Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2010, Vol. 4 Issue (4) : 373-386    https://doi.org/10.1007/s11783-010-0253-7
FEATURE ARTICLE
Mitigation and remediation technologies for organic contaminated soils
Lizhong ZHU1,2(), Li LU1,2, Dong ZHANG1,2
1. Department of Environmental Science, Zhejiang University, Hangzhou 310028, China; 2. Zhejiang Province Key Laboratory of Organic Pollution Process and Control, Hangzhou 310028, China
 Download: PDF(375 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Organic contaminated soils have become a widespread environmental problem, which may lead to a great threat to the quality of agricultural production and to human health. Physical, chemical, and biological technologies have been employed for the mitigation and remediation of organic contaminated soils. This paper reviews the progress of mitigation and remediation technologies for organic contaminated soils and suggests two different strategies for the mitigation of ‘slightly-contaminated’ agricultural soils and the remediation of ‘heavily-contaminated’ soils/sites, respectively. On this basis, directions for future research in this field are suggested.

Keywords organic contaminated soil      mitigation      remediation      bioavailability     
Corresponding Author(s): ZHU Lizhong,Email:zlz@zju.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Lizhong ZHU,Li LU,Dong ZHANG. Mitigation and remediation technologies for organic contaminated soils[J]. Front Envir Sci Eng Chin, 2010, 4(4): 373-386.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0253-7
https://academic.hep.com.cn/fese/EN/Y2010/V4/I4/373
Fig.1  

Strategies of mitigation and remediation for slightly, and heavily contaminated soils/sites

Fig.2  

Sorption enhancement of organic contaminant by cationic surfactant [40]

Fig.3  

Shoot concentration factors (SCFs) of phenanthrene and pyrene as a function of CTMAB dosages. CAB, CHR and LET were presented for cabbage, chrysanthemum, and lettuce, respectively

Fig.4  

Percentage of literature studies conducted for different categories of soil remediation technologies (Statistics of the data from ISI Web of Knowledge)

Fig.5  

Main aerobic degradation pathways for PAHs [92]

Fig.6  

Schematic diagram of surfactant-enhanced phytoremediation

Tab.1  

Kd?/Kd values of organic contaminants with the presence of myristylpyridinium bromide (MPB) [40]

Tab.2  

Cost comparison of remediation methods for organic contaminated soils [41]

Tab.3  

Common organic contaminant degraders in soil

1 Cai Q Y, Mo C H, Wu Q T, Katsoyiannis A, Zeng Q Y. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: a review. The Science of the total environment , 2008, 389(2–3): 209–224
doi: 10.1016/j.scitotenv.2007.08.026
2 Daly G L, Lei Y D, Teixeira C, Muir D C G, Castillo L E, Jantunen L M M, Wania F. Organochlorine pesticides in the soils and atmosphere of Costa Rica. Environmental Science & Technology , 2007, 41(4): 1124–1130
doi: 10.1021/es062349d
3 Tang L, Tang X Y, Zhu Y G, Zheng M H, Miao Q L. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International , 2005, 31(6): 822–828
doi: 10.1016/j.envint.2005.05.031
4 Wang T Y, Lu Y L, Zhang H, Shi Y J. Contamination of persistent organic pollutants (POPs) and relevant management in China. Environment International , 2005, 31(6): 813–821
doi: 10.1016/j.envint.2005.05.043
5 Borghini F, Grimalt J O, Sanchez-Hernandez J C, Barra R, García C J T, Focardi S. Organochlorine compounds in soils and sediments of the mountain Andean Lakes. Environmental Pollution , 2005, 136(2): 253–266
doi: 10.1016/j.envpol.2005.01.007
6 Choi S D, Shunthirasingham C, Daly G L, Xiao H, Lei Y D, Wania F. Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads. Environmental Pollution , 2009, 157(12): 3199–3206
doi: 10.1016/j.envpol.2009.05.032
7 Holoubek I, Dusek L, Sánka M, Hofman J, Cupr P, Jarkovsky J, Zbíral J, Klánová J. Soil burdens of persistent organic pollutants—their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution , 2009, 157(12): 3207–3217
doi: 10.1016/j.envpol.2009.05.031
8 Wang W, Massey Simonich S L, Xue M, Zhao J, Zhang N, Wang R, Cao J, Tao S. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution , 2010, 158(5): 1245–1251
doi: 10.1016/j.envpol.2010.01.021
9 Weis I M, Barclay G F. Distribution of heavy metal and organic contaminants in plants and soils of windsor and essex county, Ontario. Journal of Great Lakes research , 1985, 11(3): 339–346
doi: 10.1016/S0380-1330(85)71777-7
10 Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soil — A review. Journal of Plant Nutrition and Soil Science , 2000, 163(3): 229–248
doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
11 Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma , 2007, 141(3–4): 157–166
doi: 10.1016/j.geoderma.2007.07.007
12 Wilcke W, Krauss M, Safronov G, Fokin A D, Kaupenjohann M. Polychlorinated biphenyls (PCBs) in soils of the Moscow region: concentrations and small-scale distribution along an urban-rural transect. Environmental Pollution , 2006, 141(2): 327–335
doi: 10.1016/j.envpol.2005.08.038
13 Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel J L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. Journal of Environmental Quality , 2002, 31(5): 1649–1656
doi: 10.2134/jeq2002.1649
14 Gao Y, Zhu L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere , 2004, 55(9): 1169–1178
doi: 10.1016/j.chemosphere.2004.01.037
15 Khan S, Aijun L, Zhang S, Hu Q, Zhu Y G. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials , 2008, 152(2): 506–515
doi: 10.1016/j.jhazmat.2007.07.014
16 Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution , 1999, 106(3): 369–380
doi: 10.1016/S0269-7491(99)00107-4
17 Sams?e-Petersen L, Larsen E H, Larsen P B, Bruun P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental Science & Technology , 2002, 36(14): 3057–3063
doi: 10.1021/es015691t
18 Wennrich L, Popp P, Zeibig M. Polycyclic Aromatic Hydrocarbon Burden in Fruit and Vegetable Species Cultivated in Allotments in an Industrial Area. International Journal of Environmental Analytical Chemistry , 2002, 82(10): 667–690
doi: 10.1080/0306731021000075401
19 Wild S R, Jones K C. Polynuclear Aromatic Hydrocarbon Uptake by Carrots Grown in Sludge-Amended Soil. Journal of Environmental Quality , 1992, 21(2): 217–225
doi: 10.2134/jeq1992.00472425002100020010x
20 Lin D H, Tu Y Y, Zhu L Z. Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association , 2005, 43(1): 41–48
21 Cai Q Y, Mo C H, Wu Q T, Zeng Q Y. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. Bioresource Technology , 2008, 99(6): 1830–1836
doi: 10.1016/j.biortech.2007.03.035
22 Dai J, Xu M, Chen J, Yang X, Ke Z. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China. Chemosphere , 2007, 66(2): 353–361
doi: 10.1016/j.chemosphere.2006.04.072
24 Griffiths R A. Soil-washing technology and practice. Journal of Hazardous Materials , 1995, 40(2): 175–189
doi: 10.1016/0304-3894(94)00064-N
25 Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology , 2005, 56(1): 15–39
doi: 10.1146/annurev.arplant.56.032604.144214
26 Collins C, Fryer M, Grosso A. Plant uptake of non ionic organic chemicals. Environmental Science & Technology , 2006, 40(1): 45–52
doi: 10.1021/es0508166
27 Li H, Sheng G Y, Chiou C T, Xu O Y. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental Science & Technology , 2005, 39(13): 4864–4870
doi: 10.1021/es050424z
28 Chiou C T, Sheng G Y, Manes M. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environmental Science & Technology , 2001, 35(7): 1437–1444
doi: 10.1021/es0017561
29 Bolan N S, Duraisamy V P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Australian Journal of Soil Research , 2003, 41(3): 533–555
doi: 10.1071/SR02122
30 Liu Z T, Xu M, Lin Y Q, Lu Z L, Zhang G Y. Immobilization of hexachlorocyclohexane and growth of ryegrass by organic clays in soils. China Environmental Science , 2010, 30(4): 533–538
31 Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution , 2010, 158(6): 2282–2287
doi: 10.1016/j.envpol.2010.02.003
32 Spokas K A, Koskinen W C, Baker J M, Reicosky D C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere , 2009, 77(4): 574–581
doi: 10.1016/j.chemosphere.2009.06.053
33 Yu X Y, Ying G G, Kookana R S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere , 2009, 76(5): 665–671
doi: 10.1016/j.chemosphere.2009.04.001
34 Zhu L, Li Y, Zhang J Y. Sorption of organobentonites to some organic pollutants in water. Environmental Science & Technology , 1997, 31(5): 1407–1410
doi: 10.1021/es960641n
35 Geliner W J, Zhao X, Girand M, Boyd S A, Voice T C. Hydraulic conductivity of soil sorptive zones created by in situ injection of a cationic surfactant. Journal of Environmental Engineering , 2006, 132(12): 1659–1663
doi: 10.1061/(ASCE)0733-9372(2006)132:12(1659)
36 Sánchez L, Romero E, Sánchez-Rasero F, Dios G, Pe?a A. Enhanced soil sorption of methidathion using sewage sludge and surfactants. Pest Management Science , 2003, 59(8): 857–864
doi: 10.1002/ps.686
37 Lu L, Zhu L Z. Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. Environmental Pollution , 2009, 157(6): 1794–1799
doi: 10.1016/j.envpol.2009.01.028
38 Boyd S A, Lee J F, Mortland M M. Attenuating organic contaminant mobility by soil modification. Nature , 1988, 333(6171): 345–347
doi: 10.1038/333345a0
39 Zhu L Z, Chen B L, Shen X Y. Sorption of Phenol, p-Nitrophenol, and Aniline to Dual-Cation Organobentonites from Water. Environmental Science & Technology , 2000, 34(3): 468–475
doi: 10.1021/es990177x
40 Chen B L, Zhu L Z, Lin B, Tao S. Enhancement of cationic surfactant on immobilizing p-nitrophenol and phenol in soils. Acta Pedologica Sinica , 2004, 41(1): 148–151
41 Pilon-Smits E A H, Freeman J L. Environmental cleanup using plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment , 2006, 4(4): 203–210
doi: 10.1890/1540-9295(2006)004[0203:ECUPBA]2.0.CO;2
42 Lodolo A, Gonzalez-Valencia E, Miertus S. Overview of remediation technologies for persistent toxic substances. Arhiv za Higijenu Rada i Toksikologiju , 2001, 52(2): 253–280
43 Kawala Z, Atamanczuk T. Microwave-enhanced thermal decontamination of soil. Environmental Science & Technology , 1998, 32(17): 2602–2607
doi: 10.1021/es980025m
44 Heron G, Van Zutphen M, Christensen T H, Enfield C G. Soil heating for enhanced remediation of chlorinated solvents: A laboratory study on resistive heating and vapor extraction in a silty, low- permeable soil contaminated with trichloroethylene. Environmental Science & Technology , 1998, 32(10): 1474–1481
doi: 10.1021/es970563j
45 Virkutyt J, Sillanp?? M, Latostenmaa P. Electrokinetic soil remediation—critical overview. The Science of the total environment , 2002, 289(1–3): 97–121
doi: 10.1016/S0048-9697(01)01027-0
46 Saichek R E, Reddy K R. Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review. Critical Reviews in Environmental Science and Technology , 2005, 35(2): 115–192
doi: 10.1080/10643380590900237
47 Ko S O, Schlautman M A, Carraway E R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environmental Science & Technology , 2000, 34(8): 1535–1541
doi: 10.1021/es990223t
48 Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology , 2006, 36(1): 1–84
doi: 10.1080/10643380500326564
49 Gallard H, de Laat J. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Research , 2000, 34(12): 3107–3116
doi: 10.1016/S0043-1354(00)00074-9
50 Gan S, Lau E V, Ng H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials , 2009, 172(2–3): 532–549
doi: 10.1016/j.jhazmat.2009.07.118
51 Zhou W J, Zhu L Z. Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant. Water Research , 2008, 42(1–2): 101–108
doi: 10.1016/j.watres.2007.07.021
52 Smith J A, Sahoo D, McLellan H M, Imbrigiotta T E. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100. Environmental Science & Technology , 1997, 31(12): 3565–3572
doi: 10.1021/es970314v
53 Sahoo D, Smith J A, Imbrigiotta T E, McLellan H M. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 2. Transport of TCE. Environmental Science & Technology , 1998, 32(11): 1686–1693
doi: 10.1021/es970722z
54 Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil. Reviews in Engineering Geology , 2001, 60(1–4): 371–380
doi: 10.1016/S0013-7952(00)00117-4
55 He L, Huang G H, Lu H W, Zeng G M. Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty. Environmental Science & Technology , 2008, 42(6): 2009–2014
doi: 10.1021/es071106y
56 Treiner C, Nortz M, Vaution C. Micellar solubilization in strongly interacting binary surfactant systems. Langmuir , 1990, 6(7): 1211–1216
doi: 10.1021/la00097a002
57 Sailaja D, Suhasini K L, Kumar S, Gandhi K S. Theory of rate of solubilization into surfactant solutions. Langmuir , 2003, 19(9): 4014–4026
doi: 10.1021/la0268698
58 Edwards D A, Luthy R G, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology , 1991, 25(1): 127–133
doi: 10.1021/es00013a014
59 Bernardez L A, Ghoshal S. Selective solubilization of polycyclic aromatic hydrocarbons from multicomponent nonaqueous-phase liquids into nonionic surfactant micelles. Environmental Science & Technology , 2004, 38(22): 5878–5887
doi: 10.1021/es0497429
60 Loraine G A. Effects of alcohols, anionic and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron. Water Research , 2001, 35(6): 1453–1460
doi: 10.1016/S0043-1354(00)00422-X
61 Deshpande S, Shiau B J, Wade D, Sabatini D A, Harwell J H. Surfactant selection for enhancing ex situ soil washing. Water Research , 1999, 33(2): 351–360
doi: 10.1016/S0043-1354(98)00234-6
62 Ko S O, Schlautman M A. Partitioning of hydrophobic organic compounds to sorbed surfactants. 2. Model development/predictions for surfactant-enhanced remediation applications. Environmental Science & Technology , 1998, 32(18): 2776–2781
doi: 10.1021/es9710767
63 Ko S O, Schlautman M A, Carraway E R. Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies. Environmental Science & Technology , 1998, 32(18): 2769–2775
doi: 10.1021/es971075e
64 Zhu L, Yang K, Lou B, Yuan B H. A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Water Research , 2003, 37(19): 4792–4800
doi: 10.1016/S0043-1354(03)00428-7
65 Zhou W, Zhu L Z. Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant. Chemosphere , 2005, 60(9): 1237–1245
doi: 10.1016/j.chemosphere.2005.02.058
66 Zhu L, Chen B L, Tao S. Sorption Behavior of Polycyclic Aromatic Hydrocarbons in Soil-Water System Containing Nonionic Surfactant. Environmental Engineering Science , 2004, 21(2): 263–272
doi: 10.1089/109287504773087417
67 Yang K, Zhu L Z, Xing B S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology , 2006, 40(13): 4274–4280
doi: 10.1021/es060122c
68 Zhou W, Zhu L Z. Solubilization of polycyclic aromatic hydrocarbons by anionic-nonionic mixed surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 255(1–3): 145–152
doi: 10.1016/j.colsurfa.2004.12.039
69 Jonsson S, Lind H, Lundstedt S, Haglund P, Tysklind M. Dioxin removal from contaminated soils by ethanol washing. Journal of Hazardous Materials , 2010, 179(1–3): 393–399
doi: 10.1016/j.jhazmat.2010.03.017
70 Mueller J G, Devereux R, Santavy D L, Lantz S E, Willis S G, Pritchard P H. Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology , 1997, 71(4): 329–343
doi: 10.1023/A:1000277008064
71 Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2005, 80(7): 723–736
doi: 10.1002/jctb.1276
72 Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele J P. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation , 1999, 10(6): 429–435
doi: 10.1023/A:1008382030604
73 Davies J I, Evans W C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. The Biochemical Journal , 1964, 91(2): 251–261
74 Gautam S K, Suresh S. Biodegradation of 1,1-diphenylethylene and 1,1-diphenylethane by Pseudomonas putida PaW 736. Current Science , 2009, 96(9): 1247–1251
75 Gordon L, Dobson A D W. Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation , 2001, 12(6): 393–400
doi: 10.1023/A:1015029519142
76 Kamanavalli C M, Ninnekar H Z. Biodegradation of DDT by a Pseudomonas species. Current Microbiology , 2004, 48(1): 10–13
doi: 10.1007/s00284-003-4053-1
77 Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology , 1996, 62(1): 13–19
78 Seo J S, Keum Y S, Harada R M, Li Q X. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. Journal of Agricultural and Food Chemistry , 2007, 55(14): 5383–5389
doi: 10.1021/jf0637630
79 Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World Journal of Microbiology & Biotechnology , 2008, 24(4): 523–531
doi: 10.1007/s11274-007-9503-7
80 Bogan B W, Lamar R T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology , 1995, 61(7): 2631–2635
81 Liu Y, Zhang J, Zhang Z Z. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation , 2004, 15(3): 205–212
doi: 10.1023/B:BIOD.0000026579.38741.e1
82 Thomas J C, Berger F, Jacquier M, Bernillon D, Baud-Grasset F, Truffaut N, Normand P, Vogel T M, Simonet P. Isolation and characterization of a novel γ-hexachlorocyclohexane-degrading bacterium. Journal of Bacteriology , 1996, 178(20): 6049–6055
83 Fazlurrahman H, Batra M, Pandey J, Suri C R, Jain R K. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Letters in Applied Microbiology , 2009, 49(6): 721–729
doi: 10.1111/j.1472-765X.2009.02724.x
84 Cerniglia C E, Gibson D T. Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. The Journal of biological chemistry , 1979, 254(23): 12174–12180
85 Cerniglia C E, Gibson D T, Dodge R H. Metabolism of benz[a]anthracene by the filamentous fungus Cunninghamella elegans. Applied and Environmental Microbiology , 1994, 60(11): 3931–3938
86 In Der Wiesche C, Martens R, Zadrazil F. Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Applied Microbiology and Biotechnology , 1996, 46(5–6): 653–659
doi: 10.1007/s002530050876
87 Pothuluri J V, Evans F E, Heinze T M, Cerniglia C E. Formation of sulfate and glucoside conjugates of benzo[e]pyrene by Cunninghamella elegans. Applied Microbiology and Biotechnology , 1996, 45(5): 677–683
doi: 10.1007/s002530050747
88 Bogan B W, Lamar R T, Hammel K E. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Applied and Environmental Microbiology , 1996, 62(5): 1788–1792
89 Bogan B W, Schoenike B, Lamar R T, Cullen D. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Applied and Environmental Microbiology , 1996, 62(10): 3697–3703
90 Zheng Z, Obbard J P. Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme and Microbial Technology , 2002, 31(1–2): 3–9
doi: 10.1016/S0141-0229(02)00091-1
91 Wunder T, Kremer S, Sterner O, Anke H. Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Applied Microbiology and Biotechnology , 1994, 42(4): 636–641
doi: 10.1007/BF00173932
92 Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation , 1992, 3(2–3): 351–368
doi: 10.1007/BF00129093
93 Bumpus J A, Aust S D. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology , 1987, 53(9): 2001–2008
94 Boundy-Mills K L, de Souza M L, Mandelbaum R T, Wackett L P, Sadowsky M J. The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Applied and Environmental Microbiology , 1997, 63(3): 916–923
95 Meckenstock R U, Annweiler E, Michaelis W, Richnow H H, Schink B. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology , 2000, 66(7): 2743–2747
doi: 10.1128/AEM.66.7.2743-2747.2000
96 Paudyn K, Rutter A, Kerry Rowe R, Poland J S. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Regions Science and Technology , 2008, 53(1): 102–114
doi: 10.1016/j.coldregions.2007.07.006
97 Kao C M, Chien H Y, Surampalli R Y, Sung W P. Application of biopile system for the remediation of petroleum-hydrocarbon contaminated soils. In: Proceedings of World Environmental and Water Resources Congress 2009, Great Rivers. Kansas: American Society of Civil Engineers , 2009, 435–439
98 Newman L A, Reynolds C M. Phytodegradation of organic compounds. Current Opinion in Biotechnology , 2004, 15(3): 225–230
doi: 10.1016/j.copbio.2004.04.006
99 Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology , 2005, 56: 15–39 .
doi: 10.1146/annurev.arplant.56.032604.144214
100 Newman L A, Strand S E, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff B B, Wilmoth J, Heilman P, Gordon M P. Uptake and biotransformation of trichloroethylene by hybrid poplars. Environmental Science & Technology , 1997, 31(4): 1062–1067
doi: 10.1021/es960564w
101 Marques A P G C, Rangel A O S S, Castro P M L. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-Up technology. Critical Reviews in Environmental Science and Technology , 2009, 39(8): 622–654
doi: 10.1080/10643380701798272
102 Ramaswami A, Rubin E. Measuring phytoremediation parameters for volatile organic compounds: Focus on MTBE. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management , 2001, 5(3): 123–129
doi: 10.1061/(ASCE)1090-025X(2001)5:3(123)
104 Zhu L Z, Gao Y Z. Prediction of phenanthrene uptake by plants with a partition-limited model. Environmental Pollution , 2004, 131(3): 505–508
doi: 10.1016/j.envpol.2004.02.003
105 Yang Z Y, Zhu L Z. Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons. Chemosphere , 2007, 67(2): 402–409
doi: 10.1016/j.chemosphere.2006.09.008
106 White J C, Wang X, Gent M P N, Iannucci-Berger W, Eitzer B D, Schultes N P, Arienzo M, Mattina M I. Subspecies-level variation in the phytoextraction of weathered p,p’-DDE by Cucurbita pepo. Environmental Science & Technology , 2003, 37(19): 4368–4373
doi: 10.1021/es034357p
107 Eapen S, Singh S, D’Souza S F. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnology Advances , 2007, 25(5): 442–451
doi: 10.1016/j.biotechadv.2007.05.001
108 Kawahigashi H. Transgenic plants for phytoremediation of herbicides. Current Opinion in Biotechnology , 2009, 20(2): 225–230
doi: 10.1016/j.copbio.2009.01.010
109 Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opinion in Biotechnology , 2009, 20(2): 231–236
doi: 10.1016/j.copbio.2009.01.011
110 James C A, Strand S E. Phytoremediation of small organic contaminants using transgenic plants. Current Opinion in Biotechnology , 2009, 20(2): 237–241
doi: 10.1016/j.copbio.2009.02.014
111 Briggs G G, Bromilow R H, Evans A A. Relationships between Lipophilicity and Root Uptake and Translocation of Non-Ionized Chemicals by Barley. Pesticide Science , 1982, 13(5): 495–504
doi: 10.1002/ps.2780130506
112 Burken J G, Schnoor J L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science & Technology , 1998, 32(21): 3379–3385
doi: 10.1021/es9706817
113 Ryan J A, Bell R M, Davidson J M, O'Connor G A. Plant uptake of non-ionic organic chemicals from soils. Chemosphere , 1988, 17(12): 2299–2323
doi: 10.1016/0045-6535(88)90142-7
114 Wild E, Dent J, Thomas G O, Jones K C. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental Science & Technology , 2005, 39(10): 3695–3702
doi: 10.1021/es048136a
115 White P M Jr, Wolf D C, Thoma G J, Reynolds C M. Influence of organic and inorganic soil amendments on plant growth in crude oil-contaminated soil. International Journal of Phytoremediation , 2003, 5(4): 381–397
116 Banks M K, Schwab P, Liu B, Kulakow P A, Smith J S, Kim R. The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Advances in Biochemical Engineering and Biotechnology , 2003, 78: 75–96
doi: 10.1007/3-540-45991-X_3
117 Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack F M G, Lust N. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental Pollution , 2003, 126(2): 275–282
doi: 10.1016/S0269-7491(03)00189-1
118 Cravotto G, Binello A, Di Carlo S, Orio L, Wu Z L, Ondruschka B. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: A mechanism investigation. Environmental Science and Pollution Research , 2009, 17(3): 674–687
doi: 10.1007/s11356-009-0253-y
119 Flechas F W, Latady M. Regulatory evaluation and acceptance issues for phytotechnology projects. Advances in Biochemical Engineering/Biotechnology , 2003, 78: 171–185
doi: 10.1007/3-540-45991-X_7
120 Cheng K Y, Lai K M, Wong J W C. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere , 2008, 73(5): 791–797
doi: 10.1016/j.chemosphere.2008.06.005
121 Gao Y Z, Shen Q, Ling W T, Ren L. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Chemosphere , 2008, 72(4): 636–643
doi: 10.1016/j.chemosphere.2008.02.032
122 Wu N Y, Zhang S Z, Huang H L, Shan X Q, Christie P, Wang Y S. DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution , 2008, 151(3): 569–575
doi: 10.1016/j.envpol.2007.04.005
123 Zhu L Z, Zhang M. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution , 2008, 156(1): 46–52
doi: 10.1016/j.envpol.2008.01.004
124 Aronstein B N, Calvillo Y M, Alexander M. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environmental Science & Technology , 1991, 25(10): 1728–1731
doi: 10.1021/es00022a008
125 Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology , 2000, 53(5): 495–508
doi: 10.1007/s002530051648
126 Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology , 1994, 60(1): 258–263
127 Tiehm A, Stieber M, Werner P, Frimmel F H. Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environmental Science & Technology , 1997, 31(9): 2570–2576
doi: 10.1021/es9609967
128 Zhang Y, Maier W J, Miller R M. Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environmental Science & Technology , 1997, 31(8): 2211–2217
doi: 10.1021/es960687g
129 Van Hamme J D, Singh A, Ward O P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances , 2006, 24(6): 604–620
doi: 10.1016/j.biotechadv.2006.08.001
130 Marlowe E M, Wang J M, Pepper I L, Maier R M. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation. Biodegradation , 2002, 13(4): 251–260
doi: 10.1023/A:1021221104425
131 Laha S, Luthy R G. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environmental Science & Technology , 1991, 25(11): 1920–1930
doi: 10.1021/es00023a013
132 Deschênes L, Lafrance P, Villeneuve J P, Samson R. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Applied Microbiology and Biotechnology , 1996, 46(5–6): 638–646
doi: 10.1007/s002530050874
133 Mulligan C N. Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science , 2009, 14(5): 372–378
doi: 10.1016/j.cocis.2009.06.005
134 Lin S C. Biosurfactants: Recent advances. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 1996, 66(2): 109–120
doi: 10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2
[1] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[2] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[3] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[4] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[5] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[6] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[7] Madhavaraj Lavanya, Ho-Dong Lim, Kong-Min Kim, Dae-Hyuk Kim, Balasubramani Ravindran, Gui Hwan Han. A novel strategy for gas mitigation during swine manure odour treatment using seaweed and a microbial consortium[J]. Front. Environ. Sci. Eng., 2020, 14(3): 53-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[10] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[11] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[12] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[13] Boran Wu, Xiaoli Chai, Youcai Zhao, Xiaohu Dai. Designing an in situ remediation strategy for polluted surface water bodies through the specific regulation of microbial community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 4-.
[14] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[15] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed