Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 156-163    https://doi.org/10.1007/s11515-010-0024-7
Research articles
Stigma factors regulating self-compatible pollination
Xin-Qi GAO,Dongzi ZHU,Xiansheng ZHANG,
State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
 Download: PDF(219 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pollination is one of the most important steps during fertilization and sexual reproduction in plants, and numerous cell-cell interaction events occur between the pistil and the pollen grain/tube during this process. The pollen-stigma interaction is a highly selective process which leads to compatible or incompatible pollination. Previous studies in Solanaceae, Papaveraceae, and Brassicaceae provided some important insights into pollen-stigma recognition in self-incompatible systems. In recent years, considerable data have been available regarding pollen-stigma interaction during self-compatible pollination. In this review, we focus on discussing current knowledge on stigma factors that regulate pollen-stigma interaction in self-compatible systems in comparison with self-incompatible systems.
Keywords stigma      signaling      self-compatible      pollination      
Issue Date: 01 April 2010
 Cite this article:   
Xiansheng ZHANG,Xin-Qi GAO,Dongzi ZHU. Stigma factors regulating self-compatible pollination[J]. Front. Biol., 2010, 5(2): 156-163.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0024-7
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/156
Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol, 133: 482–491
Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B (2003). Arabidopsis genes involved in acyl lipid metabolism:A 2003 census of the candidates, a study of the distribution of expressedsequence tags in organs, and a web-based database. Plant Physiol, 132, 681–697
Bosch M, Cheung A Y, Hepler P K (2005). Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol, 138: 1334–1346
Busot G Y, McClure B, Ibarra-Sánchez C P, Jiménez-Durán K, Vázquez-Santana S, Cruz-García F (2008). Pollination in Nicotiana alata stimulates synthesis andtransfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinaseinhibitor homologue. J Exp Bot, 59: 3187–3201
Chassot C, Nawrath C, Metraux J P (2007). Cuticular defects lead to full immunity to a major plant pathogen. Plant J, 49: 972–980
Cosgrove D J (2000). Loosening of plant cell walls byexpansins. Nature, 407: 321–326
Cosgrove D J, Bedinger P, Durachko D M (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA, 94: 6559–6564
Cresti M, Keijzer C J, Tiezzi A, Ciampolini F, Focardi S (1986). Stigma of Nicotiana: ultrastructural and biochemicalstudies. Am J Bot, 73: 1713–1722
Dafni A, Maues M (1998). A rapid and simple procedure to determine stigma receptivity. Sexual Plant Rep, 11: 177–180
Dong X, Hong Z, Chatterjee J, Kim S, Verma D P (2008). Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229: 87–98
Elleman C J, Dickinson H G (1996). Identification of pollen components regulating pollination-specificresponses in the stigmatic papillae of Brassica oleracea. New Phytol, 133: 197–205
Elleman C J, Franklin-Tong V E, Dickinson H G (1992). Pollination in species with dry stigmas: the nature of the early stigmatic responseand the pathway taken by pollen tubes. New Phytol, 121: 413–424
Elleman C J, Willson C E, Sarker R H, Dickinson H G (1988). Interaction between the pollen tube and stigmatic cell wall following pollination in Brassica oleracea. New Phytol, 109: 111–117
Eyster K M (2007). The membrane and lipids as integralparticipants in signal transduction: lipid signal transduction forthe non-lipid biochemist. Adv Physiol Educ, 31: 5–16
Fiebig A, Mayfield J A, Miley N L, Chau S, Fischer R L, Preuss D (2000). Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipidcontent on the surface of pollen and stems. Plant Cell, 12: 2001–2008
Ge L L, Xie C T, Tian H Q, Russell S D (2009). Distribution of calcium in the stigma and style of tobaccoduring pollen germination and tube elongation. Sex Plant Reprod, 22: 87–96
Gebert M, Dresselhaus T, Sprunck S (2008). F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specificarmadillo repeat protein ARO1. Plant Cell, 20: 2798–2814
Goldman M H, Goldberg R B, Mariani C (1994). Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J, 13: 2976–2984
Gossot O, Geitmann A (2007). Pollen tube growth: coping with mechanical obstaclesinvolves the cytoskeleton. Planta, 226: 405–416
de Graaf B H J, Knuiman B A, Derksen J, Mariani C (2003). Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot, 54: 55–63
Gu Y, Vernoud V, Fu Y, Yang Z (2003). ROP GTPase regulation of pollen tubegrowth through the dynamics of tip-localized F-actin. J Exp Bot, 54: 93–101
Heslop-Harrison Y (2000). Control gates andmicro-ecology: the pollen–stigma interaction in perspective. Ann Bot, 85: 5–13
Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998). Guidance in vitro of the pollen tubeto the naked embryo sac of Torenia fournieri. Plant Cell, 10: 2019–2031
Hiscock S J, Allen A M (2008). Diverse cell signaling pathways regulate pollen-stigma interactions:the search for consensus. New Phytol, 179: 286–317
Hiscock S J, Bown D, Gurr S J, Dickinson H G (2002). Serine esterases are required for pollen tube penetrationof the stigma in Brassica. Sex Plant Reprod, 15: 65–74
Hiscock S J, Coleman J, Dewey F M, Dickinson H G (1994). Identification and localization of an active cutinase in the pollen of Brassica napus L. Planta, 193: 377–384
Huang S, Blanchoin L, Chaudhry F, Franklin-Tong V E, Staiger C J (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulatedsevering and depolymerization of actin filaments. J Biol Chem, 279: 23364–23375
Humphrey T V, Bonetta D T, Goring D R (2008). Sentinels at the wall: cell wall receptors and sensors. New Phytol, 176: 7–21
Hussey P J, Ketelaar T, Deeks M J (2006). Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol, 57: 109–125
Ivanov R, Gaude T (2009). Endocytosis and endosomal regulation of the S-receptor kinase duringthe self-incompatibility response in Brassica oleracea. Plant Cell, 21: 2107–2117
Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S (2007). Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol, 144: 72–81
Iwano M, Shiba H, Miwa T, Che F S, Takayama S, Nagai T, Miyawaki A, Isogai A (2004). Ca2+ dynamics in a pollen grain and papilla cell duringpollination of Arabidopsis. Plant Physiol, 136: 3562–3571
Jiang L, Yang S L, Xie L F, Puah C S, Zhang X Q, Yang W C, Sundaresan V, Ye D (2005). VANGUARD1 encodes a pectin methylesterasethat enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell, 17: 584–596
Jump D B (2004). Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci, 41: 41–78
Kandasamy M K, Burgos-Rivera B, McKinney E C, Ruzicka D R, Meagher R B (2007). Class-specific interaction of profilin and ADF isovariantswith actin in the regulation of plant development. Plant Cell, 19: 3111–3126
Kim S T, Zhang K, Dong J, Lord E M (2006). Exogenous free ubiquitin enhances lily pollen tube adhesionto an in vitro stylar matrix and may facilitate endocytosis of SCA. Plant Physiol, 142: 1397–1411
Kim H U, Chung T Y, Kang S K (1996). Characterization of anther-specific genes encoding a putative pectin esterase of Chinesecabbage. Mol Cells, 6: 334–340
Knox R B, Clarke A E, Harrison S, Smith P, Marchalonis J J (1976). Cell recognition in plants: determinants of the stigmasurface and their pollen interactions. Proc Natl Acad Sci USA, 73: 2788–2792
Kostenis E (2004). A glance at G-protein-coupled receptorsfor lipid mediators: a growing receptor family with remarkably diverseligands. Pharmacol Ther, 102: 243–257
Kuboyama T (1998). A novel thaumatin-like protein geneof tobacco is specifically expressed in the transmitting tissue ofstigma and style. Sex Plant Reprod, 11: 251–256
Kuboyama T, Yoshida K T, Takeda G (2001). Antiserum against a stigma-exudate protein of tobacco, SE32, which was identicalwith PPAL, a beta-expansin-like protein specific to stigma, cross-reactedwith another stigma-exudate protein, SE35. Breed Sci, 51: 131–135
Lee C B, Kim S, McClure B (2009). A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol, 149: 791–802
Lenartowska M, Lenartowski R, Smoliński D J, Wróbel B, Niedojadło J, Jaworski K, Bednarska E (2009). Calreticulin expression and localization in plant cells during pollen-pistil interactions. Planta, 231(1): 67–77
Li L C, Bedinger P A, Volk C, Jones A D, Cosgrove D J (2003). Purification and characterization of four β-expansins(Zea m 1 isoforms) from maize pollen. Plant Physiol, 132: 2073–2085
Llop-Tous I, Barry C S, Grierson D (2000). Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol, 123: 971–978
Mayfield J A, Fiebig A, Johnstone S E, Preuss D (2001). Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 292: 2482–2485
Mayfield J A, Preuss D (2000). Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nature Cell Biol, 2: 128–130
McInnis S M, Desikan R, Hancock J T, Hiscock S J (2006). Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potentialsignaling crosstalk? New Phytol, 172: 221–228
Miller E A, Lee M C S, Atkinson A H O, Anderson M A (2000). Identification of a novel four-domainmember of the proteinase inhibitor II family from the stigmas of Nicotiana alata. Plant Mol Biol, 42: 329–333
Mol R, Filek M, Machackova I, Matthys-Rochon E (2004). Ethylene synthesis and auxin augmentation in pistil tissues are important for egg celldifferentiation after pollination in maize. Plant Cell Physiol, 45: 1396–1405
Moscatelli A, Idilli A I (2009). Pollen tube growth: a delicate equilibrium between secretoryand endocytic pathways. J Integr Plant Biol, 51: 727–739
Nieuwland J, Feron R, Huisman B A H, Fasolino A, Hilbers C W, Derksen J, Mariani C (2005). Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell, 17: 2009–2019
Palanivelu R, Preuss D (2006). Distinct short-range ovule signals attract or repel Arabidopsis pollen tubes in vitro. BMC Plant Biol, 6: 7
Park S Y, Lord E M (2003). Expression studies of SCA in lily and confirmation of its role inpollen tube adhesion. Plant Mol Biol, 51: 183–189
Pezzotti M, Feron R, Mariani C (2002). Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin. Plant Mol Biol, 49: 187–197
Prado A M, Colaco R, Moreno N, Silva A C, Feijo J A (2008). Targeting of pollen tubes to ovules is dependent on nitric oxide(NO) signaling. Mol Plant, 1: 703–714
Pruitt R E, Vielle-Calzada J P, Ploense S E, Grossniklaus U, Lolle S J (2000). FIDDLEHEAD, a gene required tosuppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA, 97: 1311–1316
Qin Y, Leydon A R, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson M A, Palanivelu R (2009). Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes criticalfor growth in a pistil. PLoS Genetics, 5: e1000621
Quiapim A C, Brito M S, Bernardes L A, Dasilva I, Malavazi I, DePaoli H C, Molfetta-Machado J B, Giuliatti S, Goldman G H, Goldman M H (2009). Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol, 49: 1211–1230
Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004). Endocytosis, actin cytoskeleton, and signaling. Plant Physiol, 135: 1150–1161
Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R (2009). Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocystcomplex. Plant Cell, 21: 2655–2671
Sanchez A M, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004). Pistil factors controlling pollination. Plant Cell, 16: S98–S106
Sedgley M (1979). Structural changes in the pollinatedand unpollinated avocado stigma and style. J Cell Sci, 38: 49–60
Shi D Q, Yang W C (2009). Pollen germination and tube growth. In: Pua E C, Davey M R, eds. Plant Developmental Biology-Biotechnological Perspectives. Heidelberg: Springer Berlin Heidelberg
Suen D F, Huang A H C (2007). Maize pollen coat xylanase facilitates pollen tube penetrationinto silk during sexual reproduction. J Boil Chem, 282: 625–636
Suen D F, Wu S SH, Chang H C, Dhugga K S, Huang A H C (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potentialrole in pollen tube growth on the stigma and through the style. J Biol Chem, 278: 43672–43681
Swanson R, Edlund A F, Preuss D (2004). Species specificity in pollen-pistil interactions. Annu Rev Genet, 38: 793–818
Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidatefor the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol, 51: 123–131
Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S (2004). LeSTIG1, an extracellular binding partner for the pollenreceptor kinases LePRK1 and LePRK2, promotes pollen tube growth invitro. Plant J, 39: 343–353
Tian G W, Chen M H, Zaltsman A, Citovsky V (2006). Pollen-specific pectin methylesterase involved in pollentube growth. Dev Biol, 294: 83–91
Tung C-W, Dwyer K G, Nasrallah M E, Nasrallah J B (2005). Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol, 138: 977–989
Updegraff E P, Zhao F, Preuss D (2009). The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod, 22: 197–204
Verhoeven T, Feron R, Wolters-Arts M, Edqvist J, Gerats T, Derksen J, Mariani C (2005). STIG1 controls exudate secretion in the pistil of petunia and tobacco. Plant Physiol, 138: 153–160
Vidali L, Hepler P K (2001). Actin and pollen tube growth. Protoplasma, 215: 64–76
Wakelin A M, Leung D W M (2009). β-1,3-Glucanase activity in the stigma of healthypetunia flowers. Biol Plantarum, 51: 69–74
Wolters-Arts M, Lush W M, Mariani C (1998). Lipids are required for directional pollen tube growth. Nature, 392: 318–321
Wolters-Arts M, van der Weerd L, van Aeist A C, van der Weerd J, van As H, Mariani C (2002). Water conducting properties of lipids during pollen hydration. Plant Cell Environ, 25: 513–519
Wu J Z, Lin Y, Zhang X L, Pang D W, Zhao J (2008). IAA stimulatespollen tube growth and mediates the modification of its wall compositionand structure in Torenia fournieri. J Exp Bot, 59: 2529–2543
Wu Y Z, Qiu X, Du S, Erikson L (1996). PO149, a new member of the pectate lyase-like gene familyin alfalfa. Plant Mol Biol, 32: 1037–1042
Yan A, Xu G, Yang Z B (2009). Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollentubes. Proc Natl Acad Sci USA, 106: 22002–22007
Zárský V, Cvrcková F, Potocký M, Hála M (2009). Exocytosis and cell polarity in plants-exocystand recycling domains. New Phytol, 183: 255–272
Zhang D, Wengier D, Shuai B, Gui C P, Muschietti J, McCormick S, Tang W H (2008). The pollen receptor kinase LePRK2mediates growth-promoting signals and positively regulates pollengermination and tube growth. Plant Physiol, 148: 1368–1379
Zhang X S, O'Neill S D (1993). Ovary and gametophyte development are coordinately regulatedby auxin and ethylene following pollination. Plant Cell, 5: 403–418
Zhang Y, Zhao Z, Xue Y (2009). Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol, 60: 21–42
Zinkl G M, Preuss D (2000). Dissecting Arabidopsis pollen-stigma interactions reveals novel mechanisms that confermating specificity. Ann Bot, 85(Suppl A): 15–21
Zinkl G M, Zwiebel B, Grier D G, Preuss D (1999). Pollen-stigma adhesion in Arabidopsis: a species-specific interactionmediated by hydrophobic molecules in the pollen exine. Development, 126: 5431–5440
[1] Rini Jacob,Anbalagan Moorthy. Targeting secret handshakes of biological processes for novel drug development[J]. Front. Biol., 2016, 11(2): 132-140.
[2] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[3] Elaine Y. C. Hsia,Yirui Gui,Xiaoyan Zheng. Regulation of Hedgehog signaling by ubiquitination[J]. Front. Biol., 2015, 10(3): 203-220.
[4] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
[5] Tanapat PALAGA, Lisa M. MINTER. Notch signaling and its emerging role in autoimmunity[J]. Front Biol, 2013, 8(3): 279-294.
[6] Mary Catherine RENEER, Francesc MARTI. The balancing act of AKT in T cells[J]. Front Biol, 2013, 8(2): 160-174.
[7] Kundan KUMAR, Dhammaprakash Pandhari WANKHEDE, Alok Krishna SINHA. Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants[J]. Front Biol, 2013, 8(1): 109-118.
[8] Yuying SANG, Wenfeng SUN, Zhenbiao YANG. Signaling mechanisms integrating carbon and nitrogen utilization in plants[J]. Front Biol, 2012, 7(6): 548-556.
[9] Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
[10] Mengmeng ZHU, Shaojun DAI, Sixue CHEN. The stomata frontline of plant interaction with the environment-perspectives from hormone regulation[J]. Front Biol, 2012, 7(2): 96-112.
[11] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[12] Xiuhua XUE, Fei DU, Jinsheng ZHU, Haiyun REN. Actin organization and regulation during pollen tube growth[J]. Front Biol, 2011, 06(01): 40-51.
[13] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
[14] MA Miao, FAN Junfeng, LI Jing. Pollination characteristics of the ephemeroid plant [J]. Front. Biol., 2008, 3(3): 315-319.
[15] XIAO Yian, HE Ping, ZENG Jianjun, LI Xiaohong, HU Wenhai. Pollen and resource limitations to lifetime seed production in a wild population of the endangered plant Disanthus cercidifolius var. longipes H. T. Chang (Hamamelidaceae)[J]. Front. Biol., 2007, 2(4): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed