Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 1025-1039    https://doi.org/10.1007/s11707-022-0972-7
RESEARCH ARTICLE
Evaluation on the applicability of ERA5 reanalysis dataset to tropical cyclones affecting Shanghai
Zhihui HAN1, Caijun YUE2,1(), Changhai LIU3, Wen GU1, Yuqi TANG1, Yongyu LI4
1. Shanghai Ecological Forecasting & Remote Sensing Center, Shanghai 200030, China
2. Shanghai Marine Meteorological Center, Shanghai 200030, China
3. National Center for Atmospheric Research, Boulder CO80305, USA
4. Shanghai Baoshan Meteorological Bureau, Shanghai 201900, China
 Download: PDF(9281 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the 16 historical tropical cyclones (TCs) affecting Shanghai from 2007 to 2019, the suitability of ERA5 for studying TCs affecting Shanghai is systematically evaluated from the perspective of TC track, intensity, 10-m and upper-level wind, using TC best-track data of China Meteorological Administration and surface observations and sounding data. Corresponding to tropical storm (TS), strong tropical storm (STS), typhoon (TY), strong typhoon (STY) and super typhoon (SuperTY), the median TC track bias is 68.1, 52.9, 42.5, 25.4, and 18.2 km, respectively, the median maximum 10-m wind speed (VMAX10m) bias is –3.7, –6.5, –11.4, –21.7, and –32.2 m·s–1, respectively, and the median minimum mean sea level pressure (MSLPmin) bias is 2.2, 5.6, 8.1, 28.2, and 48.7 hPa, respectively. With the increase of TC intensity, the median TC track bias decreases, while the median VMAX10m and MSLPmin bias increase. In general, VMAX10m in ERA5 is lower than observed, and MSLPmin is larger than observed. Under influence of TS, STS, TY and STY, the median 10-m wind speed (V10m) bias in the city is 3.2, 4.2, 4.7, and 5.4 m·s–1, respectively, and is 4.4–5.2 m·s–1 near the east coast, respectively. V10m is mostly biased high, showing an “M” type pattern with the distance between TC and Shanghai. The median 10 m wind direction (WD10m) bias is in a range of –7º to +7º. The median upper-level wind speed (Vupper) bias decreases with height, with a maximum of ~5 m·s–1 at 975 hPa. Below 900 hPa Vupper in ERA5 is typically larger than the radiosonde observation, and its mean bias error (MBE) increases with TC intensity. The upper-level wind direction (WDupper) matches the sounding data well, with a maximum bias of a few degrees only. The results provide a reference for the application of ERA5 to coastal cities affected by TCs.

Keywords ERA5 reanalysis      tropical cyclone      wind field      urban     
Corresponding Author(s): Caijun YUE   
Online First Date: 19 September 2022    Issue Date: 11 January 2023
 Cite this article:   
Zhihui HAN,Caijun YUE,Changhai LIU, et al. Evaluation on the applicability of ERA5 reanalysis dataset to tropical cyclones affecting Shanghai[J]. Front. Earth Sci., 2022, 16(4): 1025-1039.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-0972-7
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/1025
Fig.1  Location of AWSs, and radiosonde station in Shanghai. “+” symbols stand for ERA5 grid points.
TC code Name Time span affecting Shanghai (LST)
1909 Lekima 9 Aug, 12:00–11 Aug, 06:00
1913 Lingling 6 Sep, 18:00–7 Sep, 07:00
1917 Tapah 21 Sep, 11:00–22 Sep, 14:00
1918 Mitag 1 Oct, 11:00–2 Oct, 12:00
1810 Ampil 21 Jul, 23:00–23 Jul, 05:00
1812 Jongdari 3 Aug, 02:00–20:00
1814 Yagi 12 Aug, 11:00–13 Aug, 20:00
1818 Rumbia 16 Aug, 09:00–18 Aug, 16:00
1614 Meranti 15 Sep, 16:00–16 Sep 20:00
1509 Chan-hom 10 Jul, 22:00–12 Jul, 15:00
1416 Fung-wong 22 Sep, 08:00–23 Sep, 20:00
1109 Muifa 6 Aug, 20:00–7 Aug, 17:00
0908 Morakot 9 Aug, 20:00–11 Aug, 19:00
0807 Kalmaegi 19 Jul, 08:00–20 Jul, 05:00
0808 Fung-wong 29 Jul, 16:00–31 Jul, 12:00
0713 Wipha 9 Sep, 01:00–20 Sep, 11:00
Tab.1  Tropical cyclones (TCs) that affected Shanghai during 2007–2019. They were identified based on the maximum 10-min average wind speed at two or more AWSs, which is greater than or equal to 10.8 m·s?1
Fig.2  Best-track of tropical cyclones (TCs) affecting Shanghai during 2007–2019 and three group division: landing in Shanghai (LD), moving northward across the east sea of Shanghai (NAE) and moving northward across the west land of Shanghai (NAW).
Fig.3  Median TC track bias (a) of ERA5 with respect to TC best-track data for TS, STS, TY, STY, and SuperTY, with the box indicating the interquartile range (IQR) and the 10th and 90th percentiles given by the whiskers, and TC track MBE for (b) TCs of LD, NAE and NAW, and (c) TCs over ocean and land.
Fig.4  Median TC VMAX10m bias (a) of ERA5 with respect to TC best-track data for TS, STS, TY, STY, and SuperTY, with the box indicating the IQR and the 10th and 90th percentiles given by the whiskers, and VMAX10m MBE for (b) TCs of LD, NAE, and NAW, and (c) TCs over ocean and land.
Fig.5  Median TC MSLPmin bias (a) of ERA5 with respect to TC best-track data for TS, STS, TY, STY, and SuperTY, with the box indicating the IQR and the 10th and 90th percentiles given by the whiskers, and MSLPmin MBE for (b) TCs of LD, NAE, and NAW, and (c) TCs over ocean and land.
Fig.6  Median V10m bias relative to the AWS observations for the city, (a) and the nearshore region (b) under influence of TS, STS, TY, and STY, with the box indicating the IQR and the whiskers the 10th and 90th percentiles.
Fig.7  V10m bias (dot) and Median V10m bias (line) as a function of the distance between TC and Shanghai over city (left) and nearshore region (right) for all 16 TCs (a)–(b), LD TCs (c)–(d), NAE TCs (e)–(f) and NAW TCs (g)–(h). Negative and positive abscissa values correspond to TCs located to the south and north of Shanghai, respectively.
Fig.8  Median WD10m bias relative to AWS observations for the city (a) and nearshore region (b) under the influence of TS, STS, TY, and STY, with the box indicating the IQR and the whiskers the 10th and 90th percentiles.
Fig.9  WD10m bias (dot) and Median WD10m bias (line) as a function of distance between TC and Shanghai over city (left) and nearshore region (right) for all 16 TCs (a)–(b), LD TCs (c)–(d), NAE TCs (e)–(f), and NAW TCs (g)–(h). Negative and positive abscissa values correspond to TCs located to the south and north of Shanghai, respectively.
Fig.10  WD10m frequency and WD10m MBE as a function of wind direction over the city (left) and nearshore region (right) for all 16 TCs (a)–(b), LD TCs (c)–(d), NAE TCs (e)–(f), and NAW TCs (g)–(h).
Fig.11  Median Vupper and WDupper bias (a)–(b), Vupper and WDupper MBE (c)–(d) under the influence of TS, STS, TY, and STY, and Vupper and WDupper MBE variations as a function of distance between TC and Shanghai (e)–(f). Negative and positive abscissa values in (e)–(f) indicate that TC is located to the south and north of Shanghai, respectively.
1 Y, An Y, Quan M Gu ( 2013). Turbulence characteristics analysis of typhoon ‘Mufia’ near 500 m above ground in Lujiazui District of Shanghai. China Civil Eng J, 46(7): 21– 27 (in Chinese)
2 G, Bian, G, Nie, X Qiu. ( 2021). How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset. Atmos Res, 249: 105339
https://doi.org/10.1016/j.atmosres.2020.105339
3 M G , Bosilovich, A, Santha, C, Lawrence, C, Richard, D, Clara, Ge, Ronald, K, Robin, L, Qing, M, Andrea, N, Peter, W, Krzysztof, C, Winston, R, Rolf, T, Lawrence, V, Yury, B, Steve, C, Allison, F, Stacey, L, Gordon, P, Gary, P, Steven, R, Oreste, D S, Siegfried, S Max. ( 2015). MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2015-104606, 43
4 Y, Chen G, Han S, Jiao Q, Wang C Yuan ( 2008). Application of ECMWF products to typhoon track forecasting. J Meteor Sci, 28( 2): 91– 97 (in Chinese)
5 Z Chen ( 2010). Characteristics of the overall sounding data drift in China. Meteor Mon, 36(2): 22– 27 (in Chinese)
6 D P, Dee, S M, Uppala, A J, Simmons, P, Berrisford, P, Poli, S, Kobayashi, U, Andrae, M A, Balmaseda, G, Balsamo, P, Bauer, P, Bechtold, A C M, Beljaars, de Berg L, van, J, Bidlot, N, Bormann, C, Delsol, R, Dragani, M, Fuentes, A J, Geer, L, Haimberger, S B, Healy, H, Hersbach, E V, Hólm, L, Isaksen, P, Kållberg, M, Köhler, M, Matricardi, A P, McNally, B M, Monge-Sanz, J J, Morcrette, B K, Park, C, Peubey, Rosnay P, de, C, Tavolato, J N, Thépaut, F Vitart. ( 2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137( 656): 553– 597
https://doi.org/10.1002/qj.828
7 B, Geetha, S Balachandran. ( 2020). Development and rapid intensification of tropical cyclone OCKHI (2017) over the north Indian Ocean. J Atmosph Sci Res, 3( 3): 13– 22
8 R E, Hart, R N, Maue, M C Watson. ( 2007). Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon Weather Rev, 135( 12): 3990– 4005
https://doi.org/10.1175/2007MWR2038.1
9 H, Hatsushika, J, Tsutsui, M, Fiorino, K Onogi. ( 2006). Impact of wind profile retrievals on the analysis of tropical cyclones in the JRA-25 reanalysis. J Meteorol Soc Jpn, 84( 5): 891– 905
https://doi.org/10.2151/jmsj.84.891
10 L, He S, Chen Y Guo ( 2020). Observation characteristics and synoptic mechanisms of typhoon Lekima extreme rainfall in 2019. J App Meteor Sci, 31( 5): 513– 526 (in Chinese)
11 H Hersbach. ( 2019). ECMWF’s ERA5 reanalysis extends back to 1979. ECMWF Newsl, No: 158
12 H, Hersbach, B, Bell, P, Berrisford, S, Hirahara, A, Horányi, J, Muñoz-Sabater, J, Nicolas, C, Peubey, R, Radu, D, Schepers, A, Simmons, C, Soci, S, Abdalla, X, Abellan, G, Balsamo, P, Bechtold, G, Biavati, J, Bidlot, M, Bonavita, G, Chiara, P, Dahlgren, D, Dee, M, Diamantakis, R, Dragani, J, Flemming, R, Forbes, M, Fuentes, A, Geer, L, Haimberger, S, Healy, R J, Hogan, E, Hólm, M, Janisková, S, Keeley, P, Laloyaux, P, Lopez, C, Lupu, G, Radnoti, P, Rosnay, I, Rozum, F, Vamborg, S, Villaume, J N Thépaut. ( 2020). The ERA5 global reanalysis. Q J R Meteorol Soc, 146( 730): 1999– 2049
https://doi.org/10.1002/qj.3803
13 K, Hodges, A, Cobb, P L Vidale. ( 2017). How well are tropical cyclones represented in reanalysis datasets?. J Clim, 30( 14): 5243– 5264
https://doi.org/10.1175/JCLI-D-16-0557.1
14 S, Kobayashi, Y, Ota, Y, Harada, A, Ebita, M, Moriya, H, Onoda, K, Onogi, H, Kamahori, C, Kobayashi, H, Endo, K, Miyaoka, K Takahashi. ( 2015). The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn, 93( 1): 5– 48
https://doi.org/10.2151/jmsj.2015-001
15 T R, Knutson, J J, Sirutis, S T, Garner, G A, Vecchi, I M Held. ( 2008). Simulated reduction in Atlantic hurricane frequency under twenty first-century warming condition. Nat Geosci, 1( 6): 359– 364
https://doi.org/10.1038/ngeo202
16 C C, Lam S T Lai ( 1994). Use of ECMWF 850-hPa vorticity fields in the forecasting of tropical cyclones and intense lows in June-July 1994. In: Proceeding of 9th Guangdong-Hong Kong-Macau Joint Seminar on Hazardous Weather, Hong Kong Observatory, Hong Kong, China, 137– 156
17 H, Liu J, Xue T, Shen S, Zhuang G Zhu ( 2005). Study on sounding balloon drifting and its impact on numerical predictions. J App Meteor Sci, 16( 4): 518– 526 (in Chinese)
18 P, Malakar, A P, Kesarkar, J N, Bhate, V, Singh, A Deshamukhya. ( 2020). Comparison of reanalysis datasets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci, 7( 2): e2019EA000978
19 E, Maloney, D Hartmann. ( 2000a). Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J Clim, 13( 9): 1451– 1460
https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
20 E, Maloney, D Hartmann. ( 2000b). Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287( 5460): 2002– 2004
https://doi.org/10.1126/science.287.5460.2002
21 D M, Manning, R E Hart. ( 2007). Evolution of North Atlantic ERA-40 tropical cyclone representation. Geophys Res Lett, 34( 5): L05705
22 H Murakami. ( 2014). Tropical cyclones in reanalysis data sets. Geophys Res Lett, 41( 6): 2133– 2141
https://doi.org/10.1002/2014GL059519
23 K, Onogi, J, Tsutsui, H, Koide, M, Sakamoto, S, Kobayashi, H, Hatsushika, T, Matsumoto, N, Yamazaki, H, Kamahori, K, Takahashi, S, Kadokura, K, Wada, K, Kato, R, Oyama, T, Ose, N, Mannoji, R Taira. ( 2007). The JRA-25 reanalysis. J Meteorol Soc Jpn, 85( 3): 369– 432
https://doi.org/10.2151/jmsj.85.369
24 M M, Rienecker, M J, Suarez, R, Gelaro, R, Todling, J, Bacmeister, E, Liu, M G, Bosilovich, S D, Schubert, L, Takacs, G K, Kim, S, Bloom, J, Chen, D, Collins, A, Conaty, Silva A, da, W, Gu, J, Joiner, R D, Koster, R, Lucchesi, A, Molod, T, Owens, S, Pawson, P, Pegion, C R, Redder, R, Reichle, F R, Robertson, A G, Ruddick, M, Sienkiewicz, J Woollen. ( 2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim, 24( 14): 3624– 2648
https://doi.org/10.1175/JCLI-D-11-00015.1
25 S, Saha, S, Moorthi, H L, Pan, X, Wu, J, Wang, S, Nadiga, P, Tripp, R, Kistler, J, Woollen, D, Behringer, H, Liu, D, Stokes, R, Grumbine, G, Gayno, J, Wang, Y T, Hou, H, Chuang, H M H, Juang, J, Sela, M, Iredell, R, Treadon, D, Kleist, Delst P, Van, D, Keyser, J, Derber, M, Ek, J, Meng, H, Wei, R, Yang, S, Lord, den Dool H, van, A, Kumar, W, Wang, C, Long, M, Chelliah, Y, Xue, B, Huang, J K, Schemm, W, Ebisuzaki, R, Lin, P, Xie, M, Chen, S, Zhou, W, Higgins, C Z, Zou, Q, Liu, Y, Chen, Y, Han, L, Cucurull, R W, Reynolds, G, Rutledge, M Goldberg. ( 2010). The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc, 91( 8): 1015– 1058
https://doi.org/10.1175/2010BAMS3001.1
26 B A, Schenkel, R E Hart. ( 2012). An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J Clim, 25( 10): 3453– 3475
https://doi.org/10.1175/2011JCLI4208.1
27 B A, Schenkel, N, Lin, D, Chavas, M, Oppenheimer, A Brammer. ( 2017). Evaluating outer tropical cyclone size in reanalysis datasets using QuikSCAT data. J Clim, 30( 21): 8745– 8762
https://doi.org/10.1175/JCLI-D-17-0122.1
28 E, Scoccimarro, S, Gualdi, A Navarra. ( 2012). Tropical cyclone effects on Arctic Sea ice variability. Geophys Res Lett, 39( 17): L17704
https://doi.org/10.1029/2012GL052987
29 P W, Thorne, R S Vose. ( 2010). Reanalyses suitable for characterizing long-term trends: Are they really achievable?. Bull Am Meteorol Soc, 91( 3): 353– 362
https://doi.org/10.1175/2009BAMS2858.1
30 S, Tu, J, Xu, J C L, Chan, K, Huang, F, Xu, L S Chiu. ( 2021). Recent global decrease in the inner-core rain rate of tropical cyclones. Nat Commun, 12( 1): 1948
https://doi.org/10.1038/s41467-021-22304-y
31 X, Tu R Yao ( 2010). Analysis on ECMWF NWP products in track forecasting. J Trop Meteorol, 26( 6): 759– 764 (in Chinese)
32 S, Uppala, P W, KÅllberg, A J, Simmons, U, Andrae, V D C, Bechtold, M, Fiorino, J K, Gibson, J, Haseler, A, Hernandez, G A, Kelly, X, Li, K, Onogi, S, Saarinen, N, Sokka, R P, Allan, E, Andersson, K, Arpe, M A, Balmaseda, A C M, Beljaars, L V D, Berg, J, Bidlot, N, Bormann, S, Caires, F, Chevallier, A, Dethof, M, Dragosavac, M, Fisher, M, Fuentes, S, Hagemann, E, Hólm, B J, Hoskins, L, Isaksen, P A E M, Janssen, R, Jenne, A P, Mcnally, J F, Mahfouf, J J, Morcrette, N A, Rayner, R W, Saunders, P, Simon, A, Sterl, K E, Trenberth, A, Untch, D, Vasiljevic, P, Viterbo, J Woollen. ( 2005). The ERA-40 re-analysis. Q J R Meteorol Soc, 131( 612): 2961– 3012
https://doi.org/10.1256/qj.04.176
33 F J, Wentz J, Scott R, Hoffman M, Leidner R, Atlas J Ardizzone ( 2015). Remote sensing systems cross-calibrated multi-platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 2.0. Remote Sensing Systems, Santa Rosa, CA
34 D, Xi G, Han X, Yin Y, Li Y, Liu Y Tang ( 2020). Study on application of CPS method to typhoons affecting Jiangsu Province. Meteor Mon, 46( 6): 765– 775 (in Chinese)
35 J Xu ( 2005). Distribution of wind speed and direction when typhoons influencing Shanghai. Meteoro Mon, 31( 8): 66– 70 (in Chinese)
36 M, Ying, W, Zhang, H, Yu, X, Lu, J, Feng, Y, Fan, Y, Zhu, D Chen. ( 2014). An overview of the China Meteorological Administration tropical cyclone database. J Atmos Ocean Technol, 31( 2): 287– 301
https://doi.org/10.1175/JTECH-D-12-00119.1
37 C, Yue Y, Tang W, Gu Z, Han X Wang ( 2019). Study of city barrier effect on local typhoon precipitation. Meteor Mon, 45(11): 1611– 1620 (in Chinese)
38 C M, Zarzycki, P A, Ullrich, K A Reed. ( 2021). Metrics for evaluating tropical cyclones in climate data. J Appl Meteorol Climatol, 60( 5): 643– 660
https://doi.org/10.1175/JAMC-D-20-0149.1
39 S E, Zick, C J Matyas. ( 2015). Tropical cyclones in the North American regional reanalysis: an assessment of spatial biases in location, intensity, and structure. J Geophys Res D Atmospheres, 120( 5): 1651– 1669
https://doi.org/10.1002/2014JD022417
[1] Xiaolu TANG, Li SHENG, Yinkang ZHOU. Exploring complex urban growth and land use efficiency in China’s developed regions: implications for territorial spatial planning[J]. Front. Earth Sci., 2022, 16(4): 1040-1051.
[2] Yufan DAI, Qingqing LI, Lijuan WANG, Hong CHEN. Examining asymmetric outer-core CAPE in sheared tropical cyclones based on the FNL data set[J]. Front. Earth Sci., 2022, 16(3): 734-743.
[3] Chong WANG, Qing XU, Yongcun CHENG, Yi PAN, Hong LI. Ensemble forecast of tropical cyclone tracks based on deep neural networks[J]. Front. Earth Sci., 2022, 16(3): 671-677.
[4] Bin HE, Zifeng YU, Yan TAN, Yan SHEN, Yingjun CHEN. Rainfall forecast errors in different landfall stages of Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 34-51.
[5] Chunyi XIANG, Liguang WU, Nannan QIN. Characteristics of extreme rainfall and rainbands evolution of Super Typhoon Lekima (2019) during its landfall[J]. Front. Earth Sci., 2022, 16(1): 64-74.
[6] Mengting XU, Hong LI, Jingyao LUO, Hairong BEN, Yijie ZHU. Predictability and dynamics of the rapid intensification of Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 132-143.
[7] Mengjuan LIU, Lin DENG, Wei HUANG, Wanchen WU. The impact of vertical resolution on the simulation of Typhoon Lekima (2019) by a cloud-permitting model[J]. Front. Earth Sci., 2022, 16(1): 158-174.
[8] Mingwei ZHAO, Ling JIANG, Chun WANG, Cancan YANG, Xin YANG. On the topographic entity-oriented digital elevation model construction method for urban area land surface[J]. Front. Earth Sci., 2021, 15(3): 580-594.
[9] Sijun ZHENG, Chen MENG, Jianhui XUE, Yongbo WU, Jing LIANG, Liang XIN, Lang ZHANG. UAV-based spatial pattern of three-dimensional green volume and its influencing factors in Lingang New City in Shanghai, China[J]. Front. Earth Sci., 2021, 15(3): 543-552.
[10] Zhiyao ZHAO, Xianwei ZHENG, Hongchao FAN, Mengqi SUN. Urban spatial structure analysis: quantitative identification of urban social functions using building footprints[J]. Front. Earth Sci., 2021, 15(3): 507-525.
[11] Haibo LI, Xiaocong XU, Xia LI, Shifa MA, Honghui ZHANG. Characterizing the urban spatial structure using taxi trip big data and implications for urban planning[J]. Front. Earth Sci., 2021, 15(1): 70-80.
[12] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[13] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[14] Melinda LAITURI. The hydrosocial cycle in rapidly urbanizing watersheds[J]. Front. Earth Sci., 2020, 14(2): 256-267.
[15] Shifa MA, Feng LIU, Chunlei MA, Xuemin OUYANG. Integrating logistic regression with ant colony optimization for smart urban growth modelling[J]. Front. Earth Sci., 2020, 14(1): 77-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed