Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 1    https://doi.org/10.1007/s11783-017-0978-7
RESEARCH ARTICLE
Sorption of phenanthrene to biochar modified by base
Zhengjun Feng1,2, Lizhong Zhu1,2()
1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
 Download: PDF(342 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Base was applied to modify biochars from different feedstocks and temperatures.

Content of base soluble carbon followed the trend of rice straw>wood>bamboo.

Base soluble carbon can be extracted from biochar pyrolyzed below 500 °C.

Base modification increased the sorption ability of biochar pyrolyzed below 500 °C.

Removal of base soluble carbon increased biochar’s surface area and hydrophobicity.

Biochar (BC) is a potential material for removal of polycyclic aromatic hydrocarbons from soil and water, and base modification is a promising method for improving its sorption ability. In this study, we synthesized a series of base-modified biochars, and evaluated their sorption of phenanthrene. Original biochars were produced by pyrolysis of three feedstocks (rice straw, wood and bamboo) at five temperatures (300°C, 350°C, 400°C, 500°C and 700°C). Base-modified biochars were further obtained by washing of biochars with base solution. The base soluble carbon (SC) was extracted from the supernatant, which were only obtained from biochars pyrolyzed at low temperatures (<500°C) and the content was decreased with the increase of pyrolysis temperature. The SC content between different feedstocks followed the trend of rice straw>wood>bamboo when same pyrolysis conditions were applied. It was found that base modification improved the sorption of phenanthrene on biochars that SC could be extracted from (extractable-BCs). However, base treatment but had limited effects for biochars that no SC could be extracted from. It suggested that base modification improved the sorption of phenanthrene to extractable-BCs by removing the SC and thus increasing the surface area and hydrophobicity. Therefore, base modification was suggested to be used in modifying extractable-BCs.

Keywords Biochar      Base modification      Phenanthrene     
Corresponding Author(s): Lizhong Zhu   
Issue Date: 25 July 2017
 Cite this article:   
Zhengjun Feng,Lizhong Zhu. Sorption of phenanthrene to biochar modified by base[J]. Front. Environ. Sci. Eng., 2018, 12(2): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0978-7
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/1
SamplesWeight of original biochar (g)Weight of SC (g)Proportion of SC (%)
Rice-30010.03.232.0
Rice-35020.01.68.0
Rice-40050.00.51.0
Wood-30020.01.89.0
Wood-35040.01.33.3
Wood-400100.00.70.7
Bam-30040.01.23.0
Tab.1  Proportion of the SCs in Biochars
SamplesN (%)C (%)H (%)O (%)H/C(N+ O)/Cash (%)SA (m2·g1)
Rice-3001.7549.573.4820.450.0700.44824.762.4
Rice-300-M2.0866.374.6020.630.0690.3426.3293.6
Rice-3501.4749.142.6517.000.0540.37629.748.8
Rice-350-M1.8766.543.2019.560.0480.3228.83103.9
Rice-4001.4448.772.2115.850.0450.35531.736.7
Rice-400-M1.9569.173.0419.070.0440.3046.77141.6
Rice-5001.4958.411.799.630.0310.19028.6840.9
Rice-500-M1.7965.491.9511.840.0300.18820.2347.5
Rice-7001.1756.590.879.550.0150.18931.8255.9
Rice-700-M1.2466.221.1310.610.0170.17920.8062.6
Wood-3003.4655.752.7914.430.0500.32123.573.6
Wood-300-M3.9163.003.0714.390.0490.29115.6370.7
Wood-3503.6257.452.698.430.0470.21027.814.4
Wood-350-M3.8167.562.957.680.0440.17018.0065.5
Wood-4002.9858.931.976.200.0330.15629.927.7
Wood-400-M3.5268.062.016.370.0300.14520.0441.0
Wood-5003.4666.111.894.940.0290.12723.6014.4
Wood-500-M3.6973.772.094.800.0280.11515.6514.6
Wood-7001.9768.320.972.800.0140.07025.9415.5
Wood-700-M2.5677.371.112.450.0140.06516.5116.1
Bam-3000.8171.913.5821.590.0500.3122.111.1
Bam-300-M0.6875.523.6019.660.0480.2690.5439.0
Bam-3500.4677.583.2816.380.0420.2172.303.0
Bam-350-M0.7678.453.3115.950.0420.2131.533.1
Bam-4000.8280.193.0413.050.0380.1732.907.3
Bam-400-M0.8380.323.0313.120.0380.1721.708.3
Bam-5000.5884.352.409.970.0280.1252.705.8
Bam-500-M0.7285.562.429.710.0280.1210.896.7
Bam-7000.7186.921.267.820.0140.0983.292.0
Bam-700-M0.7988.601.277.670.0140.0951.673.4
Rice -300-SC2.6963.134.4628.100.0710.4881.639.7
Rice -350-SC1.8064.974.1327.260.0640.4471.8415.6
Rice -400-SC1.8565.383.9126.880.0600.4391.9816.8
Wood-300-SC3.7958.874.1228.530.0700.5494.6915.5
Wood-350-SC2.9454.393.6828.690.0680.58210.308.3
Wood-400-SC2.7353.643.0326.450.0570.54414.156.2
Bam-300-SC0.6365.683.9829.450.0610.4580.262.9
Humic Acid1.4559.383.1330.250.0530.5345.797.8
Tab.2  Elemental composition, atomic ratio, ash content and surface area of all samples
Fig.1  FT-IR spectra of selected samples ((a) for Rice-300/Rice-300-M/ Rice-300-SC, (b) for Rice-500/Rice-500-M, (c) for Wood-300-SC/Wood-350-SC/ Wood-400-SC/Humic Acid). Rice-300/500 represent biochars made from rice straw pyrolyzed at 300°C and 500°C, respectively. Rice-300-SC represents base soluble carbon extracted from Rice-300. Rice-300/500-M represent base modified biochars from Rice-300/500, respectively. Wood-300/350/400-SC represent base soluble carbon extracted from wood biochars pyrolyzed at 300°C, 350°C and 400°C, respectively
Fig.2  SEM micrographs of selected samples. Wood-400 represents biochar made from wood pyrolyzed at 400°C. Wood-400-M represents base modified biochar from Wood-400. Wood-400-SC represents base soluble carbon extracted from Wood-400. Bam-400 represents biochar made from bamboo pyrolyzed at 400°C. Bam-400-M represents base modified biochar from Bam-400
SamplesQe (mg·g1)K2 (g·mg1·d1)R2
Rice-30012.70.0690.997
Rice-35011.90.0560.996
Rice-5006.20.2590.999
Rice-7007.50.3270.999
Rice-300-M35.80.1300.999
Rice-350-M42.90.1290.999
Rice-500-M6.70.2760.999
Rice-700-M8.30.2960.999
Rice-300-SC31.10.0550.999
Rice-350-SC23.50.0460.999
Tab.3  Kinetic parameters for the Pseudo-second-order model
SamplesFreundlich (KF)Freundlich (n)R2Koc
0.01 Cs0.1 Cs0.5 Cs1 Cs
Rice-30026.10.5700.987381.4141.770.952.7
Rice-300-W37.80.4020.926894.4225.786.257.0
Rice-35018.10.5040.995361.6115.451.936.8
Rice-350-W60.60.4500.9901200.7338.4139.695.4
Rice-40021.30.4090.944664.1170.365.843.7
Rice-400-W75.40.4170.9881597.5417.3163.3109.0
Rice-5009.80.3790.988291.769.825.716.7
Rice-500-W11.70.3670.997329.676.727.717.9
Rice-70010.90.2380.995643.7111.332.719.3
Rice-700-W11.50.2000.995691.4109.630.217.4
Wood-30011.20.6520.97699.844.825.620.1
Wood-300-W50.90.3480.9761627.0362.6127.080.8
Wood-3506.50.7070.96043.822.313.911.4
Wood-350-W21.00.4430.958404.1112.145.731.1
Wood-4002.60.3820.98976.618.46.84.4
Wood-400-W6.30.4780.991102.930.913.49.3
Wood-5001.60.3020.96760.612.14.02.4
Wood-500-W2.00.3300.99057.812.44.22.6
Wood-7001.70.1930.93199.915.64.32.4
Wood-700-W2.10.2270.93595.016.04.62.7
Bam-3002.90.4880.80943.213.35.84.1
Bam-300-W20.50.3800.976471.7113.241.727.1
Bam-3500.80.2550.91930.85.51.71.0
Bam-350-W0.90.2450.96335.76.31.91.1
Bam-4001.60.2600.90661.011.13.42.0
Bam-400-W1.60.1780.87986.113.03.52.0
Bam-5000.70.2860.93523.04.41.40.9
Bam-500-W0.90.1990.88141.76.61.81.0
Bam-7000.40.2920.98112.72.50.80.5
Bam-700-W0.40.2350.97316.42.80.80.5
Rice-HA-30039.20.7100.991236.1121.175.962.1
Rice-HA-35033.50.7890.968136.283.859.751.6
Rice-HA-40028.90.9540.99054.649.145.644.2
Wood-300-HA31.90.6760.988240.9114.367.854.2
Wood-350-HA30.10.9710.96963.259.256.555.3
Wood-400-HA14.20.8400.97955.338.329.626.5
Bam-300-HA31.20.8230.991107.371.453.747.5
Humic Acid21.50.7550.959111.963.642.936.2
Tab.4  Freundlich isotherm parameters and the organic carbon normalized coefficients (Koc) for all samples
1 Purcaro G, Moret S, Conte L S. Overview on polycyclic aromatic hydrocarbons: occurrence, legislation and innovative determination in foods. Talanta, 2013, 105: 292–305
https://doi.org/10.1016/j.talanta.2012.10.041 pmid: 23598022
2 Gan S, Lau E V, Ng H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 2009, 172(2–3): 532–549
https://doi.org/10.1016/j.jhazmat.2009.07.118 pmid: 19700241
3 Lamichhane S, Bal Krishna K C, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere, 2016, 148: 336–353
https://doi.org/10.1016/j.chemosphere.2016.01.036 pmid: 26820781
4 Rajapaksha A U, Chen S S, Tsang D C, Zhang M, Vithanage M, Mandal S, Gao B, Bolan N S, Ok Y S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 2016, 148: 276–291
https://doi.org/10.1016/j.chemosphere.2016.01.043 pmid: 26820777
5 Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 2014, 99: 19–33
https://doi.org/10.1016/j.chemosphere.2013.10.071 pmid: 24289982
6 Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 2011, 159(12): 3269–3282
https://doi.org/10.1016/j.envpol.2011.07.023 pmid: 21855187
7 Cao X, Ma L, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 2009, 43(9): 3285–3291
https://doi.org/10.1021/es803092k pmid: 19534148
8 Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 2008, 42(14): 5137–5143
https://doi.org/10.1021/es8002684 pmid: 18754360
9 Chen Z, Chen B, Zhou D, Chen W. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science & Technology, 2012, 46(22): 12476–12483
https://doi.org/10.1021/es303351e pmid: 23121559
10 Chen Z, Chen B, Chiou C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology, 2012, 46(20): 11104–11111
https://doi.org/10.1021/es302345e pmid: 22970831
11 Chun Y, Sheng G, Chiou C T, Xing B. Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 2004, 38(17): 4649–4655
https://doi.org/10.1021/es035034w pmid: 15461175
12 Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z, Xu D, Wu F, Xing B. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology, 2013, 47(20): 11473–11481
https://doi.org/10.1021/es4026744 pmid: 24025082
13 Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125: 70–85
https://doi.org/10.1016/j.chemosphere.2014.12.058 pmid: 25618190
14 Liu Z, Zhang F S, Wu J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 2010, 89(2): 510–514
https://doi.org/10.1016/j.fuel.2009.08.042
15 Lian F, Huang F, Chen W, Xing B, Zhu L. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environmental Pollution, 2011, 159(4): 850–857
https://doi.org/10.1016/j.envpol.2011.01.002 pmid: 21277057
16 Yavari S, Malakahmad A, Sapari N B. Biochar efficiency in pesticides sorption as a function of production variables—a review. Environmental Science and Pollution Research International, 2015, 22(18): 13824–13841
https://doi.org/10.1007/s11356-015-5114-2 pmid: 26250816
17 Sharma R K, Wooten J B, Baliga V L, Lin X, Geoffrey Chan W, Hajaligol M R. Characterization of chars from pyrolysis of lignin. Fuel, 2004, 83(11–12): 1469–1482
https://doi.org/10.1016/j.fuel.2003.11.015
18 Sharma R K, Wooten J B, Baliga V L, Martoglio-Smith P A, Hajaligol M R. Characterization of char from the pyrolysis of tobacco. Journal of Agricultural and Food Chemistry, 2002, 50(4): 771–783
https://doi.org/10.1021/jf0107398 pmid: 11829644
19 Han L, Qian L, Yan J, Chen M. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures. Chemosphere, 2016, 156: 262–271
https://doi.org/10.1016/j.chemosphere.2016.04.031 pmid: 27179244
20 Ahmed M B, Zhou J L, Ngo H H, Guo W, Chen M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 2016, 214: 836–851
https://doi.org/10.1016/j.biortech.2016.05.057 pmid: 27241534
21 Fan Y, Wang B, Yuan S, Wu X, Chen J, Wang L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 2010, 101(19): 7661–7664
https://doi.org/10.1016/j.biortech.2010.04.046 pmid: 20457515
22 Francioso O, Sanchez-Cortes S, Bonora S, Roldan M L, Certini G. Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. Journal of Molecular Structure, 2011, 994(1–3): 155–162 
https://doi.org/10.1016/j.molstruc.2011.03.011
23 Chiou C T, Mcgroddy S E, Kile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science & Technology, 1998, 32(2): 264–269
https://doi.org/10.1021/es970614c
24 Chiou C T, Kile D E, Rutherford D W, Sheng G Y, Boyd S A. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environmental Science & Technology, 2000, 34(7): 1254–1258
https://doi.org/10.1021/es990261c
25 Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 2005, 39(1): 134–140
https://doi.org/10.1021/es0490828 pmid: 15667087
26 Liu P, Liu W J, Jiang H, Chen J J, Li W W, Yu H Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 2012, 121: 235–240
https://doi.org/10.1016/j.biortech.2012.06.085 pmid: 22858491
27 Li Y C, Shao J A, Wang X H, Deng Y, Yang H P, Chen H P. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels, 2014, 28(8): 5119–5127 
https://doi.org/10.1021/ef500725c
28 Keiluweit M, Nico P S, Johnson M G, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 2010, 44(4): 1247–1253
https://doi.org/10.1021/es9031419 pmid: 20099810
29 Cornelissen G, Gustafsson O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology, 2004, 38(1): 148–155
https://doi.org/10.1021/es034776m pmid: 14740730
[1] FSE-17073-OF-FZJ_suppl_1 Download
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[3] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[4] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[5] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[6] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[7] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[8] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[9] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[10] Kaikai Zhang, Peng Sun, Yanrong Zhang. Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar[J]. Front. Environ. Sci. Eng., 2019, 13(2): 22-.
[11] Quanhui Ye, Chengyue Liang, Chongyang Wang, Yun Wang, Hui Wang. Characterization of a phenanthrene-degrading methanogenic community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 4-.
[12] Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1[J]. Front. Environ. Sci. Eng., 2018, 12(4): 11-.
[13] Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(4): 9-.
[14] Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature[J]. Front. Environ. Sci. Eng., 2017, 11(3): 5-.
[15] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed