Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 509-517    https://doi.org/10.1007/s11783-012-0394-y
REVIEW ARTICLE
Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review
Chunhua ZHANG1, Ying GE2(), Huan YAO2, Xiao CHEN2, Minkun HU2
1. Demonstration Laboratory of Elements and Life Science Research, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; 2. Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
 Download: PDF(186 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.

Keywords paddy soil      redox      iron      cadmium      bioavailability      rice     
Corresponding Author(s): GE Ying,Email:yingge711@njau.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Chunhua ZHANG,Ying GE,Huan YAO, et al. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review[J]. Front Envir Sci Eng, 2012, 6(4): 509-517.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0394-y
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/509
Fig.1  Revolution of Eh in paddy soil during rice cultivation. Adapted from Ref. []
ReactionslgKo a)
Fe(OH)3 (amorp) + 3 H+ + e- ? Fe2+ + 3 H2O16.58
Fe3O4 (magnetite) + 8 H+ + 2 e- ? 3 Fe2+ + 4 H2O35.69
α-FeOOH (goethite) + 3 H+ + e- ? Fe2+ + 2 H2O13.02
γ-FeOOH (lepidocrocite) + 3 H+ + e- ? Fe2+ + 2 H2O14.43
α-Fe2O3 (hematite) + 6 H+ + 2 e- ? 2 Fe2+ + 3 H2O26.26
γ-Fe2O3 (maghemite) + 6 H+ + 2 e- ? 2 Fe2+ + 3 H2O29.26
Tab.1  Reductive dissolution of various Fe oxides and their equilibrium constants
Fig.2  Relationship between pe+ pH and Fe solubility expressed as lgFe+ 2 pH under reducing condition. The solid lines represent Fe activities on the surface of Fe(OH) (amorp) and FeO (amorp). From Ref. []
Fig.3  A pe-pH diagram of Fe speciation in soil at 25°C, partial pressures of O, H, and CO are respectively 1, 1 and 10 atm, [Fe] = 10 mol·L; [Fe] = 10 mol·L; ;
1 K?gel-Knabner I, Amelung W, Cao Z H, Fiedler S, Frenzel P, Jahn R, Kalbitz K, K?lbl A, Schloter M. Biogeochemistry of paddy soils. Geoderma , 2010, 157(1-2): 1-14
doi: 10.1016/j.geoderma.2010.03.009
2 Neubauer S C, Emerson D, Megonigal J P. Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. In: Violante A, Huang P M, Gadd G M, eds. Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments . Hoboken: John Wiley & Sons, 2007
3 Borch T, Kretzschmar R, Kappler A, Cappellen P V, Ginder-Vogel M, Voegelin A, Campbell K. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology , 2010, 44(1): 15-23
doi: 10.1021/es9026248 pmid:20000681
4 Williams P N, Lei M, Sun G X, Huang Q, Lu Y, Deacon C, Meharg A A, Zhu Y G. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology , 2009, 43(3): 637-642
doi: 10.1021/es802412r pmid:19244995
5 Li Y C, Ge Y, Zhang C H, Zhou Q S. Mechanisms for high Cd activity in a red soil from southern China undergoing gradual reduction. Australian Journal of Soil Research , 2010, 48(4): 371-384
6 Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology , 2009, 43(24): 9361-9367
doi: 10.1021/es9022738 pmid:20000530
7 Kocar B D, Borch T, Fendorf S. Arsenic repartitioning during biogenic sulfidizaion and transformation of ferrihydrite. Geochimica et Cosmochimica Acta , 2010, 74(3): 980-994
doi: 10.1016/j.gca.2009.10.023
8 Chen X, Wright J V, Conca J L, Peurrung L M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science & Technology , 1997, 31(3): 624-631
doi: 10.1021/es950882f
9 Bostick B C, Fendorf S, Fendorf M. Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochimica et Cosmochimica Acta , 2000, 64(2): 247-255
doi: 10.1016/S0016-7037(99)00295-1
10 Barrett K A, McBride M B. Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension. Soil Science Society of America Journal , 2007, 71(2): 322-328
doi: 10.2136/sssaj2006.0124
11 Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiology Reviews , 2000, 24(5): 625-645
doi: 10.1111/j.1574-6976.2000.tb00563.x pmid:11077155
12 Chen L N, Ge Y, Zhang C H, Zhou Q S. Effect of submergence on the bioavailability of Cd in a red soil. Journal of Agro-Environment Science , 2009, 28(11): 2333-2337 (in Chinese)
13 de Livera J, McLaughlin M J, Hettiarachchi G M, Kirby J K, Beak D G. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. The Science of the Total Environment , 2011, 409(8): 1489-1497
doi: 10.1016/j.scitotenv.2010.12.028 pmid:21277005
14 Lindsay W L. Chemical Equilibria in Soils. New York: John Wiley & Sons, 1979
15 Borch T, Fendorf S. Phosphate interactions with iron (hydr) oxides: mineralization pathways and phosphorus retention upon bioreduction. In: Barnett M O, Kent D B, eds. Adsorption of Metals by Geomedia II, Variables, Mechanisms, and Model Applications. Developments in Earth & Environmental Sciences , Amsterdam: Elsevier, 2007, 7: 321-348
doi: 10.1016/s1571-9197(07)07012-7
16 Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology , 2006, 4(10): 752-764
doi: 10.1038/nrmicro1490 pmid:16980937
17 Narteh L T, Sahrawat K L. Influence of flooding on electrochemical and chemical properties of West African soils. Geoderma , 1999, 87(3-4): 179-207
doi: 10.1016/S0016-7061(98)00053-6
18 Brennan E W, Lindsay W L. The role of pyrite in controlling metal in activities in highly reduced soils. Geochimica et Cosmochimica Acta , 1996, 60(19): 3609-3618
doi: 10.1016/0016-7037(96)00162-7
19 Wang X J, Chen X P, Kappler A, Sun G X, Zhu Y G. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil. Environmental Toxicology and Chemistry , 2009, 28(11): 2255-2262
doi: 10.1897/09-085.1 pmid:19572768
20 Borch T, Masue Y, Kukkadapu R K, Fendorf S. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science & Technology , 2007, 41(1): 166-172
doi: 10.1021/es060695p pmid:17265943
21 Nanzyo M, Yaginuma H, Sasaki K, Ito K, Aikawa Y, Kanno H, Takahashi T. Identification of vivianite formed on the root of paddy rice grown in pots. Soil Science and Plant Nutrition , 2010, 56(3): 376-381
doi: 10.1111/j.1747-0765.2010.00463.x
22 Saalfield S L, Bostick B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environmental Science & Technology , 2009, 43(23): 8787-8793
doi: 10.1021/es901651k pmid:19943647
23 Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews , 1991, 55(2): 259-287
pmid:1886521
24 Davidson E A, Chorover J, Dail B D. A mechanism of abiotic immobilization of nitrate in forest ecosystem: the ferrous wheel hypothesis. Global Change Biology , 2003, 9(2): 228-236
doi: 10.1046/j.1365-2486.2003.00592.x
25 Kirk G. The Biogeochemistry of Submerged Soils. Chichester: John Wiley & Sons, 2004
26 Kappler A, Benz M, Schink B, Brune A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology , 2004, 47(1): 85-92
doi: 10.1016/S0168-6496(03)00245-9 pmid:19712349
27 Mladenov N, Zheng Y, Miller M P, Nemergut D R, Legg T, Simone B, Hageman C, Rahman M M, Ahmed K M, McKnight D M. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environmental Science & Technology , 2010, 44(1): 123-128
doi: 10.1021/es901472g pmid:20039742
28 Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils , 1999, 29(4): 379-385
doi: 10.1007/s003740050568
29 Begg C B M, Kirk G J D, Mackenzie A F, Neue H U. Root induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist , 1994, 128(3): 469-477
doi: 10.1111/j.1469-8137.1994.tb02993.x
30 Liu W J, Zhu Y G, Smith F A. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil , 2005, 277(1-2): 127-138
doi: 10.1007/s11104-005-6453-4
31 Weiss J V, Emerson D, Megonigal J P. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiology Ecology , 2004, 48(1): 89-100
doi: 10.1016/j.femsec.2003.12.014 pmid:19712434
32 Liu W J, Zhu Y G, Hu Y, Williams P N, Gault A G, Meharg A A, Charnock J M, Smith F A. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science & Technology , 2006, 40(18): 5730-5736
doi: 10.1021/es060800v pmid:17007133
33 Nanzyo M, Yaginuma H, Sasaki K, Ito K, Aikawa Y, Kanno H, Takahashi T. Identification of vivianite formed on the roots of paddy rice grown in pots. Soil Science and Plant Nutrition 2010, 56(3): 376-381
34 Wang G M, Zhou L X, Zhan X H, Wong J W C. Dynamics of dissolved organic matter and its effect on metal availability in paddy soil: Field micro-plot trials. Acta Scientiae Circumstantiae , 2004, 24(5): 858-864 (in Chinese)
35 Emerson D, Weiss J V, Megonigal J P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Applied and Environmental Microbiology , 1999, 65(6): 2758-2761
pmid:10347074
36 King G M, Garey M A. Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. Applied and Environmental Microbiology , 1999, 65(10): 4393-4398
pmid:10508065
37 Chen X P, Kong W D, He J Z, Liu W J, Smith S E, Smith F A, Zhu Y G. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? Journal of Plant Nutrition and Soil Science , 2008, 171(2): 193-199
doi: 10.1002/jpln.200700018
38 Otte M L, Kearns C C, Doyle M O. Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bulletin of Environmental Contamination and Toxicology , 1995, 55(1): 154-161
doi: 10.1007/BF00212403 pmid:7663086
39 Doyle M O, Otte M L. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution , 1997, 96(1): 1-11
doi: 10.1016/S0269-7491(97)00014-6 pmid:15093426
40 Lei M, Tie B Q, Williams P N, Zheng Y M, Huang Y Z. Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse. Journal of Soils and Sediments , 2011, 11(1): 115-123
doi: 10.1007/s11368-010-0280-9
41 Jung M C, Thornton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. The Science of the Total Environment , 1997, 198(2): 105-121
doi: 10.1016/S0048-9697(97)05434-X pmid:9167264
42 Khaokaew S, Chaney R L, Landrot G, Ginder-Vogel M, Sparks D L. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environmental Science & Technology , 2011, 45(10): 4249-4255
43 Lin Q, Chen Y X, Chen H M, Yu Y L, Luo Y M, Wong M H. Chemical behavior of Cd in rice rhizosphere. Chemosphere , 2003, 50(6): 755-761
doi: 10.1016/S0045-6535(02)00216-3 pmid:12688487
44 Kashem M A, Singh B R. Transformations in solid phase species of metals as affected by flooding and organic matter. Communications in Soil Science and Plant Analysis , 2004, 35(9-10): 1435-1456
doi: 10.1081/CSS-120037556
45 Hu L F, McBride M B, Cheng H, Wu J J, Shi J C, Xu J M, Wu L S. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environmental Research , 2011, 111(3): 356-361
doi: 10.1016/j.envres.2011.01.012 pmid:21316043
46 Liu M C, Li H F, Xia L J, Yang L S. Differences of cadmium uptake by rice genotypes and relationship between the iron oxide plaque and cadmium uptake. Acta Scientiae Circumstantiae , 2000, 20(5): 592-596 (in Chinese)
47 Liu H J, Zhang J L, Zhang F S. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany , 2007, 59(3): 314-320
doi: 10.1016/j.envexpbot.2006.04.001
48 Liu M C, Li H F, Xia L J, Yang L S. Effect of Fe, Mn coating formed on roots on Cd uptake by rice varieties. Acta Ecologica Sinica , 2001, 21(4): 598-602 (in Chinese)
49 Liu H J, Zhang J L, Christie P, Zhang F S. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. The Science of the Total Environment , 2008, 394(2-3): 361-368
doi: 10.1016/j.scitotenv.2008.02.004 pmid:18325566
50 Liu W J, Zhang X K, Yin J, Liu Y S, Zhang F S. Cadmium bioavailability in rhizosphere of paddy soil. Agro-environmental Protection , 2000, 19(3): 184-187 (in Chinese)
51 Shao G S, Chen M X, Wang W X, Mou R X, Zhang G P. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regulation , 2007, 53(1): 33-42
doi: 10.1007/s10725-007-9201-3
52 Morrissey J, Guerinot M L. Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews , 2009, 109(10): 4553-4567
doi: 10.1021/cr900112r pmid:19754138
53 Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition , 2006, 52(4): 464-469
doi: 10.1111/j.1747-0765.2006.00055.x
54 Shao G S, Chen M X, Wang D Y, Xu C M, Mou R X, Cao Z Y, Zhang X F. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology. Science in China (Series C) , 2008, 51(3): 245-253
doi: 10.1007/s11427-008-0031-y pmid:18246312
55 Violante A, Huang P M, Gadd G M. Biophysico-chemical Processes of Heavy Metals and Metalloids in Soil Environments. Hoboken: John Wiley & Sons, 2008
56 Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiology , 1995, 109(4): 1427-1433
pmid:12228679
57 Mendoza-Cózatl D G, Butko E, Springer F, Torpey J W, Komives E A, Kehr J, Schroeder J I. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal , 2008, 54(2): 249-259
doi: 10.1111/j.1365-313X.2008.03410.x pmid:18208526
58 Liu W J, Wood B A, Raab A, McGrath S P, Zhao F J, Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. The Plant Physiology , 2010, 152(4): 2211-2221
doi: 10.1104/pp.109.150862 pmid:20130102
59 Voegelin A, Weber F A, Kretzschmar R. Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta , 2007, 71(23): 5804-5820
doi: 10.1016/j.gca.2007.05.030
60 Lu Y H, Rosencrantz D, Liesack W, Conrad R. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environmental Microbiology , 2006, 8(8): 1351-1360
doi: 10.1111/j.1462-2920.2006.01028.x pmid:16872399
61 Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology , 2008, 10(8): 1978-1987
doi: 10.1111/j.1462-2920.2008.01613.x pmid:18430011
62 Weiss J V,βEmerson D,βBacker S M, Megonigal J P. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants Implications for a rhizosphere iron cycle. Biogeochemistry , 2003, 64(1): 77-96
63 Lombi E, ScheckelK G, Kempson I M. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environmental and Experimental Botany , 2011, 72(1): 3-17
64 Meda A R, Scheuermann E B, Prechsl U E, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N. Iron acquisition by phytosiderophores contributes to Cd tolerance. Plant Physiology , 2007, 143(4): 1761-1773
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Chunyan Wang, Jiangshan Wang, Yi Liu, Lei Zhang, Yong Sun, Jiuhui Qu. Less attention paid to waterborne SARS-CoV-2 spreading in Beijing urban communities[J]. Front. Environ. Sci. Eng., 2021, 15(5): 110-.
[3] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[4] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[5] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[6] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[7] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[8] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[9] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[10] Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He. Understanding building-occupant-microbiome interactions toward healthy built environments: A review[J]. Front. Environ. Sci. Eng., 2021, 15(4): 65-.
[11] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[12] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[13] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[14] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[15] Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Front. Environ. Sci. Eng., 2020, 14(6): 106-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed