Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2025, Vol. 19 Issue (1) : 10    https://doi.org/10.1007/s11783-025-1930-x
Globally validated non-unique inversion framework to estimate optically active water quality indicators using in situ and space-borne hyperspectral data sets
Shishir Gaur1, Rajarshi Bhattacharjee1(), Shard Chander2, Anurag Ohri1, Prashant K. Srivastava3
. Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
. Space Application Centre, ISRO, Ahmedabad 380015, India
. Institute of Environment and Sustainable Development, Banaras Hindu University (BHU), Varanasi 221005, India
 Download: PDF(6671 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As water quality is a combination of multiple optically active parameters, there is a growing interest in probabilistic models to predict water quality. This study aims to add to the water quality prediction studies by introducing ensemble learning with deep learning-based mixture density networks with multiple probabilistic Gaussian distributions. We named the approach as Ensembled Gaussian Mixture Density Network (GMDN). Many existing water quality algorithms rely on localized data sets, which limits their applicability. This research addresses this by developing and evaluating the proposed model using the global in situ water quality data set GLORIA (Global Reflectance community data set for Imaging and optical sensing of Aquatic environments). We focused on estimating two key biogeochemical components (BPs): Total Suspended Solids (TSS) and Chlorophyll-a(Chla), along with one inherent optical property (IoP), the absorption coefficient of colored dissolved organic matter (αCDOM). The proposed approach performs quite reliably when evaluated on the data samples of individual countries. The GMDN algorithm has been fine-tuned on the satellite-matchup for the river Ganga near Varanasi city. The fine-tuning was implemented using the remote sensing reflectance (Rrs) of the spaceborne hyperspectral data set PRISMA (PRecursore IperSpettrale della Missione Applicativa). The contribution of the riverbed floor to the Rrs of PRISMA has been computed using physics-based simulations in the Water Color Simulator (WASI). Overall, the simultaneous use of multiple probabilistic distributions and ensembled architectures improves the predictive accuracy of WQ parameters compared to the existing operational algorithms.

Keywords Biogeochemical components (BP)      Inherent Optical Properties (IoP)      GLORIA      PRISMA      Water quality     
Corresponding Author(s): Rajarshi Bhattacharjee   
Issue Date: 21 November 2024
 Cite this article:   
Prashant K. Srivastava,Anurag Ohri,Shard Chander, et al. Globally validated non-unique inversion framework to estimate optically active water quality indicators using in situ and space-borne hyperspectral data sets[J]. Front. Environ. Sci. Eng., 2025, 19(1): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-025-1930-x
https://academic.hep.com.cn/fese/EN/Y2025/V19/I1/10
Fig.1  Global distribution of in situ measured remote sensing reflectance (Rrs) and associated water quality (WQ) parameters within the GLORIA benchmark data set.
Fig.2  Logarithmic scale distribution of the WQ components frequency curve: TSS, Chla, and αCDOM. The distribution illustrates the sample count across WQ parameters, with statistical parameters such as mean, median, and standard deviation in the individual plots.
Fig.3  Spectral smoothening of the atmospherically corrected reflectance curve with Savitzky Golay Filter (SGF).
Fig.4  Schematic illustration of the proposed Ensembled Gaussian Mixture Density Network (GMDN) architecture. PI refers to the parameter initialisation.
Hyperparameters Best values
Original model Fine-tuned model
Hidden Neurons 2223 361
Hidden Layers 9 4
Iterations 677 119
Learning rate 0.001 0.04
Dropout rate (in every hidden layer) 0.29 0.29
Epsilon 0.001 0.062
Optimiser Adam Adam
Tab.1  Optimal values of Hyperparameters during the training process of the GMDN on the GLORIA data set and during the fine-tuning of the pre-trained model on the PRISMA data set
SL No. Input parameter Spectral features of PRISMA (unit: count)
1 Rrs 470–897 nm (47)
2 SLH [660–679–750], [670–709–750], [781–813–-855] nm (3)
Tab.2  Input Rrs corresponding to the individual wavelengths of the GLORIA data set correspond to the central wavelengths of the PRISMA data cube
Parameters Model1 Model2
TSS TSS1 (Novoa et al., 2017) TSS2 (Balasubramanian et al., 2020)
Chla Chla1 (Gurlin et al., 2011) Chla2 (Smith et al., 2018)
αCDOM CDOM1 (Ficek et al., 2011) CDOM2 (Zhu and Yu, 2012)
Tab.3  Existing operational models implemented in this research for the purpose of accuracy assessment with respect to the GMDN architecture
Fig.5  In situ and estimated TSS of the test subset of the 50–50 data split using (a) GMDN and existing operational models, (b) TSS1, and (c) TSS2. Uncertainty (ε), bias (µ), Slope (S) and R2 have also been mentioned in individual plots.
Fig.6  In situ and estimated Chla of the test subset of the 50–50 data split using (a) GMDN and existing operational models, (b) Chla1, and (c) Chla2. Uncertainty (ε), bias (µ), Slope (S) and R2 have also been mentioned in individual plots.
Fig.7  In situ and estimated αCDOM of the test subset of the 50–50 data split using (a) GMDN and existing operational models, (b) CDOM1, and (c) CDOM2. Uncertainty (ε), bias (µ), Slope (S) and R2 have also been mentioned in individual plots.
Fig.8  Cross-validation results of the GMDN architecture and operational algorithms for (a) TSS, (b) Chla, and (c) αCDOM. Here, samples from each nation have been considered a single source. The dashed lines represent the median value of the MAPE. Here, KR stands for Republic of Korea.
Parameters Unit Range Mean
TSS g/m3 37.51–256.47 97.3
Chla mg/m3 7.93–37.29 16.6
αCDOM m−1 0.92–3.24 1.4
Tab.4  Range and mean values of in situ samples in Varanasi
WQ parameters Algorithms ε µ MAPE
TSS GMDN 5.85 −1.37 4.65
TSS1 23.22 −15.55 19.63
TSS2 19.55 −9.22 16.29
Chla GMDN 4.11 −1.81 3.45
Chla1 19.68 10.91 17.37
Chla2 16.61 6.36 15.22
αCDOM GMDN 7.59 −1.98 6.92
CDOM1 27.97 11.91 18.76
CDOM2 33.21 17.23 21.24
Tab.5  Tabulated illustration of the performance metrics to evaluate the fine-tuned GMDN model and the alternative operational algorithms with respect to the in situ samples of river Ganga
Fig.9  Visual product maps derived for TSS with the atmospherically corrected PRISMA for river Ganga in the vicinity of Varanasi city using (a) GMDN and existing operational models (b) TSS1 (c) TSS2.
Fig.10  Visual product maps derived for Chla with the atmospherically corrected PRISMA for river Ganga in the vicinity of Varanasi city using (a) GMDN and existing operational models (b) Chla1 (c) Chla2.
Fig.11  Visual product maps derived for αCDOM with the atmospherically corrected PRISMA for river Ganga in the vicinity of Varanasi city using (a) GMDN and existing operational models (b) CDOM1 (c) CDOM2.
1 A Albert, C D Mobley. (2003). An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Optics Express, 11(22): 2873–2890
https://doi.org/10.1364/OE.11.002873
2 B Arabi, M S Salama, D van der Wal, J Pitarch, W Verhoef. (2020). The impact of sea bottom effects on the retrieval of water constituent concentrations from MERIS and OLCI images in shallow tidal waters supported by radiative transfer modeling. Remote Sensing of Environment, 237: 111596
https://doi.org/10.1016/j.rse.2019.111596
3 S V Balasubramanian, N Pahlevan, B Smith, C Binding, J Schalles, H Loisel, D Gurlin, S Greb, K Alikas, M Randla. et al.. (2020). Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sensing of Environment, 246: 111768
https://doi.org/10.1016/j.rse.2020.111768
4 W Balch, T Huntington, G Aiken, D Drapeau, B Bowler, L Lubelczyk, K Butler. (2016). Toward a quantitative and empirical dissolved organic carbon budget for the gulf of maine, a semienclosed shelf sea. Global Biogeochemical Cycles, 30(2): 268–292
https://doi.org/10.1002/2015GB005332
5 V E Brando, A G Dekker. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1378–1387
https://doi.org/10.1109/TGRS.2003.812907
6 C Burton, S Stubbs, P Onyisi. (2021). Mixture density network estimation of continuous variable maximum likelihood using discrete training samples. European Physical Journal C, 81(7): 662
https://doi.org/10.1140/epjc/s10052-021-09469-y
7 X Cao, J Zhang, H Meng, Y Lai, M Xu. (2023). Remote sensing inversion of water quality parameters in the Yellow River Delta. Ecological Indicators, 155: 110914
https://doi.org/10.1016/j.ecolind.2023.110914
8 N B Chang, Z Xuan, Y J Yang. (2013). Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sensing of Environment, 134: 100–110
https://doi.org/10.1016/j.rse.2013.03.002
9 M S Chauhan, P K S Dikshit, S B Dwivedi. (2015). Modeling of discharge distribution in bend of Ganga river at Varanasi. Computational Water, Energy, and Environmental Engineering, 4(3): 25–37
https://doi.org/10.4236/cweee.2015.43004
10 J Chen, S Chen, R Fu, D Li, H Jiang, C Wang, Y Peng, K Jia, B J Hicks. (2022). Remote sensing big data for water environment monitoring: current status, challenges, and future prospects. Earth’s Future, 10(2): e2021EF002289
https://doi.org/10.1029/2021EF002289
11 Y Chen, G Zheng, X Wang, X Chen. (2013). Retrieval of chlorophyll-a concentration with multi-sensor data by GSM01 merging algorithm. Journal of Geo-Information Science, 15(6): 911–917
https://doi.org/10.3724/SP.J.1047.2013.00911
12 A DekkerN PinnelP GegeX BriottetS Peters K TurpieS SterckxM CostaC GiardinoV Brando, et al.. (2018). Feasibility study of an aquatic ecosystem Earth Observing System. Canberra, Australia: CSIRO
13 O Doelle, N Klinkenberg, A Amthor, C Ament. (2023). Probabilistic intraday PV, power forecast using ensembles of deep Gaussian mixture density networks. Energies, 16(2): 646
https://doi.org/10.3390/en16020646
14 Y Du, K Song, Q Wang, S Li, Z Wen, G Liu, H Tao, Y Shang, J Hou, L Lyu, B Zhang. (2022). Total suspended solids characterization and management implications for lakes in East China. Science of the Total Environment, 806: 151374
https://doi.org/10.1016/j.scitotenv.2021.151374
15 Y Fan, W Li, N Chen, J H Ahn, Y J Park, S Kratzer, T Schroeder, J Ishizaka, R Chang, K Stamnes. (2021). OC-SMART: a machine learning based data analysis platform for satellite ocean color sensors. Remote Sensing of Environment, 253: 112236
https://doi.org/10.1016/j.rse.2020.112236
16 Z Fei, Z Huang, X Zhang. (2023). Voltage and temperature information ensembled probabilistic battery health evaluation via deep Gaussian mixture density network. Journal of Energy Storage, 73: 108587
https://doi.org/10.1016/j.est.2023.108587
17 D Ficek, T Zapadka, J Dera. (2011). Remote sensing reflectance of Pomeranian lakes and the Baltic. Oceanologia, 53(4): 959–970
https://doi.org/10.5697/oc.53-4.959
18 S Gaur, N Das, R Bhattacharjee, A Ohri, D Patra. (2023). A novel band selection architecture to propose a built-up index for hyperspectral sensor PRISMA. Earth Science Informatics, 16(1): 887–898
https://doi.org/10.1007/s12145-023-00949-1
19 P Gege. (2004). The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra. Computers & Geosciences, 30(5): 523–532
https://doi.org/10.1016/j.cageo.2004.03.005
20 H R Gordon. (1978). Removal of atmospheric effects from satellite imagery of the oceans. Applied Optics, 17(10): 1631–1636
https://doi.org/10.1364/AO.17.001631
21 H R Gordon, O B Brown, M M Jacobs. (1975). Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 14(2): 417–427
https://doi.org/10.1364/AO.14.000417
22 Gurlin D, Gitelson A A, Moses W J (2011). Remote estimation of chl-a concentration in turbid productive waters—return to a simple two-band NIR-red model? Remote Sensing of Environment,115(12): 3479–3490
23 B He, W Zhang, X Qiao, Z Su. (2015). A study on remote sensing retrieval of suspended sediment concentration in Middle Yangtze River Based on A, FOASVM Method. Resources and Environment in the Yangtze Basin, 24(4): 647–652
24 S Khan, R Sinha, P Whitehead, S Sarkar, L Jin, M N Futter. (2018). Flows and sediment dynamics in the Ganga River under present and future climate scenarios. Hydrological Sciences Journal, 63(5): 763–782
https://doi.org/10.1080/02626667.2018.1447113
25 Z P (2006) Lee. Remote Sensing of Inherent Optical Properties: Fundamentals Tests of Algorithms, and Applications. Plymouth: International Ocean Colour Coordinating Group (IOCCG)
26 M K Lehmann, D Gurlin, N Pahlevan, K Alikas, T Conroy, J Anstee, S V Balasubramanian, C C Barbosa, C Binding, A Bracher. et al.. (2023). GLORIA-A globally representative hyperspectral in situ dataset for optical sensing of water quality. Scientific Data, 10(1): 100
https://doi.org/10.1038/s41597-023-01973-y
27 W Li. (2009). Method of water quality remote sensing and its application. Energy & Environment, 5(5): 62–64
28 T M A D Lima, C Giardino, M Bresciani, C C F Barbosa, A Fabbretto, A Pellegrino, F N Begliomini. (2023). Assessment of estimated phycocyanin and chlorophyll-a concentration from prisma and olci in brazilian inland waters: a comparison between semi-analytical and machine learning algorithms. Remote Sensing, 15(5): 1299
https://doi.org/10.3390/rs15051299
29 Y Liu, H Huang, L Yan, X Yang, H Bi, Z Zhang. (2020). Particle size parameters of particulate matter suspended in coastal waters and their use as indicators of typhoon influence. Remote Sensing, 12(16): 2581
https://doi.org/10.3390/rs12162581
30 P Jeba Dev, G Anna Geevarghese, R Purvaja, R Ramesh. (2022). Measurement of in-vivo spectral reflectance of bottom types: implications for remote sensing of shallow waters. Advances in Space Research, 69(12): 4240–4251
https://doi.org/10.1016/j.asr.2022.03.022
31 R Ma, H Duan, Q Liu, S A Loiselle. (2011). Approximate bottom contribution to remote sensing reflectance in Taihu Lake China. Journal of Great Lakes Research, 37(1): 18–25
https://doi.org/10.1016/j.jglr.2010.12.002
32 Y Ma, K Song, Z Wen, G Liu, Y Shang, L Lyu, J Du, Q Yang, S Li, H Tao, J Hou. (2021). Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 9132–9146
https://doi.org/10.1109/JSTARS.2021.3109292
33 E McCluskey, R J Brewin, Q Vanhellemont, O Jones, D Cummings, G Tilstone, T Jackson, C Widdicombe, E M Woodward, C Harris. et al.. (2022). On the seasonal dynamics of phytoplankton chlorophyll-a concentration in nearshore and offshore waters of Plymouth, in the english channel: Enlisting the help of a surfer. Oceans, 3(2): 125–146
https://doi.org/10.3390/oceans3020011
34 W Meng, N Zhang, Y Zhang, B Zheng. (2009). Integrated assessment of river health based on water quality, aquatic life and physical habitat. Journal of Environmental Sciences, 21(8): 1017–1027
https://doi.org/10.1016/S1001-0742(08)62377-3
35 C D (1995) Mobley. Hydrolight 3.0 Users’ Guide. Menlo Park: SRI International
36 F Mohseni, F Saba, S M Mirmazloumi, M Amani, M Mokhtarzade, S Jamali, S Mahdavi. (2022). Ocean water quality monitoring using remote sensing techniques: a review. Marine Environmental Research, 180: 105701
https://doi.org/10.1016/j.marenvres.2022.105701
37 S K Morley, T V Brito, D T Welling. (2018). Measures of model performance based on the log accuracy ratio. Space Weather, 16(1): 69–88
https://doi.org/10.1002/2017SW001669
38 A Najah, M R Al-Shehhi. (2021). Performance of the ocean color algorithms: QAA GSM, and GIOP in inland and coastal waters. Remote Sensing in Earth Systems Sciences, 4(4): 235–248
https://doi.org/10.1007/s41976-022-00068-3
39 B Nechad, K G Ruddick, Y Park. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114(4): 854–866
https://doi.org/10.1016/j.rse.2009.11.022
40 C Neil, E Spyrakos, P D Hunter, A N Tyler. (2019). Corrigendum to “A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types”. Remote Sensing of Environment, 229: 159–178
https://doi.org/10.1016/j.rse.2019.04.027
41 C Nima, Ø Frette, B Hamre, J J Stamnes, Y C Chen, K Sørensen, M Norli, D Lu, Q Xing, D Muyimbwa. et al.. (2019). CDOM absorption properties of natural water bodies along extreme environmental gradients. Water, 11(10): 1988
https://doi.org/10.3390/w11101988
42 S Novoa, D Doxaran, A Ody, Q Vanhellemont, V Lafon, B Lubac, P Gernez. (2017). Atmospheric corrections and multi-conditional algorithm for multi-sensor remote sensing of suspended particulate matter in low-to-high turbidity levels coastal waters. Remote Sensing, 9(1): 61
https://doi.org/10.3390/rs9010061
43 J E O’Reilly, P J Werdell. (2019). Chlorophyll algorithms for ocean color Sensors-OC4 OC5 & OC6. Remote Sensing of Environment, 229: 32–47
https://doi.org/10.1016/j.rse.2019.04.021
44 R E O’Shea, N Pahlevan, B Smith, E Boss, D Gurlin, K Alikas, K Kangro, R M Kudela, D Vaičiūtė. (2023). A hyperspectral inversion framework for estimating absorbing inherent optical properties and biogeochemical parameters in inland and coastal waters. Remote Sensing of Environment, 295: 113706
https://doi.org/10.1016/j.rse.2023.113706
45 R E O’Shea, N Pahlevan, B Smith, M Bresciani, T Egerton, C Giardino, L Li, T Moore, A Ruiz-Verdu, S Ruberg. et al.. (2021). Advancing cyanobacteria biomass estimation from hyperspectral observations: demonstrations with HICO and PRISMA imagery. Remote Sensing of Environment, 266: 112693
https://doi.org/10.1016/j.rse.2021.112693
46 D Odermatt, A Gitelson, V E Brando, M Schaepman. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118: 116–126
https://doi.org/10.1016/j.rse.2011.11.013
47 K Oubelkheir, L A Clementson, I T Webster, P W Ford, A G Dekker, L C Radke, P Daniel. (2006). Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system. Journal of Geophysical Research. Oceans, 111(C7): C07021
48 N Pahlevan, B Smith, K Alikas, J Anstee, C Barbosa, C Binding, M Bresciani, B Cremella, C Giardino, D Gurlin. et al.. (2022). Simultaneous retrieval of selected optical water quality indicators from Landsat-8 Sentinel-2, and Sentinel-3. Remote Sensing of Environment, 270: 112860
https://doi.org/10.1016/j.rse.2021.112860
49 N Pahlevan, B Smith, J Schalles, C Binding, Z Cao, R Ma, K Alikas, K Kangro, D Gurlin, N Hà. et al.. (2020). Seamless retrievals of chlorophyll-a from sentinel-2 (MSI) and sentinel-3 (OLCI) in inland and coastal waters: a machine-learning approach. Remote Sensing of Environment, 240: 111604
https://doi.org/10.1016/j.rse.2019.111604
50 S C Palmer, T Kutser, P D Hunter. (2015). Remote sensing of inland waters: challenges, progress and future directions. Remote Sensing of Environment, 157: 1–8
https://doi.org/10.1016/j.rse.2014.09.021
51 A Pellegrino, A Fabbretto, M Bresciani, T M A de Lima, F Braga, N Pahlevan, V E Brando, S Kratzer, M Gianinetto, C Giardino. (2023). Assessing the accuracy of prisma standard reflectance products in globally distributed aquatic sites. Remote Sensing, 15(8): 2163
https://doi.org/10.3390/rs15082163
52 L Qi, C Hu, H Duan, B B Barnes, R Ma. (2014). An EOF-based algorithm to estimate chlorophyll a concentrations in Taihu Lake from MODIS land-band measurements: implications for near real-time applications and forecasting models. Remote Sensing, 6(11): 10694–10715
https://doi.org/10.3390/rs61110694
53 D P Sahoo, B Sahoo, M K Tiwari. (2022). MODIS-Landsat fusion-based single-band algorithms for TSS and turbidity estimation in an urban-waste-dominated river reach. Water Research, 224: 119082
https://doi.org/10.1016/j.watres.2022.119082
54 S K Saikia, D N Das. (2011). Diversity and productivity (chlorophyll-a and biomass) of periphyton on natural and artificial substrates from wetland ecosystem. Journal of Wetlands Ecology, 5: 1–9
https://doi.org/10.3126/jowe.v5i0.4624
55 S I Salem, H Higa, H Kim, H Kobayashi, K Oki, T Oki. (2017). Assessment of chlorophyll-a algorithms considering different trophic statuses and optimal bands. Sensors, 17(8): 1746
https://doi.org/10.3390/s17081746
56 U K (2013) Shukla. Varanasi and the Ganga River: a geological perspective. In: Jayaswal V, ed. Varanasi: Myths and Scientific Studies. New Delhi: Aryan Books International, 100–113
57 B Smith, N Pahlevan, J Schalles, S Ruberg, R Errera, R Ma, C Giardino, M Bresciani, C Barbosa, T Moore. et al.. (2021). A chlorophyll-a algorithm for Landsat-8 based on mixture density networks. Frontiers in Remote Sensing, 1: 623678
https://doi.org/10.3389/frsen.2020.623678
58 M E Smith, L Robertson Lain, S Bernard. (2018). An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sensing of Environment, 215: 217–227
https://doi.org/10.1016/j.rse.2018.06.002
59 E Spyrakos, R O’Donnell, P D Hunter, C Miller, M Scott, S G Simis, C Neil, C C Barbosa, C E Binding, S Bradt. et al.. (2018). Optical types of inland and coastal waters. Limnology and Oceanography, 63(2): 846–870
https://doi.org/10.1002/lno.10674
60 H Tan, T Oishi, A Tanaka, R Doerffer, Y Tan. (2017). Chlorophyll-a specific volume scattering function of phytoplankton. Optics Express, 25(12): A564–A573
https://doi.org/10.1364/OE.25.00A564
61 T M Tiyasha, C M Tung. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585: 124670
https://doi.org/10.1016/j.jhydrol.2020.124670
62 E Vangi, G D’Amico, S Francini, F Giannetti, B Lasserre, M Marchetti, G Chirici. (2021). The new hyperspectral satellite PRISMA: imagery for forest types discrimination. Sensors, 21(4): 1182
https://doi.org/10.3390/s21041182
63 Y Xu, L Feng, D Zhao, J Lu. (2020). Assessment of Landsat atmospheric correction methods for water color applications using global AERONET-OC data. International Journal of Applied Earth Observation and Geoinformation, 93: 102192
https://doi.org/10.1016/j.jag.2020.102192
64 S Zhang. (2008). Parimputation: From imputation and null-imputation to partially imputation. IEEE Intelligent Informatics Bulletin, 9(1): 32–38
65 S Zhang. (2012). Nearest neighbor selection for iteratively kNN imputation. Journal of Systems and Software, 85(11): 2541–2552
https://doi.org/10.1016/j.jss.2012.05.073
66 M Zhao, Y Bai, H Li, X He, F Gong, T Li. (2022). Fluorescence line height extraction algorithm for the geostationary ocean color imager. Remote Sensing, 14(11): 2511
https://doi.org/10.3390/rs14112511
67 D Zhou, D Wang. (2015). Quantitative estimation of chlorophyll-a and suspended solids in Taihu based on Landsat TM. Environmental Science & Technology, 38(6P): 362–367
68 W Zhu, Q Yu. (2012). Inversion of chromophoric dissolved organic matter from EO-1 Hyperion imagery for turbid estuarine and coastal waters. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3286–3298
[1] FSE-24109-of-GS_suppl_1 Download
[1] Yong Fang, Ruting Huang, Yeyin Zhang, Jun Zhang, Wenni Xi, Xianyang Shi. Utilizing machine learning models to grasp water quality dynamic changes in lake eutrophication through phytoplankton parameters[J]. Front. Environ. Sci. Eng., 2025, 19(2): 14-.
[2] Xinyan Xiao, Chenlan Chen, Haoran Li, Lihua Li, Xin Yu. The variation of microbiological characteristics in surface waters during persistent precipitation[J]. Front. Environ. Sci. Eng., 2024, 18(9): 111-.
[3] Jiutan Liu, Kexin Lou, Zongjun Gao, Menghan Tan. Hydrochemical insights on the signatures and genesis of water resources in a high-altitude city on the Qinghai-Xizang Plateau, South-west China[J]. Front. Environ. Sci. Eng., 2024, 18(7): 88-.
[4] Xuan Wang, Yan Dong, Jing Yang, Zhipeng Liu, Jinsuo Lu. A benchmark-based method for evaluating hyperparameter optimization techniques of neural networks for surface water quality prediction[J]. Front. Environ. Sci. Eng., 2024, 18(5): 54-.
[5] Junchen Li, Sijie Lin, Liang Zhang, Yuheng Liu, Yongzhen Peng, Qing Hu. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Front. Environ. Sci. Eng., 2024, 18(3): 31-.
[6] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[7] Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen. Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments[J]. Front. Environ. Sci. Eng., 2024, 18(2): 21-.
[8] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[9] Zhaocai Wang, Qingyu Wang, Tunhua Wu. A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM[J]. Front. Environ. Sci. Eng., 2023, 17(7): 88-.
[10] Hailong Yin, Yiyuan Lin, Huijin Zhang, Ruibin Wu, Zuxin Xu. Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm[J]. Front. Environ. Sci. Eng., 2023, 17(7): 85-.
[11] Junlang Li, Zhenguo Chen, Xiaoyong Li, Xiaohui Yi, Yingzhong Zhao, Xinzhong He, Zehua Huang, Mohamed A. Hassaan, Ahmed El Nemr, Mingzhi Huang. Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator[J]. Front. Environ. Sci. Eng., 2023, 17(6): 67-.
[12] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[13] Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang. An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor[J]. Front. Environ. Sci. Eng., 2022, 16(8): 97-.
[14] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[15] Yunpeng Xing, Boyuan Xue, Yongshu Lin, Xueqi Wu, Fang Fang, Peishi Qi, Jinsong Guo, Xiaohong Zhou. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring[J]. Front. Environ. Sci. Eng., 2022, 16(12): 155-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed