Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (8) : 105    https://doi.org/10.1007/s11783-024-1865-7
MOF-based materials facilitate efficient anaerobic digestion of organic wastes: integrating substrate bioavailability and microbial syntrophism
Haoyu Liu1, Ying Xu1,2(), Xiang Chen3,4, Xiankai Wang3,4, Hang Wang3,4, Xiaohu Dai1,2
1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
3. YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
4. National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
 Download: PDF(663 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anaerobic digestion (AD) of organic waste (OW) for methane production is generally inefficient. Supplementation of AD systems with traditional materials (e.g., electroconductive materials) is a current focus of research and has been reported to assist methanogenesis by enhancing the productivity of microbial metabolism among syntrophic anaerobes. Unlike in the AD of organic wastewater, in which microbial cells come into direct contact with the dissolved substrate, in the complex multi-phase AD system of OW, low substrate bioavailability is an inevitable obstacle to microbial syntrophism for methanogenesis. Accordingly, we propose that improving substrate bioavailability and microbial syntrophism is a powerful strategy for ensuring material-assisted efficient AD of OW. Based on the above considerations, metal–organic frameworks (MOFs), with their exceptionally high porosity, outstanding multi-functionality, and tuneable structures, have excellent potential for application in multi-phase anaerobic systems of OW to integrate substrate bioavailability and microbial syntrophism and drive efficient AD. In addition, MOFs with designable and tuneable natures have great potential for use in identifying suitable materials for anaerobic systems for different types of OW via machine-learning technologies, thereby effectively enhancing methanogenesis from OW. However, the sustainable application of MOFs in AD and the corresponding environmental risks warrant further investigation.

Keywords Anaerobic digestion      Methane production      Biodegradability      Functional materials      Metal–organic frameworks     
Corresponding Author(s): Ying Xu   
Issue Date: 13 May 2024
 Cite this article:   
Haoyu Liu,Ying Xu,Xiang Chen, et al. MOF-based materials facilitate efficient anaerobic digestion of organic wastes: integrating substrate bioavailability and microbial syntrophism[J]. Front. Environ. Sci. Eng., 2024, 18(8): 105.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1865-7
https://academic.hep.com.cn/fese/EN/Y2024/V18/I8/105
Fig.1  Diagram representing a novel strategy for efficient metal–organic framework (MOF) material-assisted methanogenesis from organic waste (OW).
1 M Alam, B R Dhar. (2023). Boosting thermophilic anaerobic digestion with conductive materials: current outlook and future prospects. Chemosphere, 343: 140175
https://doi.org/10.1016/j.chemosphere.2023.140175
2 F Azambuja, J Moons, T N Parac-Vogt. (2021). The dawn of metal-oxo clusters as artificial proteases: from discovery to the present and beyond. Accounts of Chemical Research, 54(7): 1673–1684
https://doi.org/10.1021/acs.accounts.0c00666
3 D Chakraborty, A Yurdusen, G Mouchaham, F Nouar, C Serre. (2023). Large-scale production of metal–organic frameworks. Advanced Functional Materials, 2309089: 1–23
https://doi.org/10.1002/adfm.202309089
4 Y Chen, H Wang, P Ghofrani-Isfahani, L Gu, X Liu, X Dai. (2024). Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions. Frontiers of Environmental Science & Engineering, 18(4): 52
5 D E Holmes, A E Rotaru, T Ueki, P M Shrestha, J G Ferry, D R Lovley. (2018). Electron and proton flux for carbon dioxide reduction in methanosarcina barkeri during direct interspecies electron transfer. Frontiers in Microbiology, 9: 3109
https://doi.org/10.3389/fmicb.2018.03109
6 Z Ji, H Zhang, H Liu, O M Yaghi, P Yang. (2018). Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 115(42): 10582–10587
https://doi.org/10.1073/pnas.1808829115
7 N B Lewis, R P Bisbey, K S Westendorff, A V Soudackov, Y Surendranath. (2024). A molecular-level mechanistic framework for interfacial proton-coupled electron transfer kinetics. Nature Chemistry, 16(3): 343–352
https://doi.org/10.1038/s41557-023-01400-0
8 A M Seyedi, M Haghighi, A Sokhansanj. (2023). Coprecipitation dispersion of Cu-Zn-Zr mixed oxides nanocatalyst over Si and Al-Based supports applied in selective and stable hydrogen production from Methanol: experimental study and rate of reaction engineering via intelligent optimization of CFD metho. Energy Conversion and Management, 295: 117613
https://doi.org/10.1016/j.enconman.2023.117613
9 N Wang, M Gao, S Liu, W Zhu, Y Zhang, X Wang, H Sun, Y Guo, Q Wang. (2024). Electrochemical promotion of organic waste fermentation: research advances and prospects. Environmental Research, 244: 117422
https://doi.org/10.1016/j.envres.2023.117422
10 J Wei, J Zhang, H Li, J Liu, Z Deng, C Zhou. (2023). Distribution of PCDD/Fs in a food waste anaerobic digestion process with biogas utilization. Frontiers of Environmental Science & Engineering, 17(11): 136
11 W Xiang, Y Zhang, Y Chen, C J Liu, X Tu. (2020). Synthesis, characterization and application of defective metal-organic frameworks: current status and perspectives. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(41): 21526–21546
https://doi.org/10.1039/D0TA08009H
12 B Yang, Q Yu, Y Zhang. (2023). Applying dynamic magnetic field to promote anaerobic digestion via enhancing the electron transfer of a microbial respiration chain. Environmental Science & Technology, 57(5): 2138–2148
https://doi.org/10.1021/acs.est.2c08577
13 J Ye, C Wang, C Gao, T Fu, C Yang, G Ren, J Lü, S Zhou, Y Xiong. (2022). Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface. Nature Communications, 13(1): 6612
https://doi.org/10.1038/s41467-022-34423-1
14 Z Zhao, Y Li, Y Zhang, D R Lovley. (2020). Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience, 23(12): 101794
https://doi.org/10.1016/j.isci.2020.101794
[1] Yongdong Chen, Hong Wang, Parisa Ghofrani-Isfahani, Li Gu, Xiaoguang Liu, Xiaohu Dai. Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions[J]. Front. Environ. Sci. Eng., 2024, 18(4): 52-.
[2] Yao Wang, Alejandro Ruiz-Acevedo, Eemaan Rameez, Vijaya Raghavan, Abid Hussain, Xunchang Fei. Toward sustainable waste management in small islands developing states: integrated waste-to-energy solutions in Maldives context[J]. Front. Environ. Sci. Eng., 2024, 18(2): 24-.
[3] Lei Li, Shijie Yuan, Chen Cai, Xiaohu Dai. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74-.
[4] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[5] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[6] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[7] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[8] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[9] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[10] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[11] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[12] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
[13] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[14] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[15] Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan. Greenhouse gas emissions from different pig manure management techniques: a critical analysis[J]. Front. Environ. Sci. Eng., 2017, 11(3): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed