Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (3) : 38    https://doi.org/10.1007/s11783-023-1638-8
RESEARCH ARTICLE
Biodegradation of waste refrigerator polyurethane by mealworms
Ping Zhu1, Shuangshuang Gong1, Mingqiang Deng2, Bin Xia1, Yazheng Yang1, Jiakang Tang1, Guangren Qian1, Fang Yu1, Ashantha Goonetilleke3, Xiaowei Li1()
1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
2. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
3. School of Civil and Environmental Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
 Download: PDF(5120 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Waste refrigerator polyurethane (WRPU) was ingested and biodegraded by mealworms.

● The carbon in WRPU-based frass was lower than that in WRPU.

● Urethane groups in WRPU were broken down after ingestion by mealworms.

● Thermal stability of WRPU-based frass were deteriorated compared to that of WRPU.

● Gut microbiomes of mealworms fed using WRPU were distinct from that fed using bran.

Refrigerator insulation replacement results in discarding a large amount of waste refrigerator polyurethane (WRPU). Insect larvae like mealworms have been used to biodegrade pristine plastics. However, knowledge about mealworms degrading WRPU is scarce. This study presents an in-depth investigation of the degradation of WRPU by mealworms using the micro-morphology, composition, and functional groups of WRPU and the egested frass characteristics. It was found that the WRPU debris in frass was scoured, implying that WRPU was ingested and degraded by mealworms. The carbon content of WRPU-based frass was lower than that of WRPU, indicating that mealworms utilized WRPU as a carbon source. The urethane groups in WRPU were broken, and benzene rings’ C=C and C–H bonds in the isocyanate disappeared after being ingested by mealworms. Thermal gravimetric-differential thermal gravimetry analysis showed that the weight loss temperature of WRPU-based frass was 300 °C lower than that of WRPU, indicating that the thermal stability of WRPU deteriorated after being ingested. The carbon balance analysis confirmed that carbon in the ingested WRPU released as CO2 increased from 18.84 % to 29.80 %, suggesting that WRPU was partially mineralized. The carbon in the mealworm biomass ingesting WRPU decreased. The possible reason is that WRPU does not supply sufficient nutrients for mealworm growth, and the impurities and odor present in WRPU affect the appetite of the mealworms. The microbial community analysis indicated that WRPU exerts a considerable effect on the gut microorganism of mealworms. These findings confirm that mealworms degrade WRPU.

Keywords Waste refrigerator polyurethane      Mealworms      Biodegradation      Carbon balance      Gut microorganism     
Corresponding Author(s): Xiaowei Li   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 17 October 2022
 Cite this article:   
Ping Zhu,Shuangshuang Gong,Mingqiang Deng, et al. Biodegradation of waste refrigerator polyurethane by mealworms[J]. Front. Environ. Sci. Eng., 2023, 17(3): 38.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1638-8
https://academic.hep.com.cn/fese/EN/Y2023/V17/I3/38
Fig.1  (a) An image of mealworms gnawing at WRPU with some damage points marked with a red frame; (b) cumulative consumption of WRPU and survival rate of mealworms fed with bran and WRPU (mean ± SD; n=3).
Fig.2  SEM-EDS of the WRPU, bran, and their egested frass: (a) SEM of WRPU feedstock; (b) SEM of bran feedstock; (c) SEM of WRPU-based frass; (d) SEM of bran-based frass; (e) EDS of WRPU feedstock; (f) EDS of WRPU-based frass.
Fig.3  Elemental analysis of the WRPU and the egested frass.
Fig.4  FT-IR spectra of the WRPU feedstock and frass, and bran feedstock and frass.
Fig.5  TG-DTG analysis of the WRPU feedstock and the egested frass.
Incubation time (d)ItemInitial carbon (mg)Final carbon (mg)Varying weight (mg)Reduction rate of biomass (%)Conversion rate (%)
5WRPU822.5±12.61736.3±22.22?86.2
Biomass535.8±6.57523.3±32.34?12.5?2.3
CO2018.6±3.4818.618.84
Frass062.3±1.1162.363.12
Total recovery81.96
10WRPU725.4±18.49617.1±20.74?108.3
Biomass597.2±39.25577.3±41.20?19.9?3.3
CO2032.6±3.3632.625.43
Frass085.2±5.0985.266.46
Total recovery91.89
15WRPU855.6±23.13677.8±14.18?177.8
Biomass624.5±12.78598.6±71.15?25.9?4.1
CO2056.1±5.3156.127.54
Frass0133.2±7.18133.265.39
Total recovery92.93
20WRPU657.9±5.02403.5±23.56?254.4
Biomass575.6±5.79528.9±54.65?46.7?8.1
CO2089.7±16.9489.729.80
Frass0194.8±21.37194.864.70
Total recovery94.5
Tab.1  Carbon balance analysis during the ingestion of WRPU by mealworms (mean±SD; n=3)
Fig.6  Conversion of carbon from the ingested WRPU and biomass to residues in frass and CO2 at 0, 5, 10, 15 and 20 incubation times and reduction rate of carbon in biomass.
Fig.7  Change in the mealworms weight for the unfed, bran-fed and WRPU-fed conditions after 30 d.
Fig.8  Microbial community composition of gut microbiome in WRPU-fed, bran-fed and unfed mealworms: (a) Shannon index; (b) principal coordinate analysis (PCoA); (c) relative abundance of predominant microbe at the family levels.
1 J O Akindoyo , M D H Beg , S Ghazali , M R Islam , N Jeyaratnam , A R Yuvaraj . (2016). Polyurethane types, synthesis and applications: a review. RSC Advances, 6(115): 114453–114482
https://doi.org/10.1039/C6RA14525F
2 N Badola , A Bahuguna , Y Sasson , J S Chauhan . (2022). Microplastics removal strategies: a step toward finding the solution. Frontiers of Environmental Science & Engineering, 16(1): 7
3 R Beran , L Zarybnicka , D Machova . (2020). Recycling of rigid polyurethane foam: Micro-milled powder used as active filler in polyurethane adhesives. Journal of Applied Polymer Science, 137(1): e49095
https://doi.org/10.1002/app.49095
4 A M Brandon , S H Gao , R M Tian , D L Ning , S S Yang , J Z Zhou , W M Wu , C S Criddle . (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52(11): 6526–6533
https://doi.org/10.1021/acs.est.8b02301
5 P Bulak , K Proc , A Pytlak , A Puszka , B Gawdzik , A Bieganowski . (2021). Biodegradation of different types of plastics by Tenebrio molitor insect. Polymers, 13(20): 3508
https://doi.org/10.3390/polym13203508
6 A Caravelli , L Giannuzzi , N Zaritzky . (2004). Effect of chlorine on filamentous microorganisms present in activated sludge as evaluated by respirometry and INT-dehydrogenase activity. Water Research, 38(9): 2395–2405
https://doi.org/10.1016/j.watres.2004.01.044
7 M A Charitopoulou , K G Kalogiannis , A A Lappas , D S Achilias . (2021). Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environmental Science and Pollution Research International, 28(42): 59190–59213
https://doi.org/10.1007/s11356-020-09932-5
8 A G Dement’ev , T K Khlystalova , A I Demina , P A Zinger . (1991). Structural-physical properties of foam polyurethanes with various foaming agents. Polymer Science USSR, 33(10): 2125–2134
https://doi.org/10.1016/0032-3950(91)90115-7
9 R Demets, M Roosen, L Vandermeersch, K Ragaert, C Walgraeve, S De Meester (2020). Development and application of an analytical method to quantify odour removal in plastic waste recycling processes. Resources, Conservation& Recycling, 161: 104907
https://doi.org/10.1016/j.resconrec.2020.104907
10 H Fesseha , F Abebe . (2019). Degradation of plastic materials using microorganisms: a review. Public Health – Open Journal, 4(2): 57–63
11 W Gong , Y Xing , L Han , A Lu , H Qu , L Xu . (2022). Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China. Frontiers of Environmental Science & Engineering, 16(9): 113
12 B Guo , J Yin , W Hao , M Jiao . (2019). Polyurethane foam induces epigenetic modification of mitochondrial DNA during different metamorphic stages of Tenebrio molitor. Ecotoxicology and Environmental Safety, 183: 109461
https://doi.org/10.1016/j.ecoenv.2019.109461
13 J J Kang , J S Lee , W S Yang , S W Park , M T Alam , S K Back , H S Choi , Y C Seo , Y S Yun , J H Gu , A Saravanakumar , K V Kumar . (2016). A study on environmental assessment of residue from gasification of polyurethane waste in E-Waste recycling process. Procedia Environmental Sciences, 35: 639–642
https://doi.org/10.1016/j.proenv.2016.07.056
14 M J Kay , L H G Morton , E L Prince . (1991). Bacterial degradation of polyester polyurethane. International Biodeterioration, 27(2): 205–222
https://doi.org/10.1016/0265-3036(91)90012-G
15 S Khan , S Nadir , Y Dong , D A Schaefer , P E Mortimer , H Gui , A Khan , M Yu , S Iqbal , J Sheng , J Xu . (2020). Biodegradation of polyester polyurethane by Aspergillus flavus G10. BioRxiv, 2020: 170654
https://doi.org/10.1101/2020.06.25.170654
16 S Khan , S Nadir , Z U Shah , A A Shah , S C Karunarathna , J Xu , A Khan , S Munir , F Hasan . (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225: 469–480
https://doi.org/10.1016/j.envpol.2017.03.012
17 H R Kim , H M Lee , H C Yu , E Jeon , S Lee , J Li , D H Kim . (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environmental Science & Technology, 54(11): 6987–6996
https://doi.org/10.1021/acs.est.0c01495
18 C A Kwadha , J M Mutunga , J Irungu , G Ongamo , P Ndegwa , S Raina , A T Fombong . (2019). Decanal as a major component of larval aggregation pheromone of the greater wax moth, Galleria mellonella. Journal of Applied Entomology, 143(4): 417–429
https://doi.org/10.1111/jen.12617
19 Q Li , J Wang , L Chen , H Shi , J Hao . (2019). Ammonium polyphosphate modified with β-cyclodextrin crosslinking rigid polyurethane foam: enhancing thermal stability and suppressing flame spread. Polymer Degradation & Stability, 161: 166–174
https://doi.org/10.1016/j.polymdegradstab.2019.01.024
20 X Li , M Li , Q Mei , S Niu , X Wang , H Xu , B Dong , X Dai , J L Zhou . (2021). Aging microplastics in wastewater pipeline networks and treatment processes: physicochemical characteristics and Cd adsorption. Science of the Total Environment, 797: 148940
https://doi.org/10.1016/j.scitotenv.2021.148940
21 J Liu , J He , R Xue , B Xu , X Qian , F Xin , L M Blank , J Zhou , R Wei , W Dong , M Jiang . (2021). Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects. Biotechnology Advances, 48: 107730
https://doi.org/10.1016/j.biotechadv.2021.107730
22 P Liu , X Zhan , X Wu , J Li , H Wang , S Gao . (2020). Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere, 242: 125193
https://doi.org/10.1016/j.chemosphere.2019.125193
23 Y Lou , P Ekaterina , S S Yang , B Lu , B Liu , N Ren , P F X Corvini , D Xing . (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of Co-diet supplementation on the core gut microbiome. Environmental Science & Technology, 54(5): 2821–2831
https://doi.org/10.1021/acs.est.9b07044
24 L Luo , Y Wang , H Guo , Y Yang , N Qi , X Zhao , S Gao , A Zhou . (2021). Biodegradation of foam plastics by zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere, 282: 131006
https://doi.org/10.1016/j.chemosphere.2021.131006
25 A Magnin , L Hoornaert , E Pollet , S Laurichesse , V Phalip , L Averous . (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology, 12(3): 544–555
https://doi.org/10.1111/1751-7915.13346
26 A Magnin , E Pollet , V Phalip , L Averous . (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39: 107457
https://doi.org/10.1016/j.biotechadv.2019.107457
27 J Maitra , V K Shukla . (2014). Cross-linking in hydrogels: a review. American Journal of Political Science, 4(2): 25–31
28 National Bureau of Statistics of China (2009). China Statistical Yearbook. Output of Industrial Products. 2009. Beijing: China Statistics Press (in Chinese)
29 National Bureau of Statistics of China (2021). China Statistical Yearbook. Output of Industrial Products. 2021. Beijing: China Statistics Press (in Chinese)
30 V Nowak , D Persijn , D Rittenschober , U R Charrondiere . (2016). Review of food composition data for edible insects. Food Chemistry, 193: 39–46
https://doi.org/10.1016/j.foodchem.2014.10.114
31 S Oprea . (2010). Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polymer Degradation & Stability, 95(12): 2396–2404
https://doi.org/10.1016/j.polymdegradstab.2010.08.013
32 S Oprea , V O Potolinca , P Gradinariu , V Oprea . (2018). Biodegradation of pyridine-based polyether polyurethanes by the Alternaria tenuissima fungus. Journal of Applied Polymer Science, 135(14): 46096
https://doi.org/10.1002/app.46096
33 S S Panda , B P Panda , S K Nayak , S Mohanty . (2018). A review on waterborne thermosetting polyurethane coatings based on castor oil: synthesis, characterization, and application. Polymer-Plastics Technology and Engineering, 57(6): 500–522
https://doi.org/10.1080/03602559.2016.1275681
34 J Park , I Jung , K Lee , M Kim , J Hwang , W Choi . (2018). Case study in Korea of manufacturing SRF for polyurethanes recycling in e-wastes. Journal of Material Cycles and Waste Management, 20(4): 1950–1960
https://doi.org/10.1007/s10163-018-0718-5
35 E Pellizzi , A Lattuati-Derieux , B Lavédrine , H Cheradame . (2014). Degradation of polyurethane ester foam artifacts: chemical properties, mechanical properties and comparison between accelerated and natural degradation. Polymer Degradation & Stability, 107: 255–261
https://doi.org/10.1016/j.polymdegradstab.2013.12.018
36 B Y Peng , Z Chen , J Chen , H Yu , X Zhou , C S Criddle , W M Wu , Y Zhang . (2020). Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 145: 106106
https://doi.org/10.1016/j.envint.2020.106106
37 B Y Peng , Z Chen , J Chen , X Zhou , W M Wu , Y Zhang . (2021). Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. Journal of Hazardous Materials, 416: 125803
https://doi.org/10.1016/j.jhazmat.2021.125803
38 B Y Peng , Y Su , Z Chen , J Chen , X Zhou , M E Benbow , C S Criddle , W M Wu , Y Zhang . (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9): 5256–5265
https://doi.org/10.1021/acs.est.8b06963
39 Y H Peng , Y H Shih , Y C Lai , Y Z Liu , Y T Liu , N C Lin . (2014). Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environmental Science and Pollution Research International, 21(16): 9529–9537
https://doi.org/10.1007/s11356-014-2647-8
40 N Shilpa , S S Basak . (2022). Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16(12): 161
41 Q Sun , J Li , C Wang , A Chen , Y You , S Yang , H Liu , G Jiang , Y Wu , Y Li . (2022). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1): 1
42 T Tantisattayakul , P Kanchanapiya , P Methacanon . (2018). Comparative waste management options for rigid polyurethane foam waste in Thailand. Journal of Cleaner Production, 196: 1576–1586
https://doi.org/10.1016/j.jclepro.2018.06.166
43 O Terakado , H Yanase , M Hirasawa . (2014). Pyrolysis treatment of waste polyurethane foam in the presence of metallic compounds. Journal of Analytical and Applied Pyrolysis, 108: 130–135
https://doi.org/10.1016/j.jaap.2014.05.008
44 Q Wu , H Tao , M H Wong . (2019). Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health, 41(1): 17–26
https://doi.org/10.1007/s10653-018-0161-5
45 L Yang , J Gao , Y Liu , G Zhuang , X Peng , W M Wu , X Zhuang . (2021a). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262: 127818
https://doi.org/10.1016/j.chemosphere.2020.127818
46 S S Yang , A M Brandon , J C Andrew Flanagan , J Yang , D Ning , S Y Cai , H Q Fan , Z Y Wang , J Ren , E Benbow , N Q Ren , R M Waymouth , J Zhou , C S Criddle , W M Wu . (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191: 979–989
https://doi.org/10.1016/j.chemosphere.2017.10.117
47 S S Yang , Y D Chen , J H Kang , T R Xie , L He , D F Xing , N Q Ren , S H Ho , W M Wu . (2019a). Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. Journal of Cleaner Production, 227: 33–47
https://doi.org/10.1016/j.jclepro.2019.04.005
48 S S Yang , M Q Ding , L He , C H Zhang , Q X Li , D F Xing , G L Cao , L Zhao , J Ding , N Q Ren , W M Wu . (2021b). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of the Total Environment, 756: 144087
https://doi.org/10.1016/j.scitotenv.2020.144087
49 S S Yang , M Q Ding , Z R Zhang , J Ding , S W Bai , G L Cao , L Zhao , J W Pang , D F Xing , N Q Ren , W M Wu . (2021c). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789: 147915
https://doi.org/10.1016/j.scitotenv.2021.147915
50 S S Yang, W M Wu (2020). Microplastics in terrestrial environments - emerging contaminants and major challenges. In: He D F, Luo Y M, eds. Control approaches for microplastics in terrestrial environments. Part V. Biodegradation of Plastics in Tenebrio Genus (mealworms). Cham: Springer Nature Switzerland AG, 385–422
51 W Yang , Q Dong , S Liu , H Xie , L Liu , J Li . (2012). Recycling and disposal methods for polyurethane foam wastes. Procedia Environmental Sciences, 16: 167–175
https://doi.org/10.1016/j.proenv.2012.10.023
52 X Yang , Z Song , S Zhou , H Guo , B Geng , X Peng , G Zhao , Y Xie . (2019b). Insights into functional microbial succession during nitrogen transformation in an ectopic fermentation system. Bioresource Technology, 284: 266–275
https://doi.org/10.1016/j.biortech.2019.03.135
53 Y Yang , J Yang , W M Wu , J Zhao , Y Song , L Gao , R Yang , L Jiang . (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20): 12080–12086
https://doi.org/10.1021/acs.est.5b02661
54 Y Yang , J Yang , W M Wu , J Zhao , Y Song , L Gao , R Yang , L Jiang . (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20): 12087–12093
https://doi.org/10.1021/acs.est.5b02663
55 B Yazici, Z S Can, B Calli (2014). Prediction of future disposal of end-of-life refrigerators containing CFC-11. Waste Management (New York, N.Y.), 34(1): 162–166
https://doi.org/10.1016/j.wasman.2013.09.008
56 Y Yuan , C Ma , Y Shi , L Song , Y Hu , W Hu . (2018). Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Materials Chemistry and Physics, 211: 42–53
https://doi.org/10.1016/j.matchemphys.2018.02.007
57 J Zhang , D Gao , Q Li , Y Zhao , L Li , H Lin , Q Bi , Y Zhao . (2020a). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704: 135931
https://doi.org/10.1016/j.scitotenv.2019.135931
58 M Zhang , Z Luo , J Zhang , S Chen , Y Zhou . (2015). Effects of a novel phosphorus-nitrogen flame retardant on rosin-based rigid polyurethane foams. Polymer Degradation & Stability, 120: 427–434
https://doi.org/10.1016/j.polymdegradstab.2015.08.001
59 Y Zhang , F Li , N Peng , L Peng . (2020b). Environmental impact assessment of air-permeable plastic runway production in China. Science of the Total Environment, 730: 139073
https://doi.org/10.1016/j.scitotenv.2020.139073
60 X Zhao, H Duan, J Li (2011). An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China. Waste Management (New York, N.Y.), 31(3): 555–560
https://doi.org/10.1016/j.wasman.2010.10.018
61 P Zhu , X Pan , X Li , X Liu , Q Liu , J Zhou , X Dai , G Qian . (2021). Biodegradation of plastics from waste electrical and electronic equipment by greater wax moth larvae (Galleria mellonella). Journal of Cleaner Production, 310: 127346
https://doi.org/10.1016/j.jclepro.2021.127346
62 P Zhu , Y Shen , X Li , X Liu , G Qian , J Zhou . (2022). Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Science of the Total Environment, 807: 151037
https://doi.org/10.1016/j.scitotenv.2021.151037
[1] FSE-22079-OF-ZP_suppl_1 Download
[1] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[2] Yi Xiong, Boya Wang, Chao Zhou, Huan Chen, Gang Chen, Youneng Tang. Determination of growth kinetics of microorganisms linked with 1,4-dioxane degradation in a consortium based on two improved methods[J]. Front. Environ. Sci. Eng., 2022, 16(5): 62-.
[3] Shilpa, Nitai Basak, Sumer Singh Meena. Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective[J]. Front. Environ. Sci. Eng., 2022, 16(12): 161-.
[4] Yifan Liu, Qiongfang Zhang, Ainiwaer Sidike, Nuerla Ailijiang, Anwar Mamat, Guangxiao Zhang, Miao Pu, Wenhu Cheng, Zhengtao Pang. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure[J]. Front. Environ. Sci. Eng., 2022, 16(11): 141-.
[5] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[6] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[7] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[8] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[9] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[10] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[11] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[12] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[13] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[14] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[15] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed