Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (5) : 56    https://doi.org/10.1007/s11783-024-1816-3
Stabilization/solidification mechanisms of tin tailings and fuming slag-based geopolymers for different heavy metals
Xian Zhou1,2, Zhengfu Zhang1(), Hui Yang1
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Kunming Metallurgical Research Institute Co., Ltd., Kunming 650031, China
 Download: PDF(6137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Immobilization efficiency of cations (Cu, Zn, Mn) was higher than that of anions (As, Cr).

● Cr2O72– is converted to CrO42– and combines with OH to form Cr(OH)3 precipitates.

● Cations are embedded in aluminosilicate lattice while anions are form precipitates.

Tin mine tailings (TMT) and fuming slag (FS) contain many heavy metals (As, Cr, Cu, Zn and Mn) that cause severe pollution to the environment. Herein, geopolymers were prepared using TMT, FS and flue gas desulfurization gypsum (FGDG) to immobilize heavy metals, and their compressive strength and heavy metal leaching toxicity were investigated. It was first determined that T4F5 (TMT:FS = 4:5) sample exhibited the highest compressive strength (7.83 MPa). T4F5 achieved 95% immobilization efficiency for As and Cr, and nearly 100% for Cu, Zn and Mn, showing good immobilization performance. A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds. In addition, about 2%–20% of heavy metal Fe was immobilized in hydration products, heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices. AsO33– was oxidized into AsO43–, which may form Ca–As or Fe–As precipitates. Cr2O72– was converted to CrO42– under alkaline environment and then combined with OH to form Cr(OH)3 precipitates. Mn2+ may react directly with dissolved silicate to form Mn2SiO4 and also form Mn(OH)2 precipitates. The unstable Mn(OH)2 can be further oxidized to MnO2. The heavy metal cations were immobilized in the silicoaluminate lattice, while the anions tended to form insoluble precipitates. These results may benefit the industry and government for better handling of TMT, FS and solid wastes containing the abovementioned five heavy metals.

Keywords Heavy metals      Cementitious materials      Tin tailings      Stabilization/solidification      Redox     
Corresponding Author(s): Zhengfu Zhang   
Issue Date: 18 January 2024
 Cite this article:   
Xian Zhou,Zhengfu Zhang,Hui Yang. Stabilization/solidification mechanisms of tin tailings and fuming slag-based geopolymers for different heavy metals[J]. Front. Environ. Sci. Eng., 2024, 18(5): 56.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1816-3
https://academic.hep.com.cn/fese/EN/Y2024/V18/I5/56
Sample CaO SiO2 Al2O3 Fe2O3 SO3 TiO2 As Cr Cu Zn Mn LOI
TMTFSFGDG 18936 21301 2660.5 16370.2 2349 0.830.04 0.70.09– 0.020.04– 0.070.1– 0.040.4– 0.50.5– 11.216.514.2
Tab.1  Chemical compositions of TMT, FS and FGDG (wt.%)
Sample TMT FS FGDG AsO33– Cr2O72– Cu2+ Mn2+ Zn2+ Reagent w/b
T8F1 80 10 10 0 0 0 0 0 0.3
T6F3 60 30 10 0 0 0 0 0 0.3
T4F5 40 50 10 0 0 0 0 0 0.3
T2F7 20 70 10 0 0 0 0 0 0.3
T4F5-As 40 50 10 4 0 0 0 0 Na3AsO3 0.3
T4F5-Cr 40 50 10 0 4 0 0 0 K2Cr2O7 0.3
T4F5-Cu 40 50 10 0 0 4 0 0 CuSO4 0.3
T4F5-Zn 40 50 10 0 0 0 4 0 ZnSO4 0.3
T4F5-Mn 40 50 10 0 0 0 0 4 MnSO4 0.3
Tab.2  Design scheme for synthesis of geopolymer (wt.%)
Fig.1  Chemical fractions of heavy metals ((a) TMT; (b) FS).
Fig.2  Compressive strength of geopolymers.
Fig.3  XRD patterns of geopolymer without heavy metals: ((a) 3 d; (b) 28 d).
Species Movement Wavenumbers Corresponding phase
H–O–H Stretching vibration 3413.9−3549.3 Free water
H–O–H Bending vibration 1617.5−1639.3 Crystallized water
C–O Stretching vibration 1431−1431.9 CaCO3
Si–O–Si/Al Stretching vibration 996.1−1031.1 N–A–S–H
S–O Bending vibration 614.7−622.9 Gypsum
Si–O–Si Bending vibration 445.5−452.2 Silicates
Tab.3  Species, wavenumbers and corresponding phases
Fig.4  FTIR spectra of geopolymer without heavy metals: ((a) 3 d; (b) 28 d).
Sample Compressive strength at 3 d Compressive strength at 73 d Compressive strength at 28 d
MPa Change (%) MPa Change (%) MPa Change (%)
T4F5 5.29 ± 0.52 7.14 ± 0.36 34.97 7.83 ± 0.39 9.66
T4F5-As 2.84 ± 0.26 3.54 ± 0.34 24.65 3.68 ± 0.46 3.95
T4F5-Cr 4.21 ± 0.51 5.29 ± 0.43 25.65 5.66 ± 0.34 6.99
T4F5-Cu 4.52 ± 0.35 5.84 ± 0.26 29.20 6.07 ± 0.42 3.94
T4F5-Zn 3.98 ± 0.28 4.96 ± 0.31 27.51 5.26 ± 0.45 6.05
T4F5-Mn 3.18 ± 0.21 4.57 ± 0.32 43.71 5.39 ± 0.19 17.94
Tab.4  Compressive strength of geopolymers containing heavy metals
Fig.5  Leaching results and immobilization efficiency of heavy metals.
Fig.6  SEM-EDS mapping images of geopolymer samples containing heavy metals ((a) T4F5-As; (b) T4F5-Cr; (c) T4F5-Cu; (d) T4F5-Zn; (e) T4F5-Mn; (f) T4F5).
Samples T4F5 T4F5-As T4F5-Cr T4F5-Cu T4F5-Zn T4F5-Mn
Na+ (mg/L) 15.7 18.6 17.2 82.5 74.9 97.2
Tab.5  Leaching concentrations of Na+ in samples containing heavy metals
Fig.7  XRD patterns and FTIR spectra of geopolymers with different heavy metals ((a) 3 d XRD pattern; (b) 28 d XRD pattern; (c) 28 d FTIR spectra; (d) BCR extraction results).
Fig.8  XPS full spectra of T4F5 samples containing heavy metals.
Fig.9  Schematic of heavy metal immobilization mechanism.
1 A A AbadelA S AlbidahA H AltheebF A AlrshoudiH Abbas Y A A Salloum (2021). Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer. Advances in Concrete Construction 11: 127–140
2 S Ahmari, L Zhang. (2013). Durability and leaching behavior of mine tailings-based geopolymer bricks. Construction & Building Materials, 44: 743–750
https://doi.org/10.1016/j.conbuildmat.2013.03.075
3 B K Biswal, W Zhu, E H Yang. (2020). Investigation on Pseudomonas aeruginosa PAO1-driven bioleaching behavior of heavy metals in a novel geopolymer synthesized from municipal solid waste incineration bottom ash. Construction & Building Materials, 241: 118005
https://doi.org/10.1016/j.conbuildmat.2020.118005
4 R A A Boca Santa, C Soares, H G Riella. (2016). Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. Journal of Hazardous Materials, 318: 145–153
https://doi.org/10.1016/j.jhazmat.2016.06.059
5 Y ChangJ CaoW SongZ WangC Xu M Long (2023). Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass. Frontiers of Environmental Science & Engineering 17(10): 128 10.1007/s11783–023-1783–023
6 Q Y Chen, Y J Ke, L N Zhang, M Tyrer, C D Hills, G Xue. (2009). Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment. Journal of Hazardous Materials, 166(1): 421–427
https://doi.org/10.1016/j.jhazmat.2008.11.067
7 Y Chen, F Chen, F Zhou, M Lu, H Hou, J Li, D Liu, T Wang. (2022). Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer. Science of the Total Environment, 802: 149905
https://doi.org/10.1016/j.scitotenv.2021.149905
8 B I Ei-Eswed, O M Aldagag, F I Khalili. (2017). Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Applied Clay Science, 140: 148–156
https://doi.org/10.1016/j.clay.2017.02.003
9 M Faheem, X Huang, S Li, M Xia, M L Zhang, Q Liu, M A S Hassan, B Q Jiao, L Yu, D W Li. (2018). Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+ and Cd2+ in composite based geopolymer. Journal of Cleaner Production, 188: 807–815
https://doi.org/10.1016/j.jclepro.2018.04.033
10 B Fu, G Liu, M M Mian, M Sun, D Wu. (2019). Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants. Fuel, 251: 593–602
https://doi.org/10.1016/j.fuel.2019.04.055
11 W Gao, W Ni, Y Zhang, Y Li, T Shi, Z Li. (2020). Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified/stabilized tailings using metallurgical slag-based binders. Journal of Hazardous Materials, 381: 120992
https://doi.org/10.1016/j.jhazmat.2019.120992
12 B Guo, D A Pan, B Liu, A A Volinsky, M Fincan, J F Du, S G Zhang. (2017). Immobilization mechanism of Pb in fly ash-based geopolymer. Construction & Building Materials, 134: 123–130
https://doi.org/10.1016/j.conbuildmat.2016.12.139
13 B Gworek, W Dmuchowski, E Koda, M Marecka, A Baczewska, P Brągoszewska, A Sieczka, P Osiński. (2016). Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water, 8(10): 470
https://doi.org/10.3390/w8100470
14 S Hu, L Zhong, X Yang, H Bai, B Ren, Y Zhao, W Zhang, X Ju, H Wen, S Mao. et al.. (2020). Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Construction & Building Materials, 254: 119273
https://doi.org/10.1016/j.conbuildmat.2020.119273
15 T Huang, L Zhou, Z Cao, S Zhang, L Liu. (2021). A microwave irradiation-persulfate-formate system for achieving the detoxification and alkali-activated composite geopolymerization of the chromate-contaminated soil. Ecotoxicology and Environmental Safety, 217: 112233
https://doi.org/10.1016/j.ecoenv.2021.112233
16 X Huang, T Huang, S Li, F Muhammad, G Xu, Z Zhao, L Yu, Y Yan, D Li, B Jiao. (2016). Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceramics International, 42(8): 9538–9549
https://doi.org/10.1016/j.ceramint.2016.03.033
17 X Huang, R Zhuang, F Muhammad, L Yu, Y C Shiau, D Li. (2017). Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere, 168: 300–308
https://doi.org/10.1016/j.chemosphere.2016.10.067
18 Z Ji, Y Pei. (2019). Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review. Journal of Environmental Management, 231: 256–267
https://doi.org/10.1016/j.jenvman.2018.10.041
19 Z Ji, Y Pei. (2020). Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43– and Cr2O72–) in wastes-based geopolymer. Journal of Hazardous Materials, 384: 121290
https://doi.org/10.1016/j.jhazmat.2019.121290
20 J H KimJ Y Lee (2019). An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal. Journal of Material Cycles and Waste Management, 21(7): 239–247
21 D Kulikowska, Z M Gusiatin, K Bułkowska, K Kierklo. (2015). Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere, 136: 42–49
https://doi.org/10.1016/j.chemosphere.2015.03.083
22 J Lan, Y Dong, Y Sun, L Fen, M Zhou, H Hou, D Du. (2021). A novel method for solidification/stabilization of Cd(II), Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag. Journal of Hazardous Materials, 409: 124933
https://doi.org/10.1016/j.jhazmat.2020.124933
23 Q Li, Z Zhong, H Du, X Zheng, B Zhang, B Jin. (2022). Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: analysis of stabilizing heavy metals. Frontiers of Environmental Science & Engineering, 16(7): 85
https://doi.org/10.1007/s11783-021-1488-1
24 Y Li, X Liu, Z Li, Y Ren, Y Wang, W Zhang. (2021). Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. Journal of Cleaner Production, 284: 124777
https://doi.org/10.1016/j.jclepro.2020.124777
25 Y M Liew, C Y Heah, A B Mohd Mustafa, H Kamarudin. (2016). Structure and properties of clay-based geopolymer cements: a review. Progress in Materials Science, 83: 595–629
https://doi.org/10.1016/j.pmatsci.2016.08.002
26 J Liu, L Hu, L Tang, J Ren. (2021). Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. Journal of Hazardous Materials, 402: 123451
https://doi.org/10.1016/j.jhazmat.2020.123451
27 S Mabroum, S Moukannaa, A El Machi, Y Taha, M Benzaazoua, R Hakkou. (2020). Mine wastes based geopolymers: a critical review. Cleaner Engineering and Technology, 1: 100014
https://doi.org/10.1016/j.clet.2020.100014
28 Pan D A, Li L L, Wu Y F, Liu T T, Yu H L (2018). Characteristics and properties of glass-ceramics using lead fuming slag. Journal of Cleaner Production, 175(5): 251–256
29 B Ren, Y Zhao, H Bai, S Kang, T Zhang, S Song. (2021). Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere, 267: 128900
https://doi.org/10.1016/j.chemosphere.2020.128900
30 N T Sithole, F Ntuli, F Okonta. (2020). Fixed bed column studies for decontamination of acidic mineral effluent using porous fly ash-basic oxygen furnace slag based geopolymers. Minerals Engineering, 154: 106397
https://doi.org/10.1016/j.mineng.2020.106397
31 L Tan, C Yu, M Wang, S Zhang, J Sun, S Dong, J Sun (2019). Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Applied Surface Science, 467–468: 286–292 10.1016/j.apsusc.2018.10.067
32 L Tang, G D Yang, G M Zeng, Y Cai, S S Li, Y Y Zhou, Y Pang, Y Y Liu, Y Zhang, B Luna. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239: 114–122
https://doi.org/10.1016/j.cej.2013.10.104
33 M Usman Kankia, L Baloo, B S Mohammed, S B Hassan, S Haruna, N Danlami, E Affiana Ishak, W Nurliyana Samahani. (2021). Effects of petroleum sludge ash in fly ash-based geopolymer mortar. Construction & Building Materials, 272: 121939
https://doi.org/10.1016/j.conbuildmat.2020.121939
34 A Wang, H Liu, X Hao, Y Wang, X Liu, Z Li. (2019). Geopolymer synthesis using garnet tailings from molybdenum mines. Minerals, 9(1): 48
https://doi.org/10.3390/min9010048
35 Y Wang, F Han, J Mu. (2018). Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Construction & Building Materials, 160: 818–827
https://doi.org/10.1016/j.conbuildmat.2017.12.006
36 M Xia, F Muhammad, L Zeng, S Li, X Huang, B Jiao, Y C Shiau, D Li. (2019). Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. Journal of Cleaner Production, 209: 1206–1215
https://doi.org/10.1016/j.jclepro.2018.10.265
37 Y XiaD Qiu Z LyvJ Zhang N SinghK ShihY Tang (2022). Controlled sintering for cadmium stabilization by beneficially using the dredged river sediment. Frontiers of Environmental Science & Engineering 17(5): 61
38 N Ye, Y Chen, J K Yang, S Liang, Y Hu, B Xiao, Q Huang, Y Shi, J Hu, X Wu. (2016). Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. Journal of Hazardous Materials, 318: 70–78
https://doi.org/10.1016/j.jhazmat.2016.06.042
39 Z Yunsheng, S Wei, C Qianli, C Lin. (2007). Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 143(1–2): 206–213
https://doi.org/10.1016/j.jhazmat.2006.09.033
40 X Zhan, G M Kirkelund. (2021). Electrodialytic remediation of municipal solid waste incineration fly ash as pre-treatment before geopolymerisation with coal fly ash. Journal of Hazardous Materials, 412: 125220
https://doi.org/10.1016/j.jhazmat.2021.125220
41 P Zhang, K X Wang, Q F Li, J Wang, Y Ling. (2020a). Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders: a review. Journal of Cleaner Production, 258: 120896
https://doi.org/10.1016/j.jclepro.2020.120896
42 Q Zhang, X Cao, S Sun, W Yang, L Fang, R Ma, C Lin, H Li. (2022). Lead zinc slag-based geopolymer: demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential. Environmental Pollution, 293: 118509
https://doi.org/10.1016/j.envpol.2021.118509
43 Y Zhang, W Gao, W Ni, S Zhang, Y Li, K Wang, X Huang, P Fu, W Hu. (2020b). Influence of calcium hydroxide addition on arsenic leaching and solidification/stabilisation behaviour of metallurgical-slag-based green mining fill. Journal of Hazardous Materials, 390: 122161
https://doi.org/10.1016/j.jhazmat.2020.122161
44 Y Zhang, X Liu, Y Xu, B Tang, Y Wang. (2020c). Preparation of road base material by utilizing electrolytic manganese residue based on Si–Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. Journal of Hazardous Materials, 390: 122188
https://doi.org/10.1016/j.jhazmat.2020.122188
45 L Zheng, W Wang, X B Gao. (2016). Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: based on partial charge model analysis. Waste Management, 58: 270–279
https://doi.org/10.1016/j.wasman.2016.08.019
46 H Zhou, G Liu, L Zhang, C Zhou, M M Mian, A I Cheema. (2021). Strategies for arsenic pollution control from copper pyrometallurgy based on the study of arsenic sources, emission pathways and speciation characterization in copper flash smelting systems. Environmental Pollution, 270: 116203
https://doi.org/10.1016/j.envpol.2020.116203
[1] FSE-23114-OF-ZX_suppl_1 Download
[1] Zhihao Xian, Jun Yan, Jingyi Dai, Hao Wu, Xin Zhang, Wenbo Nie, Fucheng Guo, Yi Chen. Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using a new manganese-containing substrate[J]. Front. Environ. Sci. Eng., 2024, 18(4): 47-.
[2] Chengjun Li, Riqing Yu, Wenjing Ning, Huan Zhong, Christian Sonne. Embracing digital mindsets to ensure a sustainable future[J]. Front. Environ. Sci. Eng., 2024, 18(3): 39-.
[3] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[4] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[5] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[6] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[7] Yang Yang, Qi Zhang, Baiyang Chen, Liangchen Long, Guan Zhang. Toward better understanding vacuum ultraviolet–iodide induced photolysis via hydrogen peroxide formation, iodine species change, and difluoroacetic acid degradation[J]. Front. Environ. Sci. Eng., 2022, 16(5): 55-.
[8] Wei Tan, Shaohua Xie, Wenpo Shan, Zhihua Lian, Lijuan Xie, Annai Liu, Fei Gao, Lin Dong, Hong He, Fudong Liu. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study[J]. Front. Environ. Sci. Eng., 2022, 16(5): 60-.
[9] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[10] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[11] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[12] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[13] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[14] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[15] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed