Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (3) : 36    https://doi.org/10.1007/s11783-024-1796-3
REVIEW ARTICLE
Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review
Zhiguo Su1, Lyujun Chen1,2, Donghui Wen3()
1. School of Environment, Tsinghua University, Beijng 100084, China
2. Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
3. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
 Download: PDF(1174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Impact of WWTP effluent discharge on ARGs in downstream waterbodies is hotspot.

● Various mechanisms influence the diffusion of ARGs in effluent-receiving waterbodies.

● Controlling AMR risk of WWTPs needs further investigation and management strategies.

Antimicrobial resistance (AMR) has emerged as a significant challenge in human health. Wastewater treatment plants (WWTPs), acting as a link between human activities and the environment, create ideal conditions for the selection and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Unfortunately, current treatment processes are ineffective in removing ARGs, resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents. This, in turn, leads to their dispersion and potential transmission to human through water and the food chain. To safeguard human and environmental health, it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies. In this study, we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent, highlighting the key influencing mechanisms. Furthermore, recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided, with the aim to achieve the “One Health” objective.

Keywords Antibiotic resistance genes (ARGs)      Wastewater treatment plants (WWTPs)      Effluent-receiving waterbodies      Environmental risk      Influencing mechanism     
Corresponding Author(s): Donghui Wen   
Issue Date: 04 December 2023
 Cite this article:   
Zhiguo Su,Lyujun Chen,Donghui Wen. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review[J]. Front. Environ. Sci. Eng., 2024, 18(3): 36.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1796-3
https://academic.hep.com.cn/fese/EN/Y2024/V18/I3/36
Fig.1  Influencing mechanisms of WWTP effluent discharge on the distribution and diffusion of ARGs in effluent-receiving waterbodies. ① Influent composition and capacity of WWTP affect the discharge of ARGs; ② Particulate matter from WWTP serves as a significant carrier of ARGs; ③ Persistent ARGs and ARB are selected and enriched during wastewater treatment; ④ Residual antimicrobial substances and MGEs in effluent continue to play key driving roles; ⑤ Microbial community structure of effluent-receiving waterbodies is altered; ⑥ Wastewater bypass is a major temporary source of ARG pollution; ⑦ Effects of WWTP effluent discharge are limited by the spatial factors; ⑧ Environmental biofilms amplify the effects of WWTP effluent discharge. Created with BioRender.
1 K Abe , N Nomura , S Suzuki . (2020). Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiology Ecology, 96(5): fiaa031
https://doi.org/10.1093/femsec/fiaa031
2 G C A Amos , S Ploumakis , L Zhang , P M Hawkey , W H Gaze , E M H Wellington . (2018). The widespread dissemination of integrons throughout bacterial communities in a riverine system. ISME Journal, 12(3): 681–691
https://doi.org/10.1038/s41396-017-0030-8
3 X L An , J Q Su , B Li , W Y Ouyang , Y Zhao , Q L Chen , L Cui , H Chen , M R Gillings , T Zhang , Y G Zhu . (2018). Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 117: 146–153
https://doi.org/10.1016/j.envint.2018.05.011
4 M Arias-Andres , U Klümper , K Rojas-Jimenez , H P Grossart . (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237: 253–261
https://doi.org/10.1016/j.envpol.2018.02.058
5 E Aubertheau , T Stalder , L Mondamert , M C Ploy , C Dagot , J Labanowski . (2017). Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Science of the Total Environment, 579: 1387–1398
https://doi.org/10.1016/j.scitotenv.2016.11.136
6 K Bagra , X Bellanger , C Merlin , G Singh , T U Berendonk , U Klümper . (2023). Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. Science of the Total Environment, 904: 166661
https://doi.org/10.1016/j.scitotenv.2023.166661
7 J L Balcázar , J Subirats , C M Borrego . (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology, 6: 1216
https://doi.org/10.3389/fmicb.2015.01216
8 F Barancheshme , M Munir . (2018). Strategies to combat antibiotic resistance in the wastewater treatment plants. Frontiers in Microbiology, 8: 2603
https://doi.org/10.3389/fmicb.2017.02603
9 de Heredia I Beltrán , C Garbisu , I Alkorta , J Urra , B González-Gaya , E Ruiz-Romera . (2023). Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. Environmental Pollution, 319: 120883
https://doi.org/10.1016/j.envpol.2022.120883
10 W BenJ WangR CaoM YangY ZhangZ Qiang (2017). Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, 172: 392–398
11 J Bengtsson-Palme , M Milakovic , H Švecová , M Ganjto , V Jonsson , R Grabic , N Udikovic-Kolic . (2019). Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Research, 162: 437–445
https://doi.org/10.1016/j.watres.2019.06.073
12 F Berglund , S Ebmeyer , E Kristiansson , D G J Larsson . (2023). Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge. Communications Biology, 6(1): 321
https://doi.org/10.1038/s42003-023-04676-7
13 K Bondarczuk, Z Piotrowska-Seget (2019). Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Science of the Total Environment, 650(Pt 2): 2951–2961
https://doi.org/10.1016/j.scitotenv.2018.10.050 pmid: 30373071
14 P C Brown , E Borowska , R Peschke , T Schwartz , H Horn . (2020). Decay of elevated antibiotic resistance genes in natural river sediments after sedimentation of wastewater particles. Science of the Total Environment, 705: 135861
https://doi.org/10.1016/j.scitotenv.2019.135861
15 P C Brown , E Borowska , T Schwartz , H Horn . (2019). Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments. Science of the Total Environment, 649: 1171–1178
https://doi.org/10.1016/j.scitotenv.2018.08.394
16 E Buelow , A Rico , M Gaschet , J Lourenço , S P Kennedy , L Wiest , M C Ploy , C Dagot . (2020). Hospital discharges in urban sanitation systems: long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Research X, 7: 100045
https://doi.org/10.1016/j.wroa.2020.100045
17 I Bueno , J Williams-Nguyen , H Hwang , J M Sargeant , A J Nault , R S Singer . (2017). Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. Animal Health Research Reviews, 18(2): 112–127
https://doi.org/10.1017/S146625231700007X
18 L Carles , S Wullschleger , A Joss , R I L Eggen , K Schirmer , N Schuwirth , C Stamm , A Tlili . (2021). Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. Water Research, 203: 117486
https://doi.org/10.1016/j.watres.2021.117486
19 Y Che , Y Xia , L Liu , A D Li , Y Yang , T Zhang . (2019). Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome, 7(1): 44
https://doi.org/10.1186/s40168-019-0663-0
20 Y Che , Y Yang , X Xu , K Břinda , M F Polz , W P Hanage , T Zhang . (2021). Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 118(6): e2008731118
https://doi.org/10.1073/pnas.2008731118
21 Q Chen , X An , B Zheng , M Gillings , J Peñuelas , L Cui , J Su , Y Zhu . (2019). Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecology Letters, 1(1–2): 3–13
https://doi.org/10.1007/s42832-019-0011-0
22 Y Chen , W Shen , B Wang , X Zhao , L Su , M Kong , H Li , S Zhang , J Li . (2020). Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China. Ecotoxicology and Environmental Safety, 206: 111371
https://doi.org/10.1016/j.ecoenv.2020.111371
23 B T T Chu , M L Petrovich , A Chaudhary , D Wright , B Murphy , G Wells , R Poretsky . (2018). Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Applied and Environmental Microbiology, 84(5): e02168–17
https://doi.org/10.1128/AEM.02168-17
24 G Corno , Y Yang , E M Eckert , D Fontaneto , A Fiorentino , S Galafassi , T Zhang , A Di Cesare . (2019). Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. Water Research, 158: 72–81
https://doi.org/10.1016/j.watres.2019.04.031
25 P Cui , Y Bai , X Li , Z Peng , D Chen , Z Wu , P Zhang , Z Tan , K Huang , Z Chen . et al.. (2020). Enhanced removal of antibiotic resistance genes and mobile genetic elements during sewage sludge composting covered with a semi-permeable membrane. Journal of Hazardous Materials, 396: 122738
https://doi.org/10.1016/j.jhazmat.2020.122738
26 N Czekalski , Díez E Gascón , H Bürgmann . (2014). Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME Journal, 8(7): 1381–1390
https://doi.org/10.1038/ismej.2014.8
27 T Dai , Z Su , Y Zeng , Y Bao , Y Zheng , H Guo , Y Yang , D Wen . (2023). Wastewater treatment plant effluent discharge decreases bacterial community diversity and network complexity in urbanized coastal sediment. Environmental Pollution, 322: 121122
https://doi.org/10.1016/j.envpol.2023.121122
28 D Debroas , C Siguret . (2019). Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME Journal, 13(11): 2856–2867
https://doi.org/10.1038/s41396-019-0478-9
29 N Devarajan , A Laffite , N D Graham , M Meijer , K Prabakar , J I Mubedi , V Elongo , P T Mpiana , B W Ibelings , W Wildi . et al.. (2015). Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environmental Science & Technology, 49(11): 6528–6537
https://doi.org/10.1021/acs.est.5b01031
30 N Devarajan , A Laffite , C K Mulaji , J P Otamonga , P T Mpiana , J I Mubedi , K Prabakar , B W Ibelings , J Poté . (2016). Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLoS One, 11(2): e0149211
https://doi.org/10.1371/journal.pone.0149211
31 E M Eckert , A Di Cesare , M T Kettner , M Arias-Andres , D Fontaneto , H P Grossart , G Corno . (2018). Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 234: 495–502
https://doi.org/10.1016/j.envpol.2017.11.070
32 F C T Elder , K Proctor , R Barden , W H Gaze , J Snape , E J Feil , B Kasprzyk-Hordern . (2021). Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment. Water Research, 203: 117533
https://doi.org/10.1016/j.watres.2021.117533
33 K J Forsberg , S Patel , M K Gibson , C L Lauber , R Knight , N Fierer , G Dantas . (2014). Bacterial phylogeny structures soil resistomes across habitats. Nature, 509(7502): 612–616
https://doi.org/10.1038/nature13377
34 K J Forsberg , A Reyes , B Wang , E M Selleck , M O Sommer , G Dantas . (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098): 1107–1111
https://doi.org/10.1126/science.1220761
35 P Fresia , V Antelo , C Salazar , M Giménez , B D’Alessandro , E Afshinnekoo , C Mason , G H Gonnet , G Iraola . (2019). Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome, 7(1): 35
https://doi.org/10.1186/s40168-019-0648-z
36 S Galafassi , R Sabatino , M B Sathicq , E M Eckert , D Fontaneto , G Dalla Fontana , R Mossotti , G Corno , P Volta , A Di Cesare . (2021). Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Water Research, 201: 117368
https://doi.org/10.1016/j.watres.2021.117368
37 O Ginn , J L Tank , A Badilla-Aguilar , E Snyder , P F P Brandão-Dias , E Thrift , D Bolster , K Bibby . (2023). Persistence of antibiotic resistance genes varies with particle size and substrate conditions in recirculating streams. Environmental Science & Technology, 57(24): 8902–8910
https://doi.org/10.1021/acs.est.3c02374
38 J J González-Plaza , K Blau , M Milaković , T Jurina , K Smalla , N Udiković-Kolić . (2019). Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. Environment International, 130: 104735
https://doi.org/10.1016/j.envint.2019.04.007
39 Y Guan , J Jia , X Fan , K Li , Z Wang . (2022). Anthropogenic impacts on antibiotic resistance genes and their hosts from pristine to urban river using metagenomic and binning approaches. Aquatic Toxicology, 249: 106221
https://doi.org/10.1016/j.aquatox.2022.106221
40 X P Guo , Y Yang , D P Lu , Z S Niu , J N Feng , Y R Chen , F Y Tou , E Garner , J Xu , M Liu . et al.. (2018). Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 129: 277–286
https://doi.org/10.1016/j.watres.2017.11.029
41 M Harnisz , E Kiedrzyńska , M Kiedrzyński , E Korzeniewska , M Czatzkowska , I Koniuszewska , A Jóźwik , S Szklarek , S Niestępski , M Zalewski . (2020). The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. Science of the Total Environment, 741: 140466
https://doi.org/10.1016/j.scitotenv.2020.140466
42 S Hernando-Amado , T M Coque , F Baquero , J L Martínez . (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4(9): 1432–1442
https://doi.org/10.1038/s41564-019-0503-9
43 A H Holmes , L S P Moore , A Sundsfjord , M Steinbakk , S Regmi , A Karkey , P J Guerin , L J V Piddock . (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014): 176–187
https://doi.org/10.1016/S0140-6736(15)00473-0
44 J Hou , X Long , X Wang , L Li , D Mao , Y Luo , H Ren . (2023). Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials, 442: 130042
https://doi.org/10.1016/j.jhazmat.2022.130042
45 Y Hu , X Yang , J Li , N Lv , F Liu , J Wu , I Y C Lin , N Wu , B C Weimer , G F Gao . et al.. (2016). The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Applied and Environmental Microbiology, 82(22): 6672–6681
https://doi.org/10.1128/AEM.01802-16
46 S Jia , X Gao , Y Zhang , P Shi , C Wang , Q Zhou , L Ye , X X Zhang . (2023). Tertiary wastewater treatment processes can be a double-edged sword for water quality improvement in view of mitigating antimicrobial resistance and pathogenicity. Environmental Science & Technology, 57(1): 509–519
https://doi.org/10.1021/acs.est.2c06168
47 S Jia , X X Zhang , Y Miao , Y Zhao , L Ye , B Li , T Zhang . (2017). Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Research, 124: 259–268
https://doi.org/10.1016/j.watres.2017.07.061
48 Y N Jiao , H Chen , R X Gao , Y G Zhu , C Rensing . (2017). Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere, 184: 53–61
https://doi.org/10.1016/j.chemosphere.2017.05.149
49 F Ju , K Beck , X Yin , A Maccagnan , C S McArdell , H P Singer , D R Johnson , T Zhang , H Bürgmann . (2019). Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME Journal, 13(2): 346–360
https://doi.org/10.1038/s41396-018-0277-8
50 A Karkman , T T Do , F Walsh , M P J Virta . (2018). Antibiotic-resistance genes in waste water. Trends in Microbiology, 26(3): 220–228
https://doi.org/10.1016/j.tim.2017.09.005
51 E Kristiansson , J Fick , A Janzon , R Grabic , C Rutgersson , B Weijdegård , H Söderström , D G J Larsson . (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One, 6(2): e17038
https://doi.org/10.1371/journal.pone.0017038
52 M Kvesić, H Kalinić, M Dželalija, I Šamanić, R Andričević, A Maravić (2022). Microbiome and antibiotic resistance profiling in submarine effluent-receiving coastal waters in Croatia. Environmental Pollution, 292(Pt A): 118282
https://doi.org/10.1016/j.envpol.2021.118282 pmid: 34619178
53 J H Kwon , W G Powderly . (2021). The post-antibiotic era is here. Science, 373(6554): 471
https://doi.org/10.1126/science.abl5997
54 T M LaPara , T R Burch , P J McNamara , D T Tan , M Yan , J J Eichmiller . (2011). Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environmental Science & Technology, 45(22): 9543–9549
https://doi.org/10.1021/es202775r
55 T M LaPara , M Madson , S Borchardt , K S Lang , T J Johnson . (2015). Multiple discharges of treated municipal wastewater have a small effect on the quantities of numerous antibiotic resistance determinants in the upper mississippi river. Environmental Science & Technology, 49(19): 11509–11515
https://doi.org/10.1021/acs.est.5b02803
56 D G J Larsson , C F Flach . (2022). Antibiotic resistance in the environment. Nature Reviews. Microbiology, 20(5): 257–269
https://doi.org/10.1038/s41579-021-00649-x
57 J Lee , K Beck , H Bürgmann . (2022). Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Water Research, 208: 117827
https://doi.org/10.1016/j.watres.2021.117827
58 J Lee , F Ju , K Beck , H Bürgmann . (2023). Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats. ISME Journal, 17(11): 1993–2002
https://doi.org/10.1038/s41396-023-01506-w
59 J Lee , F Ju , A Maile-Moskowitz , K Beck , A Maccagnan , C S McArdell , Molin M Dal , F Fenicia , P J Vikesland , A Pruden . et al.. (2021). Unraveling the riverine antibiotic resistome: the downstream fate of anthropogenic inputs. Water Research, 197: 117050
https://doi.org/10.1016/j.watres.2021.117050
60 I Lekunberri , J L Balcázar , C M Borrego . (2018). Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges. Environmental Pollution, 234: 538–542
https://doi.org/10.1016/j.envpol.2017.12.001
61 I Lekunberri, M Villagrasa, J L Balcázar, C M Borrego (2017). Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Science of the Total Environment, 601–602: 206–209
https://doi.org/10.1016/j.scitotenv.2017.05.174 pmid: 28551539
62 L G Li , Y Xia , T Zhang . (2017). Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME Journal, 11(3): 651–662
https://doi.org/10.1038/ismej.2016.155
63 P Lorenzo , A Adriana , S Jessica , B Carles , F Marinella , L Marta , B J Luis , S Pierre . (2018). Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206: 70–82
https://doi.org/10.1016/j.chemosphere.2018.04.163
64 A Luczkiewicz , E Kotlarska , W Artichowicz , K Tarasewicz , S Fudala-Ksiazek . (2015). Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. Environmental Science and Pollution Research International, 22(24): 19823–19834
https://doi.org/10.1007/s11356-015-5098-y
65 C M Manaia . (2023). Framework for establishing regulatory guidelines to control antibiotic resistance in treated effluents. Critical Reviews in Environmental Science and Technology, 53(6): 754–779
https://doi.org/10.1080/10643389.2022.2085956
66 C M Manaia , J Rocha , N Scaccia , R Marano , E Radu , F Biancullo , F Cerqueira , G Fortunato , I C Iakovides , I Zammit . et al.. (2018). Antibiotic resistance in wastewater treatment plants: tackling the black box. Environment International, 115: 312–324
https://doi.org/10.1016/j.envint.2018.03.044
67 G Mao , D Wang , Y Bai , J Qu . (2023). Mitigating microbiological risks of potential pathogens carrying antibiotic resistance genes and virulence factors in receiving rivers: benefits of wastewater treatment plant upgrade. Frontiers of Environmental Science & Engineering, 17(7): 82
https://doi.org/10.1007/s11783-023-1682-4
68 N P Marathe , C Pal , S S Gaikwad , V Jonsson , E Kristiansson , D G J Larsson . (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Research, 124: 388–397
https://doi.org/10.1016/j.watres.2017.07.060
69 E Marti , J Jofre , J L Balcazar . (2013). Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS One, 8(10): e78906
https://doi.org/10.1371/journal.pone.0078906
70 M Milaković , G Vestergaard , J J González-Plaza , I Petrić , J Kosić-Vukšić , I Senta , S Kublik , M Schloter , N Udiković-Kolić . (2020). Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments. Science of the Total Environment, 706: 136001
https://doi.org/10.1016/j.scitotenv.2019.136001
71 A Moura , S Araújo , M S Alves , I Henriques , A Pereira , A C Correia . (2014). The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters. Frontiers in Microbiology, 5: 419
https://doi.org/10.3389/fmicb.2014.00419
72 B J Ni , X Yan , X Dai , Z Liu , W Wei , S L Wu , Q Xu , J Sun . (2020). Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. Water Research, 185: 116273
https://doi.org/10.1016/j.watres.2020.116273
73 A Osińska , E Korzeniewska , M Harnisz , E Felis , S Bajkacz , P Jachimowicz , S Niestępski , I Konopka . (2020). Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381: 121221
https://doi.org/10.1016/j.jhazmat.2019.121221
74 C Pal , J Bengtsson-Palme , E Kristiansson , D G J Larsson . (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16(1): 964
https://doi.org/10.1186/s12864-015-2153-5
75 K M M Pärnänen , C Narciso-da-Rocha , D Kneis , T U Berendonk , D Cacace , T T Do , C Elpers , D Fatta-Kassinos , I Henriques , T Jaeger . et al.. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 5(3): eaau9124
https://doi.org/10.1126/sciadv.aau9124
76 M Pascual-Benito, E Ballesté, T Monleón-Getino, J Urmeneta, A R Blanch, C García-Aljaro, F Lucena (2020). Impact of treated sewage effluent on the bacterial community composition in an intermittent mediterranean stream. Environmental Pollution, 266(Pt 1): 115254
https://doi.org/10.1016/j.envpol.2020.115254 pmid: 32721842
77 M Petrovich , B Chu , D Wright , J Griffin , M Elfeki , B T Murphy , R Poretsky , G Wells . (2018). Antibiotic resistance genes show enhanced mobilization through suspended growth and biofilm-based wastewater treatment processes. FEMS Microbiology Ecology, 94(5): fiy041
https://doi.org/10.1093/femsec/fiy041
78 L Proia, A Anzil, J Subirats, C Borrego, M Farrè, M Llorca, J L Balcázar, P Servais (2018). Antibiotic resistance along an urban river impacted by treated wastewaters. Science of the Total Environment, 628–629: 453–466
https://doi.org/10.1016/j.scitotenv.2018.02.083 pmid: 29453174
79 L Proia , Schiller D von , A Sànchez-Melsió , S Sabater , C M Borrego , S Rodríguez-Mozaz , J L Balcázar . (2016). Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environmental Pollution, 210: 121–128
https://doi.org/10.1016/j.envpol.2015.11.035
80 A Pruden , M Arabi , H N Storteboom . (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46(21): 11541–11549
https://doi.org/10.1021/es302657r
81 Z Y Qin , Q Gao , Q Dong , J D Nostrand , Q Qi , Y F Su , S Liu , T J Dai , J M Cheng , J Z Zhou . et al.. (2022). Antibiotic resistome mostly relates to bacterial taxonomy along a suburban transmission chain. Frontiers of Environmental Science & Engineering, 16(3): 32
https://doi.org/10.1007/s11783-021-1466-7
82 S Raza , H Jo , J Kim , H Shin , H G Hur , T Unno . (2021). Metagenomic exploration of antibiotic resistome in treated wastewater effluents and their receiving water. Science of the Total Environment, 765: 142755
https://doi.org/10.1016/j.scitotenv.2020.142755
83 D Rodríguez-Molina , P Mang , H Schmitt , M C Chifiriuc , K Radon , L Wengenroth . (2019). Do wastewater treatment plants increase antibiotic resistant bacteria or genes in the environment? Protocol for a systematic review. Systematic Reviews, 8(1): 304
https://doi.org/10.1186/s13643-019-1236-9
84 S Rodriguez-Mozaz , S Chamorro , E Marti , B Huerta , M Gros , A Sànchez-Melsió , C M Borrego , D Barceló , J L Balcázar . (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69: 234–242
https://doi.org/10.1016/j.watres.2014.11.021
85 M B Sathicq, R Sabatino, G Corno, A Di Cesare (2021). Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? Environmental Pollution, 279: 116896
https://doi.org/10.1016/j.envpol.2021.116896 pmid: 33744628
86 M Semedo, B Song (2023). Sediment metagenomics reveals the impacts of poultry industry wastewater on antibiotic resistance and nitrogen cycling genes in tidal creek ecosystems. Science of the Total Environment, 857(Pt 2): 159496
https://doi.org/10.1016/j.scitotenv.2022.159496 pmid: 36257428
87 D Su , W Ben , B W Strobel , Z Qiang . (2021). Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers. Journal of Hazardous Materials, 406: 124331
https://doi.org/10.1016/j.jhazmat.2020.124331
88 J Q Su , X L An , B Li , Q L Chen , M R Gillings , H Chen , T Zhang , Y G Zhu . (2017). Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 5(1): 84
https://doi.org/10.1186/s40168-017-0298-y
89 Z Su , A Li , J Chen , B Huang , Q Mu , L Chen , D Wen . (2020). Wastewater discharge drives ARGs spread in the coastal area: a case study in Hangzhou Bay, China. Marine Pollution Bulletin, 151: 110856
https://doi.org/10.1016/j.marpolbul.2019.110856
90 Z Su , D Wen , A Z Gu , Y Zheng , Y Tang , L Chen . (2023). Industrial effluents boosted antibiotic resistome risk in coastal environments. Environment International, 171: 107714
https://doi.org/10.1016/j.envint.2022.107714
91 M Tamminen, J Spaak, A Tlili, R Eggen, C Stamm, K Räsänen (2022). Wastewater constituents impact biofilm microbial community in receiving streams. Science of the Total Environment, 807(Pt 3): 151080
https://doi.org/10.1016/j.scitotenv.2021.151080 pmid: 34678363
92 J Tang , Y Bu , X X Zhang , K Huang , X He , L Ye , Z Shan , H Ren . (2016). Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicology and Environmental Safety, 132: 260–269
https://doi.org/10.1016/j.ecoenv.2016.06.016
93 C N Thornton , W D Tanner , J A van Derslice , W J Brazelton . (2020). Localized effect of treated wastewater effluent on the resistome of an urban watershed. GigaScience, 9(11): giaa125
https://doi.org/10.1093/gigascience/giaa125
94 P Vikesland , E Garner , S Gupta , S Kang , A Maile-Moskowitz , N Zhu . (2019). Differential drivers of antimicrobial resistance across the world. Accounts of Chemical Research, 52(4): 916–924
https://doi.org/10.1021/acs.accounts.8b00643
95 J Wang, Y Chen, P Cai, Q Gao, H Zhong, W Sun, Q Chen (2022). Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau. Journal of Hazardous Materials, 423(Pt B): 127170
https://doi.org/10.1016/j.jhazmat.2021.127170 pmid: 34537645
96 Q Wang , L Tan , S Sun , X Lu , Y Luo . (2023). Land-derived wastewater facilitates antibiotic resistance contamination in marine sediment of semi-closed bay: A case study in Jiaozhou Bay, China. Journal of Environmental Management, 339: 117870
https://doi.org/10.1016/j.jenvman.2023.117870
97 R Wang , M Ji , H Zhai , Y Guo , Y Liu . (2021). Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. Science of the Total Environment, 796: 148919
https://doi.org/10.1016/j.scitotenv.2021.148919
98 Y Wu , S Li , K Yu , J Hu , Q Chen , W Sun . (2023). Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: Metagenomic analysis and risk assessment. Journal of Hazardous Materials, 460: 132528
https://doi.org/10.1016/j.jhazmat.2023.132528
99 K Yu , P Li , Y Chen , B Zhang , Y Huang , F Y Huang , Y He . (2020). Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. Water Research, 173: 115541
https://doi.org/10.1016/j.watres.2020.115541
100 Y Zhang , C F Marrs , C Simon , C Xi . (2009). Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Science of the Total Environment, 407(12): 3702–3706
https://doi.org/10.1016/j.scitotenv.2009.02.013
101 Y Zhao , Q E Yang , X Zhou , F Wang , J Muurinen , M P Virta , K K Brandt , Y Zhu . (2021). Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Critical Reviews in Environmental Science and Technology, 51(19): 2159–2196
https://doi.org/10.1080/10643389.2020.1777815
102 S Y Zhou , F Y Huang , X Y Zhou , C Lin , M K Jin , R Neilson , H Li , J Q Su . (2022). Conurbation size drives antibiotic resistance along the river. Science of the Total Environment, 823: 153822
https://doi.org/10.1016/j.scitotenv.2022.153822
103 L Zhu , L Yuan , X Y Shuai , Z J Lin , Y J Sun , Z C Zhou , L X Meng , F Ju , H Chen . (2023). Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems. Water Research, 231: 119614
https://doi.org/10.1016/j.watres.2023.119614
104 M Zhuang , Y Achmon , Y Cao , X Liang , L Chen , H Wang , B A Siame , K Y Leung . (2021). Distribution of antibiotic resistance genes in the environment. Environmental Pollution, 285: 117402
https://doi.org/10.1016/j.envpol.2021.117402
[1] Guannan Mao, Donglin Wang, Yaohui Bai, Jiuhui Qu. Mitigating microbiological risks of potential pathogens carrying antibiotic resistance genes and virulence factors in receiving rivers: Benefits of wastewater treatment plant upgrade[J]. Front. Environ. Sci. Eng., 2023, 17(7): 82-.
[2] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[3] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
[4] Hua Long, Yang Liao, Changhao Cui, Meijia Liu, Zeiwei Liu, Li Li, Wenzheng Hu, Dahai Yan. Assessment of popular techniques for co-processing municipal solid waste in Chinese cement kilns[J]. Front. Environ. Sci. Eng., 2022, 16(4): 51-.
[5] Peng Hu, Changsheng Guo, Yan Zhang, Jiapei Lv, Yuan Zhang, Jian Xu. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 56-.
[6] Menglu Zhang, Sheng Chen, Xin Yu, Peter Vikesland, Amy Pruden. Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination[J]. Front. Environ. Sci. Eng., 2019, 13(3): 38-.
[7] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[8] Chen Qian, Wei Chen, Wei-Hua Li, Han-Qing Yu. A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 12-.
[9] Junqin PANG, Masami MATSUDA, Masashi KURODA, Daisuke INOUE, Kazunari SEI, Kei NISHIDA, Michihiko IKE. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR[J]. Front. Environ. Sci. Eng., 2016, 10(4): 7-.
[10] Weifang SHI, Weihua ZENG. Application of k-means clustering to environmental risk zoning of the chemical industrial area[J]. Front Envir Sci Eng, 2014, 8(1): 117-127.
[11] CHANG Miao, PENG Lijuan, WANG Shiwen. Development of environmental management system in China's financial sector[J]. Front.Environ.Sci.Eng., 2008, 2(2): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed