiong   
Just Accepted Date: 27 June 2024   Issue Date: 10 September 2024
 Cite this article:   
Chao Wang,Xiaogang Shi,Aijun Duan, et al. Kinetic study of the effect of thermal hysteresis on pyrolysis of vacuum residue[J]. Front. Chem. Sci. Eng., 2024, 18(12): 145.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2496-z
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/145
Density (20 ℃)/(g·cm?3) Viscosity (80 ℃)/(mm2·s?1) CCR/wt % Elemental analysis/wt % SARA content/wt % Heavy metal content/(μg·g?1)
C H N S O Sa Ar Re As Fe Ni V
0.9566 545.4 13.11 86.6 11.3 0.6 1 0.5 31.4 39.6 26.4 2.6 13.6 31.8 29.6
Tab.1  Basic properties of vacuum residue
Mechanism description Symbol ?(α) G(α)
Reaction order model F1 1 – α –ln(1 – α)
F1.5 (1 – α)3/2 2[(1 – α)– 1/2 – 1]
F2 (1 – α)2 (1 – α)–1 – 1
F3 (1 – α)3 1/2[(1 – α)–2 – 1]
Diffusion model D1 α2 1/2α
D2 (1 – α)ln(1 – α) + α [–ln(1 – α)]–1
D3 [1 – (1 – α)1/3]2 3/2(1 – α)2/3[(1 – (1 – α)1/3)]–1
D4 1 – 2/3α – (1 – α)2/3 3/2[(1 – α)–1/3 – 1]–1
Nucleation growth model A1.5 3/2(1 – α)[–ln(1 – α)]1/3 [–ln(1 – α)]2/3
A2 2(1 – α)[–ln(1 – α)]1/2 [–ln(1 – α)]1/2
A3 3(1 – α)[–ln(1 – α)]2/3 [–ln(1 – α)]1/3
A4 4(1 – α)[–ln(1 – α)]3/4 [–ln(1 – α)]1/4
A4/5 4/5(1 – α)[–ln(1 – α)]–1/4 [–ln(1 – α)]5/4
A5/6 5/6(1 – α)[–ln(1 – α)]–1/5 [–ln(1 – α)]6/5
Shrinking core model R1 1 α
R2 2(1 – α)1/2 1 – (1 – α)1/2
R3 3(1 – α)1/3 1 – (1 – α)1/3
Power law P1.5 3/2α1/3 α2/3
P2 2α1/2 α1/2
P3 3α2/3 α1/3
Tab.2  The common reaction model of solid-state pyrolysis
Fig.1  The TG and DTG curves with the heating rate of 5, 10, and 20 K·min–1. (a, b) TG and DTG of VR; (c, d) TG and DTG of S-VR.
β/(K·min?1) Ti /K Tmax /K Tf /K DTGmax /(wt %·min?1) Mr /wt %
VR 5 520.4 720.6 773.0 3.59 10.28
10 534.3 723.3 785.5 6.76 10.60
20 562.9 742.2 804.1 20.65 11.50
S?VR 5 535.4 718.5 750.2 4.6 19.5
10 566.6 733.8 777.4 10.5 20.0
20 582.8 749.3 794.5 20.8 20.3
Tab.3  Pyrolysis chracteristic parameters for VR and S-VR at 5, 10 and 20 K·min–1
Fig.2  (a) TG and (b) DTG SARA fractions of VR at 10 K·min–1 under N2 atmosphere.
Fig.3  Apparent activation energy versus conversion rate of VR using iso-conversional methods.
Fig.4  Deconvolution results of different reaction models for VR with heating rate of 10 K·min–1.
Fig.5  Deconvolution of reaction rate curves for (a, b, c) VR and (d, e, f) S-VR at the heating rate of 5, 10, and 20 K·min–1.
β/(K·min?1) S1/3 S2/3 S3/3
Tp1/K dα1/dT Tp2/K dα2/dT Tp3/K dα3/dT
VR 5 621.21 2.96 679.32 4.03 721.93 5.03
10 651.30 3.00 699.96 4.47 728.48 6.91
20 667.27 2.69 718.05 4.49 746.93 7.07
ωi 0.38 0.32 0.30
S-VR 5 633.74 2.84 692.31 4.54 723.13 7.85
10 648.49 2.50 703.39 4.57 736.73 9.17
20 654.38 2.29 715.19 5.47 746.32 8.45
ωi 0.31 0.32 0.37
Tab.4  Thermal characteristic for the three isolated peaks at different heating rates for VR and S-VR
Fig.6  Variation of the activation energy of VR for the three stages. (a) First stage (S1/3), (b) second stage (S2/3) and (c) third stage (S3/3).
Fig.7  Variation of the activation energy of S-VR for the three stages. (a) First stage (S1/3), (b) second stage (S2/3) and (c) third stage (S3/3).
Fig.8  G(α)/G(0.5) versus α for various reaction models and p(μ)/p(μ0.5) versus α for various phases [(a, d) S1/3, (b, e) S2/3, (c, f) S3/3] of VR and S-VR at 10 K·min–1.
Stage E/(kJ·mol?1) A/min?1 G(α) Mechanism
VR S-VR VR S-VR VR S-VR VR S-VR
S1 83.2 102.25 1.22 × 109 2.30 × 1011 2[(1?α)?1/2?1] 1/2[(1?α)?2?1] F1.5 F3
S2 156.3 178.99 1.50 × 1011 6.30 × 1012 ?ln(1?α) ?ln(1?α) F1 F1
S3 171.1 187.00 4.72 × 1012 7.93 × 1015 [?ln(1?α)]5/4 [?ln(1?α)]2/3 A4/5 A1.5
Tab.5  Kinetic triplets (E, A, and G(α)) for various phases of VR and S-VR pyrolysis at 10 K·min?1
Fig.9  Comparison of calculated and experimental conversion of pyrolysis of (a) VR and (b) S-VR at 5, 10 and 20 K·min–1.
1 M Al-Samhan , J Al-Fadhli , A M Al-Otaibi , F Al-Attar , R Bouresli , M S Rana . Prospects of refinery switching from conventional to integrated: an opportunity for sustainable investment in the petrochemical industry. Fuel, 2022, 310: 122161
https://doi.org/10.1016/j.fuel.2021.122161
2 B Browning , P Alvarez , T Jansen , M Lacroix , C Geantet , M Tayakout-Fayolle . A review of thermal cracking, hydrocracking, and slurry phase hydroconversion kinetic parameters in lumped models for upgrading heavy oils. Energy & Fuels, 2021, 35(19): 15360–15380
https://doi.org/10.1021/acs.energyfuels.1c02214
3 Q Shi , S Zhao , Y Zhou , J Gao , C Xu . Development of heavy oil upgrading technologies in China. Reviews in Chemical Engineering, 2019, 36(1): 1–19
https://doi.org/10.1515/revce-2017-0077
4 M S Rana , V Sámano , J Ancheyta , J A I Diaz . A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007, 86(9): 1216–1231
https://doi.org/10.1016/j.fuel.2006.08.004
5 L Jiguang , H Huandi , S Haiping . A new insight into compatibility changing rules for inferior vacuum residue’s thermal cracking and hydrocracking process. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105632
https://doi.org/10.1016/j.jaap.2022.105632
6 M A Alabdullah , A R Gomez , J Vittenet , A Bendjeriou-Sedjerari , W Xu , I A Abba , J Gascon . A viewpoint on the refinery of the future: catalyst and process challenges. ACS Catalysis, 2020, 10(15): 8131–8140
https://doi.org/10.1021/acscatal.0c02209
7 C Briens , J McMillan . Review of research related to fluid cokers. Energy & Fuels, 2021, 35(12): 9747–9774
https://doi.org/10.1021/acs.energyfuels.1c00764
8 P Arcelus-Arrillaga , J L Pinilla , K Hellgardt , M Millan . Application of water in hydrothermal conditions for upgrading heavy oils: a review. Energy & Fuels, 2017, 31(5): 4571–4587
https://doi.org/10.1021/acs.energyfuels.7b00291
9 L C Castañeda , J A D Muñoz , J Ancheyta . Combined process schemes for upgrading of heavy petroleum. Fuel, 2012, 100: 110–127
https://doi.org/10.1016/j.fuel.2012.02.022
10 J B Joshi , A B Pandit , K L Kataria , R P Kulkarni , A N Sawarkar , D Tandon , Y Ram , M M Kumar . Petroleum residue upgradation via visbreaking: a review. Industrial & Engineering Chemistry Research, 2008, 47(23): 8960–8988
https://doi.org/10.1021/ie0710871
11 A N Sawarkar , A B Pandit , S D Samant , J B Joshi . Petroleum residue upgrading via delayed coking: a review. Canadian Journal of Chemical Engineering, 2007, 85(1): 1–24
https://doi.org/10.1002/cjce.5450850101
12 Z Yang , X Liu , Z Yang , G Zhuang , Z Bai , H Zhang , Y Guo . Preparation and formation mechanism of levoglucosan from starch using a tubular furnace pyrolysis reactor. Journal of Analytical and Applied Pyrolysis, 2013, 102: 83–88
https://doi.org/10.1016/j.jaap.2013.03.012
13 Canós A Corma , L Sauvanaud , Y Mathieu , Rubiano L Almanza , Sanchez C Gonzalez , Quiroz T Chanaga . Alternative to visbreaking or delayed coking of heavy crude oil through a short contact time, solid transported bed cracking process. Catalysis Science & Technology, 2018, 8(2): 540–550
https://doi.org/10.1039/C7CY01281K
14 A Eshraghian , M M Husein . Thermal cracking of Athabasca VR and bitumen and their maltene fraction in a closed reactor system. Fuel, 2017, 190: 396–408
https://doi.org/10.1016/j.fuel.2016.10.111
15 S Ghysels , Léon A E Estrada , M Pala , K A Schoder , Acker J Van , F Ronsse . Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal, 2019, 373: 446–457
https://doi.org/10.1016/j.cej.2019.05.042
16 P Sazandehchi , S Ovaysi . Experimental evaluation and kinetic modeling of thermal upgrading of Iranian heavy crude oil. Industrial & Engineering Chemistry Research, 2019, 58(28): 12586–12592
https://doi.org/10.1021/acs.iecr.9b01361
17 M L A Gonçalves , D A P Mota , W V Cerqueira , D André , L M Saraiva , M I F. R. F. Teixeira A M Coelho , M A G Teixeira . Knowledge of petroleum heavy residue potential as feedstock in refining process using thermogravimetry. Fuel Processing Technology, 2010, 91(9): 983–987
https://doi.org/10.1016/j.fuproc.2010.02.016
18 H Y Park , T H Kim . Non-isothermal pyrolysis of vacuum residue (VR) in a thermogravimetric analyzer. Energy Conversion and Management, 2006, 47(15): 2118–2127
https://doi.org/10.1016/j.enconman.2005.12.009
19 Y Zeng , Z Liu , J Yu , E Hu , X Jia , Y Tian , C Wang . Pyrolysis kinetics and characteristics of waste tyres: products distribution and optimization via TG-FTIR-MS and rapid infrared heating techniques. Chemical Engineering Journal, 2024, 482: 149106
https://doi.org/10.1016/j.cej.2024.149106
20 A Y León , M A Guzmán , H Picón , C D Laverde , V D Molina . Reactivity of vacuum residues by thermogravimetric analysis and nuclear magnetic resonance spectroscopy. Energy & Fuels, 2020, 34(8): 9231–9242
https://doi.org/10.1021/acs.energyfuels.0c00200
21 J Hao , Y Che , Y Tian , D Li , J Zhang , Y Qiao . Thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG-FTIR. Energy & Fuels, 2017, 31(2): 1295–1309
https://doi.org/10.1021/acs.energyfuels.6b02598
22 A Guo , X Zhang , Z Wang . Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry. Fuel Processing Technology, 2008, 89(7): 643–650
https://doi.org/10.1016/j.fuproc.2007.12.006
23 F Trejo , M S Rana , J Ancheyta . Thermogravimetric determination of coke from asphaltenes, resins and sediments and coking kinetics of heavy crude asphaltenes. Catalysis Today, 2010, 150(3): 272–278
https://doi.org/10.1016/j.cattod.2009.07.091
24 J Zhang , Y Guo , D Pau , K Li , K Xie , Y Zou . Pyrolysis kinetics and determination of organic components and N-alkanes yields of Karamay transformer oil using TG, FTIR and Py-GC/MS analyses. Fuel, 2021, 306: 121691
https://doi.org/10.1016/j.fuel.2021.121691
25 S Vyazovkin , A K Burnham , J M Criado , L A Pérez-Maqueda , C Popescu , N Sbirrazzuoli . ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 2011, 520(1): 1–19
https://doi.org/10.1016/j.tca.2011.03.034
26 J Zhang , Y Ding , W Du , K Lu , L Sun . Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel, 2021, 296: 120696
https://doi.org/10.1016/j.fuel.2021.120696
27 P Tiwari , M Deo . Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(2): 505–515
https://doi.org/10.1002/aic.12589
28 J Chen , L Mu , B Jiang , H Yin , X Song , A Li . TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge. Bioresource Technology, 2015, 192: 1–10
https://doi.org/10.1016/j.biortech.2015.05.031
29 Z Wang , Q Wang , C Jia , J Bai . Thermal evolution of chemical structure and mechanism of oil sands bitumen. Energy, 2022, 244: 123190
https://doi.org/10.1016/j.energy.2022.123190
30 B Baruah , P Tiwari . Effect of high pressure on nonisothermal pyrolysis kinetics of oil shale and product yield. Energy & Fuels, 2020, 34(12): 15855–15869
https://doi.org/10.1021/acs.energyfuels.0c02538
31 H Zhong , Q Xiong , Y Zhu , S Liang , J Zhang , B Niu , X Zhang . CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis. Renewable Energy, 2019, 141: 236–245
https://doi.org/10.1016/j.renene.2019.04.006
32 Q Xiong , F Xu , E Ramirez , S Pannala , C S Daw . Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis. Fuel, 2016, 164: 11–17
https://doi.org/10.1016/j.fuel.2015.09.074
33 A Perejón , P E Sánchez-Jiménez , J M Criado , L A Pérez-Maqueda . Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. Journal of Physical Chemistry B, 2011, 115(8): 1780–1791
https://doi.org/10.1021/jp110895z
34 Y Zhang , Z Fu , W Wang , G Ji , M Zhao , A Li . Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91–103
https://doi.org/10.1021/acssuschemeng.1c04915
35 J Wang , H Zhao . Pyrolysis kinetics of perfusion tubes under non-isothermal and isothermal conditions. Energy Conversion and Management, 2015, 106: 1048–1056
https://doi.org/10.1016/j.enconman.2015.09.075
36 Y Qu , A Li , D Wang , L Zhang , G Ji . Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal, 2019, 374: 338–346
https://doi.org/10.1016/j.cej.2019.05.183
37 S Zhao , Y Sun , X Lü , Q Li . Kinetics and thermodynamics evaluation of carbon dioxide enhanced oil shale pyrolysis. Scientific Reports, 2021, 11(1): 516
https://doi.org/10.1038/s41598-020-80205-4
38 E C Moine , K Groune , A El Hamidi , M Khachani , M Halim , S Arsalane . Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale. Energy, 2016, 115: 931–941
https://doi.org/10.1016/j.energy.2016.09.033
39 Y Jiang , P Zong , X Ming , H Wei , X Zhang , Y Bao , B Tian , Y Tian , Y Qiao . High-temperature fast pyrolysis of coal: an applied basic research using thermal gravimetric analyzer and the downer reactor. Energy, 2021, 223: 119977
https://doi.org/10.1016/j.energy.2021.119977
40 E Alvarez , G Marroquín , F Trejo , G Centeno , J Ancheyta , J A I Díaz . Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel, 2011, 90(12): 3602–3607
https://doi.org/10.1016/j.fuel.2010.11.046
41 K Chen , H Liu , A Guo , D Ge , Z Wang . Study of the thermal performance and interaction of petroleum residue fractions during the coking process. Energy & Fuels, 2012, 26(10): 6343–6351
https://doi.org/10.1021/ef301378g
42 C Li , Z Liu , J Yu , E Hu , Y Zeng , Y Tian . Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and corn stover via TG-FTIR and rapid infrared heating techniques. Waste Management, 2023, 171: 421–432
https://doi.org/10.1016/j.wasman.2023.09.037
43 C Li , Z Liu , E Hu , J Yu , C Dai , Y Tian , Y Yang , Y Zeng . Infrared heating and synergistic effects during fast co-pyrolysis of corn stover and high alkali coal. Process Safety and Environmental Protection, 2023, 179: 812–821
https://doi.org/10.1016/j.psep.2023.09.033
44 F Bai , W Guo , X Lü , Y Liu , M Guo , Q Li , Y Sun . Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 2015, 146: 111–118
https://doi.org/10.1016/j.fuel.2014.12.073
45 K Chen , Z Wang , H Liu , A Guo . Study on thermal performance of heavy oils by using differential scanning calorimetry. Fuel Processing Technology, 2012, 99: 82–89
https://doi.org/10.1016/j.fuproc.2012.02.004
46 M Li , Y Lu , E Hu , Y Yang , Y Tian , C Dai , C Li . Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating. Energy, 2023, 266: 126635
https://doi.org/10.1016/j.energy.2023.126635
[1] FCE-24049-OF-WC_suppl_1 Download
[1] Sichen Fan, Yifan Liu, Yaning Zhang, Wenke Zhao, Chunbao Xu. Microwave-assisted pyrolysis of plastics for aviation oil production: energy and economic analyses[J]. Front. Chem. Sci. Eng., 2024, 18(7): 81-.
[2] Mubarak Al-Kwradi, Mohammednoor Altarawneh. Degradation pathways of amino acids during thermal utilization of biomass: a review[J]. Front. Chem. Sci. Eng., 2024, 18(7): 78-.
[3] Ecrin Ekici, Güray Yildiz, Magdalena Joka Yildiz, Monika Kalinowska, Erol Şeker, Jiawei Wang. Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization[J]. Front. Chem. Sci. Eng., 2024, 18(6): 70-.
[4] Ziqi Wang, Jun Shen, Xuesong Liu, Sha Wang, Shengxiang Deng, Hai Zhang, Yun Guo. Theoretical study on the effect of H2O on the formation mechanism of NOx precursors during indole pyrolysis[J]. Front. Chem. Sci. Eng., 2024, 18(6): 67-.
[5] Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong. Synergistic effects and kinetics analysis for co-pyrolysis of vacuum residue and plastics[J]. Front. Chem. Sci. Eng., 2024, 18(5): 55-.
[6] Zhihan Zhang, Mengxiao Yu, Xiaoyu Zhang, Jinli Zhang, You Han. Non-isothermal kinetics and characteristics of calcium carbide nitridation reaction with calcium-based additives[J]. Front. Chem. Sci. Eng., 2024, 18(4): 40-.
[7] Li Zhao, Xinru Liu, Zihao Ye, Bin Hu, Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25-.
[8] Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen. Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis[J]. Front. Chem. Sci. Eng., 2024, 18(12): 141-.
[9] Yue Zhang, Moshan Li, Erfeng Hu, Rui Qu, Shuai Li, Qingang Xiong. Interaction and characteristics of furfural residues and polyvinyl chloride in fast co-pyrolysis[J]. Front. Chem. Sci. Eng., 2024, 18(12): 142-.
[10] Huaping Lin, Likai Zhu, Ye Liu, Vasilevich Sergey Vladimirovich, Bilainu Oboirien, Yefeng Zhou. Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41[J]. Front. Chem. Sci. Eng., 2024, 18(11): 125-.
[11] Muhammad Kashif, Faizan Ahmad, Weitao Cao, Wenke Zhao, Ehab Mostafa, Yaning Zhang. Experimental study on microwave pyrolysis of eucalyptus camaldulensis leaves: a promising approach for bio-oil recovery[J]. Front. Chem. Sci. Eng., 2024, 18(10): 115-.
[12] Qing Liu, Kang Xue, Tinghao Jia, Zhouyang Shen, Zehao Han, Lun Pan, Ji-Jun Zou, Xiangwen Zhang. Effect of cis/trans molecular structures on pyrolysis performance and heat sink of decalin isomers[J]. Front. Chem. Sci. Eng., 2024, 18(1): 5-.
[13] Melvin X. J. Wee, Bridgid L. F. Chin, Agus Saptoro, Chung L. Yiin, Jiuan J. Chew, Jaka Sunarso, Suzana Yusup, Abhishek Sharma. A review on co-pyrolysis of agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic models[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1141-1161.
[14] Chenxi Xu, Shunli Li, Zhaohui Hou, Liming Yang, Wenbin Fu, Fujia Wang, Yafei Kuang, Haihui Zhou, Liang Chen. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance[J]. Front. Chem. Sci. Eng., 2023, 17(6): 679-690.
[15] Ji Liu, Shuang-Wei Yang, Wei Zhao, Yu-Long Wu, Bin Hu, Si-Han Hu, Shan-Wei Ma, Qiang Lu. Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene[J]. Front. Chem. Sci. Eng., 2023, 17(3): 334-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed