Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (3) : 4    https://doi.org/10.1007/s11783-017-0923-9
RESEARCH ARTICLE
Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs
Conor Dennehy1, Peadar G. Lawlor2, Gillian E. Gardiner3, Yan Jiang1, Paul Cormican4, Matthew S. McCabe4, Xinmin Zhan1()
1. Department of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
2. Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
3. Department of Science, Waterford Institute of Technology, Waterford, Ireland
4. Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Meath, Ireland
 Download: PDF(491 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reducing HRT to 10.5 days caused shifts in acidogenic population & VFA accumulation.

VFA-oxidizing bacteria were key in process stability when HRT was 10.5 days.

Reducing HRT to 10.5 days reduced substrate utilization.

Pathogen removal was not achieved when HRT was<21 days.

This study assessed the effects of reducing hydraulic retention times (HRTs) from 21 days to 10.5 days when anaerobically co-digesting pig manure and food waste. Continuously stirred tank reactors of 3.75 L working volume were operated in triplicate at 42°C. Digester HRT was progressively decreased from 21 to 15 days to 10.5 days, with an associated increase in organic loading rate (OLR) from 3.1 kg volatile solids (VS)·m3·day1 to 5.1 kg VS·m3·day1 to 7.25 kg VS·m3·day1. Reducing HRT from 21 days to 15 days caused a decrease in specific methane yields and VS removal rates. Operation at a HRT of 10.5 days initially resulted in the accumulation of isobutyric acid in each reactor. High throughput 16S rRNA gene sequencing revealed that this increase coincided with a shift in acidogenic bacterial populations, which most likely resulted in the increased isobutyric acid concentrations. This may in turn have caused the increase in relative abundance of Clocamonaceae bacteria, which syntrophically degrade non-acetate volatile fatty acids (VFAs) into H2 and CO2. This, along with the increase in abundance of other syntrophic VFA oxidizers, such as Spiorchatetes, suggests that VFA oxidation plays a role in digester operation at low HRTs. Reducing the HRT to below 21 days compromised the ability of the anaerobic digestion system to reduce enteric indicator organism counts below regulatory limits.

Keywords Biogas      Sequencing      Clocamonaceae      Spiorchatetes      Isobutyrate      Biosafety     
Corresponding Author(s): Xinmin Zhan   
Issue Date: 07 April 2017
 Cite this article:   
Conor Dennehy,Peadar G. Lawlor,Gillian E. Gardiner, et al. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs[J]. Front. Environ. Sci. Eng., 2017, 11(3): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0923-9
https://academic.hep.com.cn/fese/EN/Y2017/V11/I3/4
parameterpig manurea)food wastea)inoculuma)
pH7.29±0.055.26±0.137.85±0.09
TCOD /(g·L1)b)48.2±1.1431±1.759±1
SCOD /(g·L1)b)18.5±0.558.5±2.35.5±0.7
TS /(% fresh weight)5.8±0.525.8±7.23.81±0.07
VS /(% fresh weight)4.35±0.320.3±5.72.69±0.04
NH4-N /(g·L-1)b)2.6±0.60.69±0.62.4±0.03
alkalinity /(g·L1)b)2.3±0.70.17±0.35.3±0.1
total volatile fatty acids /(g·L-1 acetic acid equivalents (HAceq) b)8.3±3.47.8±2.32.1
acetic /(g·L1 HAceq)3.0±1.21.1±0.90.32
propionic /(g·L1 HAceq)1.4±0.3n.d.n.d.
isobutyric /(g·L1 HAceq)0.3±0.16.7±1.41.73
butyric /(g·L1 HAceq)1.7±1.0n.d.n.d.
isovaleric /(g·L1 HAceq)0.74±0.1n.d.n.d.
valeric /(g·L1 HAceq)1.1±0.8n.d.n.d.
Tab.1  Characteristics of pig manure, food waste and inoculum used in this experiment
Fig.1  Average specific methane yield (SMY), volumetric methane yield (VMY) (a), VFA concentrations (b), and post methane production potential (PMP) and % VS removed (c), measured throughout the experiment as HRT was reduced. Values are the mean of three replicates with error bars representing standard deviations
Fig.2  Average NH4-Nand NH3 (a), pH and alkalinity (b) in each reactor as HRT was decreased. Values are the mean of three replicates with error bars representing standard deviations
Fig.3  Principal component analysis (PCoA) plot of samples taken from the reactors throughout the experiment
Fig.4  Microbial relative abundance within each reactor at each sampling point at phylum, family and genus level. Genera and families with relative abundance<1% at any point during the experiment were grouped in the “Other” category
Fig.5  Relative abundance of Archaea within each reactor at each sampling point at genus level
Fig.6  E. coli and Enterococcus counts in digestate throughout the experiment, as well as in the feed on days 28 and 82. Values are the mean of three replicates with error bars representing standard deviations. Bars representing the count for the same bacteria and for the same sample type sharing a common letter are not significantly different (P>0.05), as measured by the Bonferroni method. *represents the EU animal by-products regulation limit of<1000 CFU·mL-1 for E. coli or Enterococcus in digestate prior to land application. LOD represents limit of detection
1 Xie S, Wu G, Lawlor P G, Frost J P, Zhan X. Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage. Bioresource Technology, 2012, 104: 289–297
https://doi.org/10.1016/j.biortech.2011.11.076
2 Sundberg C, Al-Soud W A, Larsson M, Alm E, Yekta S S, Svensson B H, Sørensen S J, Karlsson A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology Ecology, 2013, 85(3): 612–626
https://doi.org/10.1111/1574-6941.12148
3 Dennehy C, Lawlor P G, Croize T, Jiang Y, Morrison L, Gardiner G E, Zhan X. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion. Waste Management (New York, N.Y.), 2016, 56: 173–180
https://doi.org/10.1016/j.wasman.2016.06.032
4 Batstone D, Tait S, Starrenburg D. Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnology and Bioengineering, 2009, 102(5): 1513–1520
https://doi.org/10.1002/bit.22163
5 Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 2015, 8(1): 14–20
https://doi.org/10.1186/s13068-014-0193-8
6 Alsouleman K, Linke B, Klang J, Klocke M, Krakat N, Theuerl S. Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply. Bioresource Technology, 2016, 208: 200–204
https://doi.org/10.1016/j.biortech.2016.02.104
7 Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez C M. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 2014, 29: 10–21
https://doi.org/10.1016/j.anaerobe.2014.04.006
8 De Vrieze J, Saunders A M, He Y, Fang J, Nielsen P H, Verstraete W, Boon N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 2015, 75: 312–323
https://doi.org/10.1016/j.watres.2015.02.025
9 De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Jáuregui R, Pieper D H, Boon N. The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Research, 2016, 104: 101–110
https://doi.org/10.1016/j.watres.2016.08.008
10 McCutcheon G. A study of the dry matter and nutrient content of pig slurry. Dissertation for Master Degree. Dublin, Ireland: University College Dublin, 1997
11 Browne J D, Allen E, Murphy J D. Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Applied Energy, 2014, 128: 307–314
https://doi.org/10.1016/j.apenergy.2014.04.097
12 Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
13 APHA. Standard Methods for the Examination of Water and Wastewater. Washington D. C.: APHA-AWWA-WEF, 1998
14 Batstone D J, Rodríguez J.Modelling Anaerobic Digestion Processes. In; Fang H P, Zhang T, eds. Anaerobic Biotechnology: Environmental Protection and Resource Recovery. London: Imperial College Press, 2015, 133–160
15 International Organization of Standardization. Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. Amendment 1: Annex D: Detection of Salmonella spp. in Animal Faeces and in Environmental Samples from the Primary Production Stage. Geneva, Switzerland: International Organization for Standardization, 2007
16 Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 2012, 6(8): 1621–1624
https://doi.org/10.1038/ismej.2012.8
17 DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006, 72(7): 5069–5072
https://doi.org/10.1128/AEM.03006-05
18 Fouhy F, Guinane C M, Hussey S, Wall R, Ryan C A, Dempsey E M, Murphy B, Ross R P, Fitzgerald G F, Stanton C, Cotter P D. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrobial Agents and Chemotherapy, 2012, 56(11): 5811–5820
https://doi.org/10.1128/AAC.00789-12
19 Vázquez-Baeza Y, PirrungM, GonzalezA, KnightR.EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience, 2013, 2(1): 16–22 doi:10.1186/2047-217X-2-16
20 Noike T, Endo G, Chang J E, Yaguchi J I, Matsumoto J I. Characteristics of carbohydrate degradation and the rate‐limiting step in anaerobic digestion. Biotechnology and Bioengineering, 1985, 27(10): 1482–1489
https://doi.org/10.1002/bit.260271013
21 Franke-Whittle I H, Walter A, Ebner C, Insam H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management (New York, N.Y.), 2014, 34(11): 2080–2089
https://doi.org/10.1016/j.wasman.2014.07.020
22 Maspolim Y, Zhou Y, Guo C, Xiao K, Ng W J. Comparison of single-stage and two-phase anaerobic sludge digestion systems – Performance and microbial community dynamics. Chemosphere, 2015, 140: 54–62
https://doi.org/10.1016/j.chemosphere.2014.07.028
23 De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jauregui R, Pieper D H, Verstraete W, Boon N. Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Applied Microbiology and Biotechnology, 2015, 99(1): 189–199
https://doi.org/10.1007/s00253-014-6046-3
24 Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi “Subphylum I” with natural and biotechnological relevance. Microbes and Environments, 2009, 24(3): 205–216 
https://doi.org/10.1264/jsme2.ME09151S
25 Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714
https://doi.org/10.1038/ismej.2009.2
26 Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes – A review. Bioresource Technology, 2009, 100(23): 5546–5554
https://doi.org/10.1016/j.biortech.2009.06.024
27 Holdeman L V, Moore W E C. New genus, coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. International Journal of Systematic and Evolutionary Microbiology, 1974, 24(2): 260–277
28 Qiu Y L, Kuang X Z, Shi X S, Yuan X Z, Guo R B. Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Archives of Microbiology, 2014, 196(3): 149–155
https://doi.org/10.1007/s00203-013-0951-1
29 Wu W M, Jain M K, Hickey R F, Zeikus J G. Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen. Biotechnology and Bioengineering, 1996, 52(3): 404–411
https://doi.org/10.1002/(SICI)1097-0290(19961105)52:3<404::AID-BIT6>3.0.CO;2-O
30 Wu W M, Jain M K, Zeikus J G. Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Applied and Environmental Microbiology, 1994, 60(7): 2220–2226
31 Hagen L H, Vivekanand V, Linjordet R, Pope P B, Eijsink V G H, Horn S J. Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 2014, 171: 350–359
https://doi.org/10.1016/j.biortech.2014.08.095
32 Lee S H, Park J H, Kang H J, Lee Y H, Lee T J, Park H D. Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresource Technology, 2013, 145: 25–32
https://doi.org/10.1016/j.biortech.2013.02.070
33 Sun L, Müller B, Westerholm M, Schnürer A. Syntrophic acetate oxidation in industrial CSTR biogas digesters. Journal of Biotechnology, 2014, 171: 39–44
https://doi.org/10.1016/j.jbiotec.2013.11.016
34 Sahlström L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technology, 2003, 87(2): 161–166
https://doi.org/10.1016/S0960-8524(02)00168-2
35 Chen Y, Fu B, Wang Y, Jiang Q, Liu H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresource Technology, 2012, 106: 20–26
https://doi.org/10.1016/j.biortech.2011.11.093
[1] FSE-17016-OF-DC_suppl_1 Download
[1] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[2] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[3] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[4] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[5] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[6] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[7] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[8] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[9] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
[10] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[11] Gwang Il Jang, Chung Yeon Hwang, Byung Cheol Cho. Effects of heavy rainfall on the composition of airborne bacterial communities[J]. Front. Environ. Sci. Eng., 2018, 12(2): 12-.
[12] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[13] Chunming Wang, Huirong Lin, Chengsong Ye. Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification[J]. Front. Environ. Sci. Eng., 2016, 10(6): 8-.
[14] Yiwen LIN,Dan LI,Siyu ZENG,Miao HE. Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses[J]. Front. Environ. Sci. Eng., 2016, 10(3): 539-547.
[15] Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG. Structure and formation of anoxic granular sludge —A string-bag hypothesis[J]. Front. Environ. Sci. Eng., 2016, 10(2): 311-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed