Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 161    https://doi.org/10.1007/s11783-022-1596-6
REVIEW ARTICLE
Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective
Shilpa, Nitai Basak, Sumer Singh Meena()
Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab 144027, India
 Download: PDF(7561 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Health hazards of plastic waste on environment are discussed.

● Microbial species involved in biodegradation of plastics are being reviewed.

● Enzymatic biodegradation mechanism of plastics is outlined.

● Analytical techniques to evaluate the plastic biodegradation are presented.

The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the pre-existing traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.

Keywords Plastic-waste      Polymers      Health-hazards      Biodegradation      Microorganisms      Enzymes     
Corresponding Author(s): Sumer Singh Meena   
Issue Date: 19 July 2022
 Cite this article:   
Shilpa,Nitai Basak,Sumer Singh Meena. Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective[J]. Front. Environ. Sci. Eng., 2022, 16(12): 161.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1596-6
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/161
Plastics Chemical formula Properties Applications References
PET(Polyethylene terephthalate) (C10H8O4)n • Thermoplastics• Resistance to aging• Barrier properties against gas and moisture• Lightweight Used as an electronic component, as fibres in clothes, and in manufacturing drinking water bottles Hui, 2006; Jankauskaite et al., 2008
PE, HDPE (High-density polyethylene), LDPE (Low-density polyethylene) (C2H4)n • Thermoplastics• Good weathering resistance• Water repellent Used as polyethylene bags,Milk carton bag lining Hart et al., 2011
PVC (Polyvinyl chloride) (C2H3Cl)n • Thermoplastic• Fire retarding properties• Resistance against acids, alkali, and inorganic chemicals• Easily bendable with other plastics Used in the health care sector, automobiles, building constructions, and electronics Davis et al., 1983; Titow, 2012; Chanda, 2017
PP (Polypropylene) (C3H6)n • Thermoplastic• High stiffness and low density• Heat resistance and transparency Used in making syringes, Petri plates, and disposable cups and plates Barbeş et al., 2014; Rocha-Santos and Duarte, 2015
PS (Polystyrene) (C8H8)n • Thermoplastic• Impact resistance and toughness• Poor barrier against water and oxygen• Crystal-like appearance if unfilled Used in thermal insulations, plastic cutlery, license plate frames, and plastic model assembly kits. Lithner et al., 2011; Rochman et al., 2013
Tab.1  Commercially available plastics and their applications
Fig.1  Different modes of plastic waste degradation: 1) Physical degradation i.e. thermal oxidation and mechanical methods; 2) Chemical degradation i.e., hydrolysis, pyrolysis, and oxidation; 3) Photo-degradation i.e., weathering and UV radiation by the sunlight; 4) Microbial degradation i.e., enzymatic degradation, biochemical transformations, and assimilation.
Polymer targeted Media Microbe isolated Sample source Analytical technique(s) % degradation and incubation time References
LDPE Minimal salt medium Enterobacter and Pseudomonas Plastic dumping landfill, Karnataka, India Hydrophobicity analysis, SEM, FTIR, and AFM Observed 12.5%, 15%, 15%, 10%, 10% and 15% weight loss of LDPE post 150 d incubation by Enterobacter and Pseudomonas isolates Skariyachan et al., 2021
LDPE beads and LDPE films Minimal salt medium Stenotrophomonas sp. and Achromobacter sp. Plastic waste dumpsite near IIT Kharagpur campus and drilling fluid site in Maharashtra, India Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and Fourier Transform Infrared Spectroscopy Observed 8% weight reduction of LDPE beads in 100 d Dey et al., 2020
LDPE, HDPE, and PVC Bushnell–Haas minimal medium Bacillus spp. Water samples from a plastic polluted coastal area SEM, AFM, and FTIR analysis Observed 0.2%, 0.9%, and 1% weight loss after 90 d for PVC, LDPE, and HDPE films respectively Kumari et al., 2019
HDPE and LDPE Synthetic media (SM) 248 bacterial isolates dominantly from Bacillus spp. and Pseudomonas spp. Plastic waste dumped sites FTIR analysis Observed a high percentage of weight loss among 25 isolates from different districts after 30 d of incubation Sangeetha Devi et al., 2019
LDPE Artificial modified media Pseudomonas, Bacillus, Brevibacillus, Cellulosimicrobium, Lysinibacillus and fungi Aspergillus Dumpsite samples FTIR and GC-MS Observed the mean weight reduction of 36.4% in Aspergillus oryzae strain A5 and 20.2% reduction in case of Bacillus cereus strain A5 culture in the incubation period of 8, 12, and 16 weeks Ndahebwa Muhonja et al., 2018
LDPE, HDPE and PP Minimal media Consortia of thermophilic Aneurinibacillus spp. and Brevibacillus spp. Highest plastic polluted eight spots across different districts of Karnataka, India FTIR, EDS, AFM, NMR, and GC-MS Observed the highest percentage weight reduction of 58.2%, 46.6%, and 56.3% for LDPE, HDPE, and PP, respectively, after 140 d Skariyachan et al., 2018
LDPE Minimal media broth Consortia of bacteria having gram-negative bacilli Proteus sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp. Plastic processing garbage area soil samples Weight loss determination LDPE pellets and strips, FTIR, SEM, and GC-FID analysis 81% and 38% of weight reduction in LDPE strips and pellets for 120 d Skariyachan et al., 2016
LDPE Minimal Salts medium Pseudomonas sp., Sphingobacterium sp., Stenotrophomonas sp., Ochrobactrum sp., Citrobacter amalonaticus, Micrococcus luteus, and Acinetobacter pittii Landfill soil FTIR, SEM, and gravimetric weight loss analysis 26.8% gravimetric weight loss of polyethylene films over 4 weeks Montazer et al., 2018
LDPE and corn starch Czapek-Dox agar Nutrient and potato agar Bacillus, Clostridium, Micrococcus,Aspergillus, Penicillium, and Mucor Soil burial at 5 cm or 15–30 cm depth Electret-thermal analysis (ETA) and Thermally stimulated currents (TSC) spectra 10%–15% of degradation after 1.5 months Pinchuk et al., 2004
Food packaging grade virgin LDPE film Malt Extract Agar Chaetomium globosum, Corynascussepedonium, Trichoderma longibrachiatum, Fusarium sp., Paecilomyces variotii, and Aspergillus niger Horse manure, fresh grass waste, partially rotted plants material, and straw SEM, FTIR, and tensiometry analysis Microbial colonization at 30 °C for 2 weeks and 28 d in corona discharge treatment Matsunaga and Whitney, 2000
LDPE Basal mineral solution Phanerochaete chrysosporium Soil sample FTIR analysis 56% reduction in elongation in the inoculated sample while 12% in uninoculated soil for 6 months Orhan and Büyükgüngör, 2000
LDPE Mineral salt medium Xylaria sp. Fungal garden of termite ecosystem Zone of clearance analysis Heat treatment for 20 d, UV treatment for 1 to 2 h, and chemical treatment for 10 d. Agar plates were incubated for 2–4 weeks Thilagavathi et al., 2018
1) Nano additives containing plastic bags, 2) Oxo-biodegradable plastic bags, 3) LLDPE and HDPE, 4) Plastic bags with additives Medium containing Peptone, Glucose, Sodium chloride, and Meat extract Bacillus sp. Compost agricultural residue Weight loss, structure, surface morphology, FTIR, and tensile strength analysis Observed 60.7%, 11%, and 4.4% of weight loss in three different types of plastics within 30 d Dang et al., 2018
PE microplastics Basal medium Paenibacillus sp. and Bacillus sp. Municipal landfill sediment GC-MS, dry weight, TGA, and SEM analysis Observed 14.7% dry weight reduction in PE and 22.4% mean diameter reduction after 60 d Park and Kim, 2019
PE mulch film Czapek Dox medium and liquid carbon-free basal medium Arthrobacter sp. and Streptomyces sp. Soil plastic from Gansu province, China CO2 evolution, FTIR Observed decreased hydrophobicity, and increased carbonyl index in 90 d incubation time Han et al., 2020
PE Marine broth, Nutrient Broth, Czapek-Dox Broth, and R2A Broth Comamonas, Delftia, and Stenotrophomonas Soil sample from plastic debris site ATR/FTIR, AFM, SEM, and Raman spectroscopy Crystalline content loss was confirmed by Raman spectroscopy, while a 46.7% decrease in viscose area revealed by phase imaging Peixoto et al., 2017
PE Nutrient medium, Mineral Salt Medium Bacillus subtilis Gravimetric, weight loss, and FTIR analysis Observed 9.2% weight loss in 30 d Vimala and Mathew, 2016
PE Nutrient broth containing Cow dung (500 g) + paper cup waste (500 g) + microbial consortium Microbial consortia such as different Bacillus spp. and Acinetobacter baumannii Waste like plastic paper cups FTIR, X-ray diffraction, and SEM analysis Observed 52.9%–33.1% reduction in total organic matter (TOM) after 90 d of incubation Arumugam et al., 2018
PE Minimal media containing potassium and ammonium salts Pseudomonas sp., Staphylococcus sp.,and Bacillus sp. Soil samples Determination of weight Loss 42.5%, 20%, and 5% of weight loss by Staphylococcus sp. (P1A), Pseudomonas sp. (P1B), and by a consortium (PID) in 40 d. Singh et al., 2016
PE Mineral Salt medium Bacillus cereus Local dumpsite SEM and FTIR spectroscopy analysis Observed 7.2% weight loss of autoclaved polyethylene in 3 months Sowmya, 2014
PE bag and plastic cup Mineral salt agar plates Streptomyces sp., Bacillus sp. Garbage soil Determination of weight Loss 28.4% of plastics and 37% of polythene degraded Usha et al., 2011
PE Nutrient broth medium Pseudomonas sp. 1)Domestic waste disposal site 2) Soil from textile effluents drainage site; and 3) Soil dumped with sewage sludge Dry weight estimation 46.2% and 29.1% weight reduction in natural and synthetic polyethylene, respectively, in 8 weeks Nanda et al., 2010
PE Minimal media and soil mulching Rhodococcus ruber Soil samples from 15 plastic dumping sites SEM and FTIR analysis Observed 8% degradation (gravimetrically) in polyolefin in 30 d Orr et al., 2004
PE Nitrogen-free mineral salts, malt extract, and yeast extract Streptomyces strain, Mucorrouxii, and Aspergillus flavus Tensile strength, percent elongation, and FTIR Spectrometry Observed 28.5% and 46.5% reduction elongation by Streptomyces and fungal culture El-Shafei et al., 1998
PE Bold’s Basal Medium and Diatom medium Diatom medium, Anabaena spiroides, and Navicula pupula Photosynthetic microalgae samples from freshwater bodies like pools, ponds, and ditches Scanning electron microscopic (SEM) analysis An average of 3.7%, 8.1%, and 4.4% degradation was reported byScenedesmus dimorphus, Anabaena spiroides, and Diatom, respectively Kumar et al., 2017
PET Mineral medium Streptomyces sp. GC-MS analysis 49.2%, 57.4%, 62.4%, and 68.8% reduction in weight of 500, 420, 300 and 212 µm size PET particles, respectively, after 18 d Farzi et al., 2019
PET Minimal salt medium Acinetobacter baumannii Soil and plastic waste sample Percentage weight loss, FTIR, and SEM analysis Observed 27.3% weight reduction in 90 d of incubation time Hussein et al., 2018
PET Yeast extract, sodium carbonate, and Vitamins medium Ideonella sakaiensis PET contaminated dumpsites SEM analysis 75% degradation of PET films Yoshida et al., 2016
PET Yeast extract sodium carbonate vitamins (YSV) Ideonella sakaiensis PET-bottle recycling site in Tanasupawat et al., 2016
Poly (butylene adipate- co -terephthalate) (PBAT) Murashige and Skoog medium Stenotrophomonas sp. Soil sample from apple farms in Yanxia Town, Shaanxi Province, China LC-MS, NMR, XRD, ATR-FTIR, and SEM Observed stretching vibrations at 2964 cm−1 and 2871 cm−1, respectively, and the C = O stretching vibration was found at 1715 cm−1 Jia et al., 2021
Polybutylene succinate-co-adipate (PBSA) , Poly-(butylene succinate) (PBS) , Polylactic acid (PLA), and PCL Basal medium Actinomadura, Streptomyces, and Laceyella Compost soil Morphological, physiological, and chemotaxonomic analysis Observed 1% (w/v) PBS (19.4 U/mL), 0.5% (w/v) PLA (22.3 U/mL), 1% (w/v) PCL (18 U/mL), and0.5% (w/v) PBSA (6.3 U/mL) polyester degrading activity Sriyapai et al., 2018
Poly (L-Lactide) Basal liquid medium Actinomycetes strain Soil samples Clear zone method PLA-degrading activity at 22 U/mL, while 15 and 10 U/mL of activity by other strains Sukhumaporn et al., 2011
Poly (L-Lactide) PLA agar plates and Basal medium Actinomadura sp. andBacilli sp. Soil surface layer samples Clear zone method 22 U/mL highest PLA-degrading activity by Actinomycetes strain Sukkhum et al., 2009
PCL and PVC films Agar into nutrient-salt solution Chaetomium globosum, Penicillium funiculosum, Aspergillus brasiliensis, Paecilomyces variotii , and Trichoderma virens Colour and morphological changes, mass loss, SEM and optical microscopy (OM) Observed the mass loss of up to 75% after 28 d of incubation Vivi et al., 2019
PVC Anaerobic specific medium containing sodium chloride Anaerobic consortia, i.e., acidogenic/methanogenic, nitrate-reducing, and sulfate-reducing microorganisms. Marine samples from Elefsis Bay, Greece Thermogravimetric analysis (TGA), Gel permeation chromatography (GPC) Observed gravimetric weight losses up to 11.7% Giacomucci et al., 2020
PUR (a)SDA agar plate (b)LiquidMinimal salt medium (c) Soil burial Aspergillus tubingensis Waste disposal site, Islamabad, Pakistan SEM, Attenuated total reflectance Fourier transform Infrared spectroscopic (ATR-FTIR) analysis Observed higher PU degradation in plate culture than in liquid culture and soil burial technique Khan et al., 2017
PUR Lysogeny broth-Miller (LB) or minimal medium Pseudomonas protegens NMR spectroscopy Hung et al., 2016
Tab.2  Plastic degrading microbial strains with their optimization conditions
Fig.2  The diversity analysis of plastic degrading microbial strain was studied through phylogenetic tree construction. The tree was generated using the neighbour-joining method. The nodes are supported with their appropriate bootstrap values.
Fig.3  Enzymes associated with PET degradation are cutinase, glycolaldehyde reductase, glycolaldehyde dehydrogenase, glycolate oxidase, and malate synthase. Breakdown of PET by cutinase enzyme results in two monomeric units: ethylene glycol and terephthalic acid, further ethylene glycol monomer is reduced to glycolaldehyde, which gets dehydrogenased by glycolaldehyde dehydrogenase enzyme to glycolate, further glycolate is oxidized to glyoxalate, finally malate synthase act on glyoxalate and convert it to malate, which is further utilized by microbes for their growth.
Plastics Enzyme Microorganism Polymer target References
Polyethylene (LDPE, HDPE, PE) Laccase-like multicopper oxidases Aspergillus flavus PE Zhang et al., 2020
Laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP) Pleurotus ostreatus LDPE Gómez-Méndez et al., 2018
Laccase and manganese peroxidase enzyme Penicillium simplicissimum PE Sowmya et al., 2015
Alkane hydrolase, rubredoxin, and rubredoxin reductase Pseudomonas aeruginosa LDPE Jeon and Kim, 2015
Alkane hydrolase Pseudomonas sp. PE Yoon et al., 2012
Laccase and manganese peroxidase enzyme Bacillus cereus PE Sowmya, 2014
Laccases Rhodococcus ruber PE Santo et al., 2013
PET PETase Microalga Phaeodactylum tricornutum PET Moog et al., 2019
PETase (IsPETase) Ideonella sakaiensis PET Joo et al., 2018
Hydrolase Thermobifida fusca PET Müller et al., 2005
Polyurethanes Cutinases, lipases, proteases, and ureases Aspergillus niger, Chaetomium globosum Polyurethanes Magnin et al., 2020
Polymerases Bacillus and Pseudomonas sp. Polystyrene Mohan et al., 2016
Cysteine hydrolase Pestalotiopsis microspore Polyurethane Russell et al., 2011
Other Polymers Carboxylic ester hydrolase Pseudomonas aestusnigri Polyester Bollinger et al., 2020
PLA depolymerase Amycolatopsis spp. PLA Nakamura et al., 2001
PETase-like gene (SM14est) Streptomyces sp. Polycaprolactone Almeida et al., 2019
Tab.3  Enzymes involved in plastic degradation
Variation in the properties of plastics Techniques used Function References
Morphological changes and surface changes SEM, AFM SEM reveals the presence of cracks, cavities, and erosion.AFM estimates the roughness of material at low magnifications Harrison et al., 2018; de Santana et al., 2019
Molecular weight HT-GPC Detection of changes in molecular weight of plastics Yabannavar and Bartha, 1994; Suresh et al., 2011; Jeon and Kim, 2016
Contact angle, density, and viscosity Software-controlled hanging drop method. Detect changes that occur in the surface density of the functional group and surface energy Suresh et al., 2011
Crystallinity changes X-ray diffraction (XRD) and differential scanning calorimetry (DSC) Detect crystallinity changes in the plastic material Capitain et al., 2020
Tensile Strength & Modulus of polymer Dynamic Mechanical analysis Detect changes in the tensile strength and percentage elongation of polymer Huang et al., 2005
Chemical properties FTIR Detection of certain polar functional groups, like ester carbonyls and ketones, to quantify oxidative degradation pathway Celina et al., 1997; Ioakeimidis et al., 2016
CO2 evolution test Traditional trapping, titration methods, and sturm test Used as an indication to prove that biological degradation is happening Alshehrei, 2017; Castro-Aguirre et al., 2017
Electrical properties pH changes Used to detect the degradation based on biomass growth on plastics Krueger et al., 2015
Colour alteration Visualization test and colorimetric test Detect the biochemical alteration and changes in the colour of plastics Ali et al., 2014; Pastorelli et al., 2014
Metabolites formation Gas Chromatography-Mass Spectrometry (GC-MS ) Detection of bio-fragments and the presence of saturated linear alkanes in the culture media Kyaw et al., 2012
Weight of polymer Gravimetric weight loss Detection of percentage weight loss of polymer Skariyachan et al., 2016
Tab.4  Existing analytical techniques for the assessment of plastic biodegradation
1 J Abraham, E Ghosh, P Mukherjee, A Gajendiran. (2017). Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy, 36( 1): 147– 154
https://doi.org/10.1002/ep.12467
2 E H Acero, D Ribitsch, G Steinkellner, K Gruber, K Greimel, I Eiteljoerg, E Trotscha, R Wei, W Zimmermann, M Zinn, A Cavaco-Paulo, G Freddi, O H Schwab, G Guebitz. (2011). Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecular Rapid Communications, 44 : 4632– 4640
3 T Ahmed, M Shahid, F Azeem, I Rasul, A A Shah, M Noman, A Hameed, N Manzoor, I Manzoor, S Muhammad. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research International, 25( 8): 7287– 7298
https://doi.org/10.1007/s11356-018-1234-9
4 S M Al-Salem, A Al-Hazza’a, H J Karam, M H Al-Wadi, A T Al-Dhafeeri, A A Al-Rowaih. (2019). Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. Journal of Environmental Management, 250 : 109475
https://doi.org/10.1016/j.jenvman.2019.109475
5 M I Ali, S Ahmed, I Javed, N Ali, N Atiq, A Hameed, G Robson. (2014). Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1. International Journal of Environmental Science and Technology, 11( 2): 339– 348
https://doi.org/10.1007/s13762-013-0220-5
6 C G Alimba, C Faggio. (2019). Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology, 68 : 61– 74
https://doi.org/10.1016/j.etap.2019.03.001
7 E L Almeida, Rincón A F Carrillo, S A Jackson, A D W Dobson. (2019). In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Frontiers in Microbiology, 10( 2019): 2187
https://doi.org/10.3389/fmicb.2019.02187
8 F Alshehrei. (2017). Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology, 5( 1): 8– 19
9 A Amobonye, P Bhagwat, S Singh, S Pillai. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 759 : 143536
https://doi.org/10.1016/j.scitotenv.2020.143536
10 A L Andrady, M A Neal. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1526): 1977– 1984
https://doi.org/10.1098/rstb.2008.0304
11 T V Antipova, V P Zhelifonova, K V Zaitsev, P M Nedorezova, A M Aladyshev, A N Klyamkina, S V Kostyuk, A A Danilogorskaya, A G Kozlovsky. (2018). Biodegradation of poly-ε-caprolactones and poly-l-lactides by fungi. Journal of Polymers and the Environment, 26( 12): 4350– 4359
https://doi.org/10.1007/s10924-018-1307-3
12 K Arumugam, S Renganathan, O O Babalola, V Muthunarayanan. (2018). Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Management, 74 : 185– 193
https://doi.org/10.1016/j.wasman.2017.11.009
13 H P Austin, M D Allen, B S Donohoe, N A Rorrer, F L Kearns, R L Silveira, B C Pollard, G Dominick, R Duman, K El Omari, V Mykhaylyk, A Wagner, W E Michener, A Amore, M S Skaf, M F Crowley, A W Thorne, C W Johnson, H L Woodcock, J E McGeehan, G T Beckham. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, USA, 115( 19): E4350– E4357
https://doi.org/10.1073/pnas.1718804115
14 S Bahl, J Dolma, J Jyot Singh, S Sehgal. (2021). Biodegradation of plastics: A state of the art review. Materials Today: Proceedings, 39 : 31– 34
https://doi.org/10.1016/j.matpr.2020.06.096
15 S Banerjee, T K Maiti, R N Roy. (2022). Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Critical Reviews in Biotechnology, 42( 3): 384– 402
https://doi.org/10.1080/07388551.2021.1942777
16 L Barbeş, C Rădulescu, C Stihi. (2014). ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics, 66( 3): 765– 777
17 D K R Bardají, J P R Furlan, E G Stehling. (2019). Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Archives of Microbiology, 201( 5): 699– 704
https://doi.org/10.1007/s00203-019-01637-9
18 Y Belhouari B Farnum C Jenkins J Kieser De Román A López D Mccauley C Rochman R Schreiber E Schwartz H (2017) Taylor. International Coastal Cleanup 2017 Report. Washington, DC: Ocean Conservancy
19 G Bhagwat, W O’connor, I Grainge, T Palanisami. (2021). Understanding the fundamental basis for biofilm formation on plastic surfaces: Role of conditioning films. Frontiers in Microbiology, 12( 2021): 1– 10
20 H Bhardwaj, R Gupta, A Tiwari. (2013). Communities of microbial enzymes associated with biodegradation of plastics. Journal of Polymers and the Environment, 21( 2): 575– 579
https://doi.org/10.1007/s10924-012-0456-z
21 M Bhatia, A Girdhar, A Tiwari, A Nayarisseri. (2014). Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus, 3( 1): 497
https://doi.org/10.1186/2193-1801-3-497
22 A Bollinger, S Thies, E Knieps-Grünhagen, C Gertzen, S Kobus, A Höppner, M Ferrer, H Gohlke, S H J Smits, K E Jaeger. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri - structural and functional insights. Frontiers in Microbiology, 11 : 114
https://doi.org/10.3389/fmicb.2020.00114
23 P Bombelli, C J Howe, F Bertocchini. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27( 8): R292– R293
https://doi.org/10.1016/j.cub.2017.02.060
24 A M Brandon, S H Gao, R Tian, D Ning, S S Yang, J Zhou, W M Wu, C S Criddle. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52( 11): 6526– 6533
https://doi.org/10.1021/acs.est.8b02301
25 D Briassoulis. (2004). Mechanical design requirements for low tunnel biodegradable and conventional films. Biosystems Engineering, 87( 2): 209– 223
https://doi.org/10.1016/j.biosystemseng.2003.10.013
26 D Briassoulis. (2006). Mechanical behaviour of biodegradable agricultural films under real field conditions. Polymer Degradation & Stability, 91( 6): 1256– 1272
https://doi.org/10.1016/j.polymdegradstab.2005.09.016
27 J A Brydson. (1999). Plastics Materials. Oxford: Butterworth-Heinemann, Elsevier
28 T Bubpachat, N Sombatsompop, B Prapagdee. (2018). Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polymer Degradation & Stability, 152 : 75– 85
https://doi.org/10.1016/j.polymdegradstab.2018.03.023
29 C Capitain, J Ross-Jones, S Möhring, N Tippkötter. (2020). Differential scanning calorimetry for quantification of polymer biodegradability in compost. International Biodeterioration & Biodegradation, 149 : 104914
https://doi.org/10.1016/j.ibiod.2020.104914
30 B J Cassone, H C Grove, O Elebute, S M P Villanueva, C M R Lemoine. (2020). Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceedings of the Royal Society B: Biological Sciences, 287( 1922): 9– 11
31 E Castro-Aguirre, R Auras, S Selke, M Rubino, T Marsh. (2017). Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation & Stability, 137 : 251– 271
https://doi.org/10.1016/j.polymdegradstab.2017.01.017
32 M Celina, D K Ottesen, K T Gillen, R L Clough. (1997). FTIR emission spectroscopy applied to polymer degradation. Polymer Degradation & Stability, 58( 1-2): 15– 31
https://doi.org/10.1016/S0141-3910(96)00218-2
33 A Chamas, H Moon, J Zheng, Y Qiu, T Tabassum, J H Jang, M Abu-Omar, S L Scott, S Suh. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8( 9): 3494– 3511
https://doi.org/10.1021/acssuschemeng.9b06635
34 M (2017) Chanda. Plastics Technology Handbook. Boca Raton: CRC Press
35 D Chauhan, G Agrawal, S Deshmukh, S S Roy, R Priyadarshini. (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 8( 66): 37590– 37599
https://doi.org/10.1039/C8RA06448B
36 M Chaurasia. (2020). Analytical review on biodegradation of plastics. eLifePress, 1( 1): 1– 8
37 Z Chen, Y Wang, Y Cheng, X Wang, S Tong, H Yang, Z Wang. (2020). Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 709 : 136138
https://doi.org/10.1016/j.scitotenv.2019.136138
38 S Chinaglia M Tosin F Degli-Innocenti ( 2018). Biodegradation rate of biodegradable plastics at molecular level. Polymer Degradation and Stability, 147 (December 2017): 237– 244
39 V Christian, R Shrivastava, D Shukla, H A Modi, B R M Vyas. (2005). Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: Enzymology and mechanisms involved. Indian Journal of Experimental Biology, 43( 4): 301– 312
40 CIEL ( 2020). Plastic Global Law & Policy. Washington, DC: Center for International Environmental Law
41 Luz J M R da, S A Paes, D M S Bazzolli, M R Tótola, A J Demuner, M C M Kasuya. (2014). Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One, 9( 11): e107438
https://doi.org/10.1371/journal.pone.0107438
42 A Daftardar, R Shah, P Gandhi, H Garg. (2017). Use of waste plastic as a construction material. International Journal of Engineering and Applied Sciences, 4( 11): 148– 151
43 T C H Dang, D T Nguyen, H Thai, T C Nguyen, T T Hien Tran, V H Le, V H Nguyen, X B Tran, T P Thao Pham, T G Nguyen, Q T Nguyen. (2018). Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9( 1): 015014
https://doi.org/10.1088/2043-6254/aaabaf
44 A Davis D Sims D (1983) Sims. Weathering of Polymers. London: Springer Science & Business Media
45 J G B Derraik. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44( 9): 842– 852
https://doi.org/10.1016/S0025-326X(02)00220-5
46 Santana FS de, LH Gracioso, B Karolski, Passo Galluzzi Baltazar dos, MA Mendes, Nascimento CA do, EA Perpetuo. (2019). Isolation of bisphenol A-tolerating/degrading Shewanella haliotis strain MH137742 from an estuarine environment. Applied Biochemistry and Biotechnology, 189( 1): 103– 115
https://doi.org/10.1007/s12010-019-02989-0
47 A S Dey H Bose B Mohapatra P (2020) Sar. Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp . and Achromobacter sp., isolated from waste dumpsite and drilling fluid. Frontiers in Microbiology, 11: 603210
pmid: 33391224
48 L Ding, R Mao, S Ma, X Guo, L Zhu. (2020). High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Research, 174 : 115634
https://doi.org/10.1016/j.watres.2020.115634
49 H A El-Shafei, N H Abd El-Nasser, A L Kansoh, A M Ali. (1998). Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polymer Degradation & Stability, 62( 2): 361– 365
https://doi.org/10.1016/S0141-3910(98)00019-6
50 A Esmaeili, A A Pourbabaee, H A Alikhani, F Shabani, E Esmaeili. (2013). Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One, 8( 9): e71720
https://doi.org/10.1371/journal.pone.0071720
51 J P Eubeler, S Zok, M Bernhard, T P Knepper. (2009). Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. Trends in Analytical Chemistry, 28( 9): 1057– 1072
https://doi.org/10.1016/j.trac.2009.06.007
52 A Farzi, A Dehnad, A F Fotouhi. (2019). Biocatalysis and agricultural biotechnology biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology, 17( 2019): 25– 31
53 M Flieger, M Kantorová, A Prell, T Řezanka, J Votruba. (2003). Biodegradable plastics from renewable sources. Folia Microbiologica, 48( 1): 27– 44
https://doi.org/10.1007/BF02931273
54 M Forte, G Iachetta, M Tussellino, R Carotenuto, M Prisco, M De Falco, V Laforgia, S Valiante. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro, 31 : 126– 136
https://doi.org/10.1016/j.tiv.2015.11.006
55 O García-Depraect, R Lebrero, S Rodriguez-Vega, S Bordel, F Santos-Beneit, L J Martínez-Mendoza, Börner R Aragão, T Börner, R Muñoz. (2022). Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresource Technology, 344 : 126265
https://doi.org/10.1016/j.biortech.2021.126265
56 R Gautam, A S Bassi, E K Yanful. (2007). A review of biodegradation of synthetic plastic and foams. Applied Biochemistry and Biotechnology, 141( 1): 85– 108
https://doi.org/10.1007/s12010-007-9212-6
57 R Geyer, J R Jambeck, K L Law. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3( 7): e1700782
https://doi.org/10.1126/sciadv.1700782
58 S Ghatge, Y Yang, J H Ahn, H G Hur. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63( 1): 1– 14
https://doi.org/10.1186/s13765-019-0484-7
59 S Ghosh, A Qureshi, H J Purohit. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. Contaminants in Agriculture and Environment: Health Risks and Remediation, 1 : 184– 199
60 L Giacomucci, N Raddadi, M Soccio, N Lotti, F Fava. (2020). Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environmental Research, 158( 2020): 104949
https://doi.org/10.1016/j.marenvres.2020.104949
61 L Godfrey ( 2019). Waste plastic, the challenge facing developing countries—Ban it, change it, collect it? Recycling, 4( 1): 3
62 L D Gómez-Méndez, D A Moreno-Bayona, R A Poutou-Piñales, J C Salcedo-Reyes, A M Pedroza-Rodríguez, A Vargas, J M Bogoya. (2018). Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One, 13( 9): e0203786
https://doi.org/10.1371/journal.pone.0203786
63 Gooljar ( 2018). Fact Sheet: Plastics in the Ocean. Washington, DC: In Earth Day 2018
64 A Grover, A Gupta, S Chandra, A Kumari, S M P Khurana. (2015). Polythene and environment. International Journal of Environmental Sciences, 5( 6): 1091– 1105
65 C L Guern ( 2019). When the mermaids cry: the great plastic tide. Santa Barbara: Coastal Care
66 D Hadad, S Geresh, A Sivan. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98( 5): 1093– 1100
https://doi.org/10.1111/j.1365-2672.2005.02553.x
67 J N Hahladakis, C A Velis, R Weber, E Iacovidou, P Purnell. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344 : 179– 199
https://doi.org/10.1016/j.jhazmat.2017.10.014
68 Y N Han, M Wei, F Han, C Fang, D Wang, Y J Zhong, C L Guo, X Y Shi, Z K Xie, F M Li. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8( 12): 1979
https://doi.org/10.3390/microorganisms8121979
69 J P Harrison, C Boardman, K O’Callaghan, A M Delort, J Song. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science, 5( 5): 171792
https://doi.org/10.1098/rsos.171792
70 Hart H, Hadad C M, Craine L E, Hart D J (2011). Organic Chemistry: A Short Course. Boston: Cengage Learning
71 X Hu, U Thumarat, X Zhang, M Tang, F Kawai. (2010). Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Applied Microbiology and Biotechnology, 87( 2): 771– 779
https://doi.org/10.1007/s00253-010-2555-x
72 C Y Huang, M L Roan, M C Kuo, W L Lu. (2005). Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends. Polymer Degradation & Stability, 90( 1): 95– 105
https://doi.org/10.1016/j.polymdegradstab.2005.02.015
73 Lwanga E Huerta, Vega J Mendoza, Quej V Ku, J D Chi, del Cid L Sanchez, C Chi, Segura G Escalona, H Gertsen, T Salánki, der Ploeg M van. et al.. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7( 1): 1– 7
https://doi.org/10.1038/s41598-016-0028-x
74 Y H (2006) Hui. Handbook of Food Science, Technology, and Engineering. Boca Raton: CRC Press
75 C S Hung, S Zingarelli, L J Nadeau, J C Biffinger, C A Drake, A L Crouch, D E Barlow, J N Jr Russell, W J Crookes-Goodson. (2016). Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and Environmental Microbiology, 82( 20): 6080– 6090
https://doi.org/10.1128/AEM.01448-16
76 A A Hussein, M Alzuhairi, N H Aljanabi. (2018). Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. In AIP Conference Proceedings, 1968( 1): 030081
77 C Ioakeimidis, K N Fotopoulou, H K Karapanagioti, M Geraga, C Zeri, E Papathanassiou, F Galgani, G Papatheodorou. (2016). The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Scientific Reports, 6 : 23501
https://doi.org/10.1038/srep23501
78 K E Jaeger, A Steinbüchel, D Jendrossek. (1995). Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Applied and Environmental Microbiology, 61( 8): 3113– 3118
https://doi.org/10.1128/aem.61.8.3113-3118.1995
79 J R Jambeck, R Geyer, C Wilcox, T R Siegler, M Perryman, A Andrady, R Narayan, K L Law. (2015). Plastic waste inputs from land into the ocean. Science, 347( 6223): 768– 771
https://doi.org/10.1126/science.1260352
80 V Jankauskaite, G Macijauskas, R Lygaitis. (2008). Polyethylene terephthalate waste recycling and application possibilities: A review. Materials Science (Medžiagotyra), 14( 2): 119– 127
81 H J Jeon, M N Kim. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation, 103 : 141– 146
https://doi.org/10.1016/j.ibiod.2015.04.024
82 H J Jeon, M N Kim. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115 : 244– 249
https://doi.org/10.1016/j.ibiod.2016.08.025
83 J M Jeon, S J Park, T R Choi, J H Park, Y H Yang, J J Yoon. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation & Stability, 191 : 109662
https://doi.org/10.1016/j.polymdegradstab.2021.109662
84 H Jia, M Zhang, Y Weng, Y Zhao, C Li, A Kanwal. (2021). Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. Journal of Environmental Sciences-China, 103 : 50– 58
https://doi.org/10.1016/j.jes.2020.10.001
85 S Joo, I J Cho, H Seo, H F Son, H Y Sagong, T J Shin, S Y Choi, S Y Lee, K J Kim. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9 : 382
https://doi.org/10.1038/s41467-018-02881-1
86 S Khan, S Nadir, Z U Shah, A A Shah, S C Karunarathna, J Xu, A Khan, S Munir, F Hasan. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225 : 469– 480
https://doi.org/10.1016/j.envpol.2017.03.012
87 Z Khorasanizadeh. (2013). The effect of biotic and abiotic factors on degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria in soil. Dissertation for the Doctoral Degree. Hatfield: University of Hertfordshire, 262
88 A Kjeldsen, M Price, C Lilley, E Guzniczak, I Archer. (2019). A Review of Standards for Biodegradable Plastics with support from. Glasgow: Industrial Biotechnology Innovation Centre IBioIC, 28– 28
89 A A Koelmans, E Besseling, E M Foekema. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187 : 49– 54
https://doi.org/10.1016/j.envpol.2013.12.013
90 M C Krueger, H Harms, D Schlosser. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99( 21): 8857– 8874
https://doi.org/10.1007/s00253-015-6879-4
91 R V Kumar, G R Kanna, S Elumalai. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8( 381): 2
92 A Kumari, D R Chaudhary, B Jha. (2019). Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environmental Science and Pollution Research International, 26( 2): 1507– 1516
https://doi.org/10.1007/s11356-018-3465-1
93 B M Kyaw, R Champakalakshmi, M K Sakharkar, C S Lim, K R Sakharkar. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52( 3): 411– 419
https://doi.org/10.1007/s12088-012-0250-6
94 I Kyrikou, D Briassoulis. (2007). Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 15( 2): 125– 150
https://doi.org/10.1007/s10924-007-0053-8
95 S Laville, M Taylor. (2017). A million bottles a minute: World’s plastic binge ‘as dangerous as climate change’. Guardian, 28( 6): 2017
96 K L Law, R Narayan. (2021). Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials, 7( 2): 104– 116
97 G Lear, J M Kingsbury, S Franchini, V Gambarini, S D M Maday, J A Wallbank, L Weaver, O Pantos. (2021). Plastics and the microbiome: impacts and solutions. Environmental Microbiome, 16 : 2
https://doi.org/10.1186/s40793-020-00371-w
98 L Lebreton, A Andrady. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5 : 6
https://doi.org/10.1057/s41599-018-0212-7
99 H A Leslie, M J M van Velzen, S H Brandsma, A D Vethaak, J J Garcia-Vallejo, M H Lamoree. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163 : 107199
https://doi.org/10.1016/j.envint.2022.107199
100 Z Li, R Wei, M Gao, Y Ren, B Yu, K Nie, H Xu, L Liu. (2020). Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management, 263 : 110402
https://doi.org/10.1016/j.jenvman.2020.110402
101 A E Lindell, M Zimmermann-Kogadeeva, K R Patil. (2022). Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews. Microbiology, 20 : 431– 443
https://doi.org/10.1038/s41579-022-00681-5
102 D Lithner, A Larsson, G Dave. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409( 18): 3309– 3324
https://doi.org/10.1016/j.scitotenv.2011.04.038
103 C Liu T Thang Nguyen Y Ishimura ( 2021). Current situation and key challenges on the use of single-use plastic in Hanoi. Waste Management (New York, N.Y.), 121: 422– 431
pmid: 33450648
104 E MacArthur, D Waughray, M Stuchtey. (2016). Rethinking Plastics, starting with packaging. Cologny World Economic Forum, 1– 206
105 A Magnin, E Pollet, V Phalip, L Avérous. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39 : 107457
https://doi.org/10.1016/j.biotechadv.2019.107457
106 K Masaki, N R Kamini, H Ikeda, H Iefuji. (2005). Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Applied and Environmental Microbiology, 71( 11): 7548– 7550
https://doi.org/10.1128/AEM.71.11.7548-7550.2005
107 M Matsunaga, P J Whitney. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonization. Polymer Degradation & Stability, 70( 3): 325– 332
https://doi.org/10.1016/S0141-3910(00)00105-1
108 S S Meena, R S Sharma, P Gupta, S Karmakar, K K Aggarwal. (2016). Isolation and identification of Bacillus megaterium YB3 from an effluent contaminated site efficiently degrades pyrene. Journal of Basic Microbiology, 56( 4): 369– 378
https://doi.org/10.1002/jobm.201500533
109 M Miloloža, Grgić D Kučić, T Bolanča, Š Ukić, M Cvetnić, Bulatović V Ocelić, D D Dionysiou, H Kušić. (2021). Ecotoxicological assessment of microplastics in freshwater sources: A review. Water, 13( 1): 56
https://doi.org/10.3390/w13010056
110 A Mohammadi Nafchi, M Moradpour, M Saeidi, A K Alias. (2013). Thermoplastic starches: Properties, challenges, and prospects. Stärke, 65( 1−2): 61– 72
https://doi.org/10.1002/star.201200201
111 A J Mohan, V C Sekhar, T Bhaskar, K M Nampoothiri. (2016). Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology, 213 : 204– 207
https://doi.org/10.1016/j.biortech.2016.03.021
112 N Mohanan, Z Montazer, P K Sharma, D B Levin. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11 : 580709
https://doi.org/10.3389/fmicb.2020.580709
113 R V Moharir, S Kumar. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. Journal of Cleaner Production, 208 : 65– 76
https://doi.org/10.1016/j.jclepro.2018.10.059
114 Z Montazer, M B Habibi-Najafi, M Mohebbi, A Oromiehei. (2018). Microbial degradation of uv-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26( 9): 3613– 3625
https://doi.org/10.1007/s10924-018-1245-0
115 D Moog, J Schmitt, J Senger, J Zarzycki, K H Rexer, U Linne, T J Erb, U G Maier. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18 : 171
https://doi.org/10.1186/s12934-019-1220-z
116 T Morohoshi, T Oi, H Aiso, T Suzuki, T Okura, S Sato. (2018). Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes and Environments, 33( 3): 332– 335
https://doi.org/10.1264/jsme2.ME18033
117 R J Müller, H Schrader, J Profe, K Dresler, W D Deckwer. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26( 17): 1400– 1405
https://doi.org/10.1002/marc.200500410
118 C A Murphy, J A Cameron, S J Huang, R T Vinopal. (1996). Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology, 62( 2): 456– 460
https://doi.org/10.1128/aem.62.2.456-460.1996
119 K Nakamura, T Tomita, N Abe, Y Kamio. (2001). Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Applied and Environmental Microbiology, 67( 1): 345– 353
https://doi.org/10.1128/AEM.67.1.345-353.2001
120 S Nanda, S Sahu, J Abraham. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Science & Environmental Management, 14( 2): 57– 60
https://doi.org/10.4314/jasem.v14i2.57839
121 T Narancic, K E O’Connor. (2017). Microbial biotechnology addressing the plastic waste disaster. Microbial Biotechnology, 10( 5): 1232– 1235
https://doi.org/10.1111/1751-7915.12775
122 S K Narwal, R Gupta. (2017). Handbook of Research on Inventive Bioremediation Techniques. Kalyani: IGI Global, 186– 212
123 C Ndahebwa Muhonja, G Magoma, M Imbuga, H M Makonde. (2018). Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018 : 4167845
https://doi.org/10.1155/2018/4167845
124 S E Nelms, E M Duncan, A C Broderick, T S Galloway, M H Godfrey, M Hamann, P K Lindeque, B J Godley. (2016). Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science, 73( 2): 165– 181
https://doi.org/10.1093/icesjms/fsv165
125 Newman P (2021). Plastics: Are they part of the zero-waste agenda or the toxic-waste agenda? Sustainable Earth, 4(1): 1–16
126 N Nomura, Y Shigeno-Akutsu, T Nakajima-Kambe, T Nakahara. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86( 4): 339– 345
https://doi.org/10.1016/S0922-338X(99)89001-1
127 M Okan H M Aydin M (2019) Barsbay. Current approaches to waste polymer utilization and minimization: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 94(1): 8− 21
128 Y Orhan, H Büyükgüngör. (2000). Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation, 45( 1−2): 49– 55
https://doi.org/10.1016/S0964-8305(00)00048-2
129 I G Orr, Y Hadar, A Sivan. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65( 1): 97– 104
130 S Y Park, C G Kim. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 222 : 527– 533
https://doi.org/10.1016/j.chemosphere.2019.01.159
131 G Pastorelli, C Cucci, O Garcia, G Piantanida, A Elnaggar, M Cassar, M Strlič. (2014). Environmentally induced colour change during natural degradation of selected polymers. Polymer Degradation & Stability, 107 : 198– 209
https://doi.org/10.1016/j.polymdegradstab.2013.11.007
132 J Payne, P Mckeown, M D Jones. (2019). A circular economy approach to plastic waste. Polymer Degradation & Stability, 165 : 170– 181
https://doi.org/10.1016/j.polymdegradstab.2019.05.014
133 J Peixoto, L P Silva, R H Krüger. (2017). Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials, 324( 2017): 634– 644
https://doi.org/10.1016/j.jhazmat.2016.11.037
134 Y Peng, P Wu, A T Schartup, Y Zhang. (2021). Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences, 118( 47): e2111530118
https://doi.org/10.1073/pnas.2111530118
135 W Penkhrue, C Khanongnuch, K Masaki, W Pathom-Aree, W Punyodom, S Lumyong. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology & Biotechnology, 31( 9): 1431– 1442
https://doi.org/10.1007/s11274-015-1895-1
136 K K Peiry. (2019). Basel convention on the control of transboundary movements of hazardous wastes and their disposal. United Nations Audiovisual Library of International Law. New York: The United Nations, 10
137 S K Phua, E Castillo, J M Anderson, A Hiltner. (1987). Biodegradation of a polyurethane in vitro. Journal of Biomedical Materials Research, 21( 2): 231– 246
https://doi.org/10.1002/jbm.820210207
138 L S Pinchuk, A V Makarevich, G M Vlasova, A G Kravtsov, V A Shapovalov. (2004). Electret-thermal analysis to assess biodegradation of polymer composites. International Biodeterioration & Biodegradation, 54( 1): 13– 18
https://doi.org/10.1016/j.ibiod.2003.11.005
139 A L 3rd Pometto, B T Lee, K E Johnson. (1992). Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Applied and Environmental Microbiology, 58( 2): 731– 733
https://doi.org/10.1128/aem.58.2.731-733.1992
140 J C Prata, A L P Silva, T R Walker, A C Duarte, T Rocha-Santos. (2020). COVID-19 pandemic repercussions on the use and management of plastics. Environmental Science & Technology, 54( 13): 7760– 7765
https://doi.org/10.1021/acs.est.0c02178
141 N Prinz Š (2020) Korez. Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: a review. In: Jungblut S, Liebich V, Bode-Dalby M, editors. YOUMARES 9 - The Oceans: Our Research, Our Future. Proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Berlin: SpringerOpen, 101– 120
142 A Priya K Dutta A (2022) Daverey. A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 97(2): 381− 390
143 F Quartinello, K Kremser, H Schoen, D Tesei. (2021). Together is better: the rumen microbial community as biological toolbox for degradation of synthetic polyesters. Frontiers in Bioengineering and Biotechnology, 9( 2021): 500
144 K V S Rajmohan, C Ramya, M R Viswanathan, S Varjani. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12 : 72– 84
https://doi.org/10.1016/j.coesh.2019.08.006
145 H Ritchie M (2018) Roser. Plastic Pollution. England & Wales: Our World in Data
146 T Rocha-Santos, A C Duarte. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends in Analytical Chemistry, 65 : 47– 53
https://doi.org/10.1016/j.trac.2014.10.011
147 C M Rochman, M A Browne, B S Halpern, B T Hentschel, E Hoh, H K Karapanagioti, L M Rios-Mendoza, H Takada, S Teh, R C Thompson. (2013). Classify plastic waste as hazardous. Nature, 494( 7436): 169– 171
https://doi.org/10.1038/494169a
148 R A Rudel R E Dodson E Newton A R Zota J G (2008) Brody. Correlations between urinary phthalate metabolites and phthalates, estrogenic compounds 4-butyl phenol and o-phenyl phenol, and some pesticides in home indoor air and house dust. Epidemiology (Cambridge, Mass.), 19(6): S332
149 J R Russell, J Huang, P Anand, K Kucera, A G Sandoval, K W Dantzler, D Hickman, J Jee, F M Kimovec, D Koppstein, D H Marks, P A Mittermiller, S J Nu, M Santiago, M A Townes, M Vishnevetsky, N E Williams, L-A Boulanger, C Bascom-Slack, S A Strobel. (2011). Biodegradation of Polyester Polyurethane by Endophytic Fungi. Applied and Environmental Biotechnology, 77( 17): 6076– 6084
150 Devi R Sangeetha Kannan V Rajesh D Nivas K Kannan S Chandru Antony A (2015) Robert. Biodegradation of HDPE by Aspergillus spp . from marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, 96(1–2): 32–40
pmid: 26006776
151 R Sangeetha Devi, R Ramya, K Kannan, A Robert Antony, V Rajesh Kannan. (2019). Investigation of biodegradation potentials of high-density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine Pollution Bulletin, 138 : 549– 560
https://doi.org/10.1016/j.marpolbul.2018.12.001
152 M Santo, R Weitsman, A Sivan. (2013). The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84 : 204– 210
https://doi.org/10.1016/j.ibiod.2012.03.001
153 M Sasoh, E Masai, S Ishibashi, H Hara, N Kamimura, K Miyauchi, M Fukuda. (2006). Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Applied and Environmental Microbiology, 72( 3): 1825– 1832
https://doi.org/10.1128/AEM.72.3.1825-1832.2006
154 J H (1972) Saunders. Plastic foams. New York: Marcel Dekker
155 A Scott S Pickard S Sharp R (2020) Becqué. Phasing out Plastics. London: ODI Reports
156 A A Shah, F Hasan, A Hameed, S Ahmed. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26( 3): 246– 265
https://doi.org/10.1016/j.biotechadv.2007.12.005
157 N Shilpa, S S Basak. (2022). Exploring the plastic degrading ability of microbial communities through metagenomic approach. Materials Today: Proceedings, 57 : 1924– 1932
https://doi.org/10.1016/j.matpr.2022.02.308
158 A B Silva, A S Bastos, C I L Justino, A C Duarte, P Rocha-Santos T a. (2018). Microplastics in the environment: Challenges in analytical chemistry. A review. Analytica Chimica Acta, 1017 : 1– 19
https://doi.org/10.1016/j.aca.2018.02.043
159 B Singh, N Sharma. (2008). Mechanistic implications of plastic degradation. Polymer Degradation & Stability, 93( 3): 561– 584
https://doi.org/10.1016/j.polymdegradstab.2007.11.008
160 G Singh, A K Singh, K Bhatt. (2016). Biodegradation of polyethylene by bacteria isolated from soil. International Journal of Research and Development in Pharmacy and Life Sciences, 5( 2): 2056– 2062
161 V Siracusa. (2019). Microbial degradation of synthetic biopolymers waste. Polymers, 11( 6): 1066
https://doi.org/10.3390/polym11061066
162 A Sivan, M Szanto, V Pavlov. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72( 2): 346– 352
https://doi.org/10.1007/s00253-005-0259-4
163 S Skariyachan, V Manjunatha, S Sultana, C Jois, V Bai, K S Vasist. (2016). Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research International, 23( 18): 18307– 18319
https://doi.org/10.1007/s11356-016-7000-y
164 S Skariyachan, A A Patil, A Shankar, M Manjunath, N Bachappanavar, S Kiran. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation & Stability, 149 : 52– 68
https://doi.org/10.1016/j.polymdegradstab.2018.01.018
165 S Skariyachan, N Taskeen, A P Kishore, B V Krishna, G Naidu. (2021). Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284 : 112030
https://doi.org/10.1016/j.jenvman.2021.112030
166 H V Sowmya M Ramalingappa B Krishnappa Thippeswamy ( 2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district . Environment, Development and Sustainability, 17( 4): 731− 745
167 H V T B (2014) Sowmya. Biodegradation of Polyethylene by Bacillus cereus . International Journal (Toronto, Ont.), 4(2): 28– 32
168 A Srivastava, M R Prabhakar, A Mohanty, S S Meena. (2021). Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2 : 217– 231
169 P Sriyapai, K Chansiri, T Sriyapai. (2018). Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology, 87( 2): 290– 300
https://doi.org/10.1134/S0026261718020157
170 A Steinbüchel. (2005). Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Current Opinion in Biotechnology, 16( 6): 607– 613
https://doi.org/10.1016/j.copbio.2005.10.011
171 S Sukhumaporn, T Shinji, K Prachumporn, T Tomohiko, I Yuumi, K Vichien. (2011). A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing. African Journal of Microbiological Research, 5( 18): 2575– 2582
https://doi.org/10.5897/AJMR10.722
172 S Sukkhum, S Tokuyama, T Tamura, V Kitpreechavanich. (2009). A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. Journal of General and Applied Microbiology, 55( 6): 459– 467
https://doi.org/10.2323/jgam.55.459
173 B Suresh, S Maruthamuthu, M Kannan, A Chandramohan. (2011). Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal, 43( 4): 398– 406
https://doi.org/10.1038/pj.2010.147
174 C E Talsness A J M Andrade S N Kuriyama J A Taylor F S vom Saal ( 2009). Components of plastic: Experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364( 1526): 2079– 2096
pmid: 19528057
175 S Tanasupawat T Takehana S Yoshida K Hiraga K (2016) Oda. Ideonella sakaiensis sp . nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66( 8): 2813– 2818
pmid: 27045688
176 M L Taylor, C Gwinnett, L F Robinson, L C Woodall. (2016). Plastic microfibre ingestion by deep-sea organisms. Scientific Reports, 6( 1): 33997
https://doi.org/10.1038/srep33997
177 S S Thilagavathi, V Gomathi, K Kumar. (2018). An approach to Low density polyethylene (LDPE) biodegradation by Xylaria sp. from termite garden. Journal of Pharmacognosy and Phytochemistry, 7( 2): 2408– 2411
178 P S Thind, A Sareen, D D Singh, S Singh, S John. (2021). Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures. Environmental Pollution, 276 : 116621
https://doi.org/10.1016/j.envpol.2021.116621
179 I Tiseo. (2021). Plastic cumulative production globally 2050. Hamburg, Germany : Statista
180 M V (2012) Titow. PVC technology. Dordrecht, the Netherlands: Springer Science & Business Media
181 Y Tokiwa, B P Calabia, C U Ugwu, S Aiba. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10( 9): 3722– 3742
https://doi.org/10.3390/ijms10093722
182 P Tribedi, S Sarkar, K Mukherjee, A K Sil. (2012). Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environmental Science and Pollution Research International, 19( 6): 2115– 2124
https://doi.org/10.1007/s11356-011-0711-1
183 M J L Tschan, E Brulé, P Haquette, C M Thomas. (2012). Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 3( 4): 836– 851
https://doi.org/10.1039/C2PY00452F
184 A K Urbanek, A M Mirończuk, A García-Martín, A Saborido, la Mata I de, M Arroyo. (2020). Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1868( 2): 140315
https://doi.org/10.1016/j.bbapap.2019.140315
185 R Usha, T Sangeetha, M Palaniswamy. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2( 4): 200– 204
186 E van Sebille, C Wilcox, L Lebreton, N Maximenko, B D Hardesty, J A Van Franeker, M Eriksen, D Siegel, F Galgani, K L Law. (2015). A global inventory of small floating plastic debris. Environmental Research Letters, 10( 12): 124006
https://doi.org/10.1088/1748-9326/10/12/124006
187 R Vignesh, R C Deepika, P Manigandan, R Janani. (2016). Screening of plastic degrading microbes from various dumped soil samples. International Research Journal of Engineering and Technology, 3( 4): 2493– 2498
188 P P Vimala, L Mathew. (2016). Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 24 : 232– 239
https://doi.org/10.1016/j.protcy.2016.05.031
189 V K Vivi, S M Martins-Franchetti, D Attili-Angelis. (2019). Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica, 64( 1): 1– 7
https://doi.org/10.1007/s12223-018-0621-4
190 J Wang, Z Tan, J Peng, Q Qiu, M Li. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113 : 7– 17
https://doi.org/10.1016/j.marenvres.2015.10.014
191 R A Wilkes, L Aristilde. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp:. Capabilities and challenges. Journal of Applied Microbiology, 123( 3): 582– 593
https://doi.org/10.1111/jam.13472
192 R J Wright, R Bosch, M G I Langille, M I Gibson, J A Christie-Oleza. (2021). A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome, 9 : 155
https://doi.org/10.1186/s40168-021-01054-5
193 A V Yabannavar, R Bartha. (1994). Methods for assessment of biodegradability of plastic films in soil. Applied and Environmental Microbiology, 60( 10): 3608– 3614
https://doi.org/10.1128/aem.60.10.3608-3614.1994
194 J Yang, Y Yang, W M Wu, J Zhao, L Jiang. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48( 23): 13776– 13784
https://doi.org/10.1021/es504038a
195 S S Yang, A M Brandon, J C Andrew Flanagan, J Yang, D Ning, S Y Cai, H Q Fan, Z Y Wang, J Ren, E Benbow, N Q Ren, R M Waymouth, J Zhou, C S Criddle, W M Wu. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191 : 979– 989
https://doi.org/10.1016/j.chemosphere.2017.10.117
196 M G Yoon, H J Jeon, M N Kim. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3( 4): 1– 8
197 S Yoshida, K Hiraga, T Takehana, I Taniguchi, H Yamaji, Y Maeda, K Toyohara, K Miyamoto, Y Kimura, K Oda. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351( 6278): 1196– 1199
https://doi.org/10.1126/science.aad6359
198 S Zahra S S Abbas M T Mahsa N Mohsen ( 2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management (New York, N.Y.), 30( 3): 396– 401
pmid: 19919893
199 J Zhang, D Gao, Q Li, Y Zhao, L Li, H Lin, Q Bi, Y Zhao. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704 : 135931
https://doi.org/10.1016/j.scitotenv.2019.135931
200 X Zhao, M Korey, K Li, K Copenhaver, H Tekinalp, S Celik, K Kalaitzidou, R Ruan, A J Ragauskas, S Ozcan. (2022). Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 428 : 131928
https://doi.org/10.1016/j.cej.2021.131928
201 Y Zheng, E K Yanful, A S Bassi. (2005). A review of plastic waste biodegradation. Critical Reviews in Biotechnology, 25( 4): 243– 250
https://doi.org/10.1080/07388550500346359
[1] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[2] Ping Zhu, Shuangshuang Gong, Mingqiang Deng, Bin Xia, Yazheng Yang, Jiakang Tang, Guangren Qian, Fang Yu, Ashantha Goonetilleke, Xiaowei Li. Biodegradation of waste refrigerator polyurethane by mealworms[J]. Front. Environ. Sci. Eng., 2023, 17(3): 38-.
[3] Jingyang Luo, Shiyu Fang, Wenxuan Huang, Feng Wang, Le Zhang, Fang Fang, Jiashun Cao, Yang Wu, Dongbo Wang. New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic processes and microbial genetic traits[J]. Front. Environ. Sci. Eng., 2022, 16(8): 106-.
[4] Rong Cheng, Yingying Zhang, Tao Zhang, Feng Hou, Xiaoxin Cao, Lei Shi, Peiwen Jiang, Xiang Zheng, Jianlong Wang. The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 108-.
[5] Mengtian Li, Ge Song, Ruiping Liu, Xia Huang, Huijuan Liu. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review[J]. Front. Environ. Sci. Eng., 2022, 16(6): 70-.
[6] Yi Xiong, Boya Wang, Chao Zhou, Huan Chen, Gang Chen, Youneng Tang. Determination of growth kinetics of microorganisms linked with 1,4-dioxane degradation in a consortium based on two improved methods[J]. Front. Environ. Sci. Eng., 2022, 16(5): 62-.
[7] Yifan Liu, Qiongfang Zhang, Ainiwaer Sidike, Nuerla Ailijiang, Anwar Mamat, Guangxiao Zhang, Miao Pu, Wenhu Cheng, Zhengtao Pang. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure[J]. Front. Environ. Sci. Eng., 2022, 16(11): 141-.
[8] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[9] Shaoyi Xu, Xiaolong Wu, Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133-.
[10] Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 47-.
[11] Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen. Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters[J]. Front. Environ. Sci. Eng., 2020, 14(6): 111-.
[12] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[13] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[14] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[15] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed