Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 92-102    https://doi.org/10.1007/s11707-012-0335-x
RESEARCH ARTICLE
The spatio-temporal responses of the carbon cycle to climate and land use/land cover changes between 1981–2000 in China
Zhiqiang GAO1,3, Xiaoming CAO2(), Wei GAO3
1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 2. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 3. USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins CO 80521, USA
 Download: PDF(755 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, temporal and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.

Keywords carbon cycle      climate changes      LULC      remote sensing      Earth system modeling     
Corresponding Author(s): CAO Xiaoming,Email:caoxm@lreis.ac.cn   
Issue Date: 05 March 2013
 Cite this article:   
Zhiqiang GAO,Xiaoming CAO,Wei GAO. The spatio-temporal responses of the carbon cycle to climate and land use/land cover changes between 1981–2000 in China[J]. Front Earth Sci, 0, (): 92-102.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0335-x
https://academic.hep.com.cn/fesci/EN/Y0/V/I/92
Fig.1  A schematic representation of the model of CEVSA system (Cao and Woodward (,) used in this study). The solid lines are the carbon and nitrogen flows, and the dashed lines represent the effects of various factors or processes
Fig.2  The LULC maps (1990s) and dynamic changes (1980s-1990s) in China
Fig.3  The decadal changes of temperature and precipitation (Note: the temperature and precipitation are average values based on spatial interpolations over all grids covered total land area of China between 1981 and 2000)
PeriodTEMPPRENPPHRNEPSOCVEGCTotal C
1981-19856.096303.1343.0800.05475.09011.57486.664
1986-19906.516113.1383.1370.00175.28511.51886.803
1991-19956.576173.1863.1580.02875.41111.58386.994
1996-20006.986343.2003.237-0.03775.31311.64786.960
Tab.1  The averaged changes of all parameters in relation to carbon cycle over four subperiods (unit: PgC)
Fig.4  Spatial variations of NPP, HR, NEP and VEGC changes under the influence of climate change (unit: gC/(m·year))
From 1990 to 2000CroplandWoodlandGrasslandWater bodyConstructed landUnused landTotal (1990)
Cropland51596417364315090134231651
Woodland17468811240293028427196
Grassland34568104701504766914156449
Water body285825491639817896215
Constructed land862036190161
Unused land65874016599228049016357
Total (2000)61567163042208078481767412556138029
Change29916-10892-34369163317513-3801
Tab.2  The LULC change matrix at the national scale during 1990-2000 (unit: km) ()
Fig.5  Comparison of the carbon densities against the literature estimated for the year 1990 and 2000
LULCNPPHRNEPVEGCSOCTotal C
20000.05100.0520-0.00070.1311.0681.200
19900.04870.0490-0.00020.1611.1651.326
Changes0.00200.0023-0.0005-0.030-0.097-0.126
Tab.3  Changes in NPP, HR, NEP, VEGC and SOC occurring in the LULC change area (unit: PgC)
Fig.6  The impact of LULC change on NPP, HR, NEP, VEGC, and SOC (Legend: -1: decrease; 0: unchanged; 1: increase)
1 Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans P P (2000). Regional changes in carbon dioxide fluxes of land and oceans since 1980.Science , 290(5495): 1342–1347
doi: 10.1126/science.290.5495.1342 pmid:11082059
2 Braswell B H, Schimel D S, Linder E, Moore B (1997). The response of global terrestrial ecosystems to interannual temperature variability. Science , 278(5339): 870–873
doi: 10.1126/science.278.5339.870
3 Cao M K, Price S, Li K R, Tao B, Small J R, Shao X M (2003). Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol , 9(4): 536–546
doi: 10.1046/j.1365-2486.2003.00617.x
4 Cao M K, Prince D S, Tao B, Small J, Li K R (2005). Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus , 57(3): 210–217
5 Cao M K, Prince S D, Shugart H H (2002). Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Global Biogeochem Cycles , 16(4): 1069–1080
doi: 10.1029/2001GB001553,
6 Cao M K, Prince S D, Small J, Goetz S (2004). Satellite remotely sensed interannual variability in terrestrial net primary productivity from 1980 to 2000. Ecosystems , 7: 233–242
7 Cao M K, Woodward F I (1998a). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature , 393(6682): 249–252
doi: 10.1038/30460
8 Cao M K, Woodward F I (1998b). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol , 4(3): 185–198
doi: 10.1046/j.1365-2486.1998.00125.x
9 Cao M K, Zhang Q, Shugart H H (2001). African ecosystem carbon cycle and climate change. Clim Res , 17(2): 183–193
doi: 10.3354/cr017183
10 Caspersen J P, Pacala S W, Jenkins J C, Hurtt G C, Moorcroft P R, Birdsey R A (2000). Contributions of land-use history to carbon accumulation in U.S. forests. Science , 290(5494): 1148–1151
doi: 10.1126/science.290.5494.1148 pmid:11073451
11 DeFries R S, Field C B, Fung I, Collatz G J, Bounoua L (1999). Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem Cycles , 13(3): 803–815
doi: 10.1029/1999GB900037
12 Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L J (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science , 292(5525): 2320–2322
doi: 10.1126/science.1058629 pmid:11423660
13 Fang J Y, Piao S L, Field C, Pan Y, Guo Q, Zhou L, Peng C H, Tao S (2003). Increasing net primary production in China from 1982 to 1999. Front Ecol Environ , 1(6): 293–297
doi: 10.1890/1540-9295(2003)001[0294:INPPIC]2.0.CO;2
14 Feddema J J, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A, Washington W M (2005). The importance of land-cover change in simulating future climates. Science , 310(5754): 1674–1678
doi: 10.1126/science.1118160 pmid:16339443
15 Gao Z Q, Liu J Y (2008). Simulation study of China net primary production. Chin Sci Bull , 53(3): 434–443
doi: 10.1007/s11434-008-0097-8
16 Gao Z Q, Liu J Y, Cao M K, Li K R, Tao B (2005). Impacts of land-use and climatechanges on ecosystem productivity and carbon cycle in the cropping-grazing transitional zone in China. Science in China (D) , 48(9): 1479–1491
doi: 10.1360/03yd0372
17 Gu F X, Cao M K (2006). A comparison between simulated and measured CO2 and water flux in a sub-tropical coniferous forest. Science in China(D) , 49 (Suppl II): 241–251
18 Guo L B, Gifford R M (2002). Soil carbon stocks and land use change: a meta analysis. Glob Change Biol , 8(2): 345–360
doi: 10.1046/j.1354-1013.2002.00486.x
19 Houghton R A (1991). Tropical deforestation and atmospheric carbon dioxide. Clim Change , 19(1–2): 99–118
doi: 10.1007/BF00142217
20 Houghton R A (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus , 51B: 298–313
21 Houghton R A (2003a). Why are estimates of the terrestrial carbon balance so different. Glob Change Biol , 9(4): 500–509
doi: 10.1046/j.1365-2486.2003.00620.x
22 Houghton R A (2003b). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus , 55B: 378–390
23 Houghton R A, Boone R D, Fruci J R, Hobbie J E, Melillo J M, Palm C A, Peterson B J, Shaver G R, Woodwell G M, Moore B, Skole D L, Myers N (1987). The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux. Tellus , 39B(1–2): 122–139
doi: 10.1111/j.1600-0889.1987.tb00277.x
24 Houghton R A, Hackler J L (1999). Emissions of carbon from forestry and land-use change in tropical Asia. Glob Change Biol , 5(4): 481–492
doi: 10.1046/j.1365-2486.1999.00244.x
25 Houghton R A, Hackler J L (2000). Changes in terrestrial carbon storage in the United States. 1: the roles of agriculture and forestry. Glob Ecol Biogeogr , 9(2): 125–144
doi: 10.1046/j.1365-2699.2000.00166.x
26 Houghton R A, Hackler J L (2003). Sources and sinks of carbon from land-use change in China. Global Biogeochem Cycles , 17(2): 1034
doi: 10.1029/2002GB001970
27 Houghton R A, Hackler J L, Lawrence K T (1999). The U.S. carbon budget: contributions from land-use change. Science , 285(5427): 574–578
doi: 10.1126/science.285.5427.574 pmid:10417385
28 Houghton R A, Hobbie J E, Melillo J M, Moore B, Peterson B J, Shaver G R, Woodwell G M (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980–a net release of CO2 to the atmosphere. Ecol Monogr , 53(3): 235–262
doi: 10.2307/1942531
29 Klein Goldewijk K (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles , 15(2): 417–433
doi: 10.1029/1999GB001232
30 Klein Goldewijk K, Ramankutty N (2004). Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal , 61(4): 335–344
doi: 10.1007/s10708-004-5050-z
31 Li K R, Wang S Q, Cao M K (2003). Carbon storage in China’s vegetation and soils. Science in China (D) , 33(2): 72–80
32 Li K R, Wang S Q, Cao M K (2004). Vegetation and soil carbon storage in China. Science in China (D) , 47(1): 49–57
doi: 10.1360/02yd0029
33 Liu J Y, Liu M L, Tian H Q, Zhuang D F, Zhang Z X, Zhang W, Tang X M, Deng X Z (2005a). Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ , 98(4): 442–456
doi: 10.1016/j.rse.2005.08.012
34 Liu J Y, Tian H Q, Liu M L, Zhuang D F, Melillo J M (2005b). China’s changing landscapeduring the 1990s: large-scale land transformations estimated with satellite data. Geophys Res Lett , 32(2): L02405
doi: 10.1029/2004GL021649
35 McGuire A D, Sitch S, Clein J S, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter D W, Meier R A, Melillo J M, Moore B III, Prentice I C, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams L J, Wittenberg U (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cycles , 15(1): 183–206
doi: 10.1029/2000GB001298
36 Melillo J M, McGuire A D, Kicklighter D W, Moore III B, Vorosmarty C J, Schloss A L (1993). Global climate change and terrestrial net primary production. Nature , 363 (3): 234–240
37 Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdsey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B (2001). Consistent land and atmosphere-based US carbon sink estimates.Science , 292(5525): 2316–2320 11423659
doi: 10.1126/science.1057320
38 Peng C H, Zhou X L, Zhao S Q, Wang X P, Zhu B, Piao S L, Fang J Y (2009). Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction. Global Planet Change , 66(3–4): 179–194
doi: 10.1016/j.gloplacha.2008.12.001
39 Phillips O L, Malhi Y, Higuchi N, Laurance W F, Nunez P V, Vasquez R M, Laurance S G, Ferreira L V, Stern M, Brown S, Grace J (1998). Changes in the carbon balance of tropical forests: evidence from long-term plots. Science , 282(5388): 439–442
doi: 10.1126/science.282.5388.439 pmid:9774263
40 Ramankutty N, Foley J A (1998). Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycles , 12(4): 667–685
doi: 10.1029/98GB02512
41 Ramankutty N, Foley J A (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles , 13: 997–1027
42 Schimel D S, House J I, Hibbard K A, Bousquet P, Ciais P, Peylin P, Braswell B H, Apps M J, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning A S, Field C B, Friedlingstein P, Goodale C, Heimann M, Houghton R A, Melillo J M, Moore B 3rd, Murdiyarso D, Noble I, Pacala S W, Prentice I C, Raupach M R, Rayner P J, Scholes R J, Steffen W L, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature , 414(6860): 169–172
doi: 10.1038/35102500 pmid:11700548
43 Schimel D S, Melillo J, Tian H Q, McGuire A D, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science , 287(5460): 2004–2006
doi: 10.1126/science.287.5460.2004 pmid:10720324
44 Sha W Y (2002). Climate changes and impacts to natural regional in China from 1980 to 2000. Science in China (D) 324(3): 317–326
45 Stephen D P, Samuel N G (1995). Global primary production: a remote sensing approach. J Biogeogr , 22(2): 815–835
46 Strassmann K M, Joos F, Fischer G (2008). Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus , 60B: 583–603
47 Vleeshouwers L M, Verhagen A (2002). Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Change Biol , 8(6): 519–530
doi: 10.1046/j.1365-2486.2002.00485.x
48 Woodward F I, Smith T M, Emanuel W R (1995). A global land primary productivity and phytogeography model. Global Biogeochem Cycles , 9(4): 471–490
doi: 10.1029/95GB02432
[1] Chao WANG, Zhiyuan LI, Xiong XU, Xiangsui ZENG, Jia LI, Huan XIE, Yanmin JIN, Xiaohua TONG. Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval[J]. Front. Earth Sci., 2023, 17(2): 378-390.
[2] Yang LI, Shuheng TANG, Jian CHEN, Songhang ZHANG. A review on microbial metabolism to increase coalbed methane generation and coal pretreatment to improve its bioavailability[J]. Front. Earth Sci., 2023, 17(1): 218-229.
[3] Boling YIN, Dongjie GUAN, Yuxiang ZHANG, He XIAO, Lidan CHENG, Jiameng CAO, Xiangyuan SU. How to accurately extract large-scale urban land? Establishment of an improved fully convolutional neural network model[J]. Front. Earth Sci., 2022, 16(4): 1061-1076.
[4] Herrieth MACHIWA, Bo TIAN, Dhritiraj SENGUPTA, Qian CHEN, Michael MEADOWS, Yunxuan ZHOU. Vegetation dynamics in response to human and climatic factors in the Tanzanian Coast[J]. Front. Earth Sci., 2021, 15(3): 595-605.
[5] Sijun ZHENG, Chen MENG, Jianhui XUE, Yongbo WU, Jing LIANG, Liang XIN, Lang ZHANG. UAV-based spatial pattern of three-dimensional green volume and its influencing factors in Lingang New City in Shanghai, China[J]. Front. Earth Sci., 2021, 15(3): 543-552.
[6] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[7] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[8] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[9] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[10] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[11] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[12] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[13] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[14] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[15] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed