Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (4) : 324-330    https://doi.org/10.1007/s11515-010-0700-7
Research articles
Therapeutic potential and challenges of targeting sirtuins in neurodegenerative diseases
Li GAN,
Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco 94158, USA;
 Download: PDF(125 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aging is the predominant risk factor for major neurodegenerative diseases. The underlying mechanisms are largely unknown. Members of the sirtuin family of protein deacetylases support and promote longevity in diverse organisms and can extend lifespan when upregulated. Sirtuins are involved in fundamental mechanisms in age-related neurodegenerative diseases, including protein aggregation and homeostasis, survival and stress responses, and inflammatory processes. In this review, we will discuss the neurobiology of sirtuins and their multifaceted roles in the pathogenesis of neurodegenerative diseases. We will also examine the potential and challenges of targeting sirtuin pathways to treat these devastating conditions.
Keywords Sirtuins      aging      neurodegenerative disease      
Issue Date: 01 August 2010
 Cite this article:   
Li GAN. Therapeutic potential and challenges of targeting sirtuins in neurodegenerative diseases[J]. Front. Biol., 2010, 5(4): 324-330.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0700-7
https://academic.hep.com.cn/fib/EN/Y2010/V5/I4/324
Adler A S, Kawahara T L, Segal E, Chang H Y (2008). Reversal of aging by NFkappaB blockade. Cell Cycle, 7(5): 556–559
Adler A S, Sinha S, Kawahara T L, Zhang J Y, Segal E, Chang H Y (2007). Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev, 21(24): 3244–3257

doi: 10.1101/gad.1588507
Berdichevsky A, Viswanathan M, Horvitz H R, Guarente L (2006). C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell, 125(6): 1165–1177
Bordone L, Cohen D, Robinson A, Motta M C, van Veen E, Czopik A, Steele A D, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007). SIRT1 transgenic mice show phenotypes resembling calorierestriction. Aging Cell, 6(6): 759–767

doi: 10.1111/j.1474-9726.2007.00335.x
Borra M T, Smith B C, Denu J M (2005). Mechanism of human SIRT1 activation by resveratrol. J Biol Chem, 280(17): 17187–17195

doi: 10.1074/jbc.M501250200
Brunet A, Sweeney L B, Sturgill J F, Chua K F, Greer P L, Lin Y, Tran H, Ross S E, Mostoslavsky R, Cohen H Y, Hu L S, Cheng H L, Jedrychowski M P, Gygi S P, Sinclair D A, Alt F W, Greenberg M E (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666): 2011–2015

doi: 10.1126/science.1094637
Buck S W, Gallo C M, Smith J S (2004). Diversity in the Sir2 family of protein deacetylases. J Leukoc Biol, 75(6): 939–950

doi: 10.1189/jlb.0903424
Cao S X, Dhahbi J M, Mote P L, Spindler S R (2001). Genomic profiling of short- and long-termcaloric restriction effects in the liver of aging mice. Proc Natl Acad Sci U S A, 98(19): 10630–10635

doi: 10.1073/pnas.191313598
Chen D, Steele A D, Hutter G, Bruno J, Govindarajan A, Easlon E, Lin S J, Aguzzi A, Lindquist S, Guarente L (2008). The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Exp Gerontol, 43(12): 1086–1093

doi: 10.1016/j.exger.2008.08.050
Chen D, Steele A D, Lindquist S, Guarente L (2005a). Increase in activity during calorie restriction requires Sirt1. Science, 310(5754): 1641

doi: 10.1126/science.1118357
Chen J, Zhou Y, Mueller-Steiner S, Chen L F, Kwon H, Yi S, Mucke L, Gan L (2005b). SIRT1 protects againstmicroglia-dependent amyloid-beta toxicity through inhibiting NF-kappaBsignaling. J Biol Chem, 280(48): 40364–40374

doi: 10.1074/jbc.M509329200
Cohen E, Bieschke J, Perciavalle R M, Kelly J W, Dillin A (2006). Opposing activities protect against age-onset proteotoxicity. Science, 313(5793): 1604–1610

doi: 10.1126/science.1124646
Cohen E, Du D, Joyce D, Kapernick E A, Volovik Y, Kelly J W, Dillin A (2010). Temporal requirements of insulin/IGF-1 signaling forproteotoxicity protection. Aging Cell, 9(2): 126–134

doi: 10.1111/j.1474-9726.2009.00541.x
Cohen H Y, Miller C, Bitterman K J, Wall N R, Hekking B, Kessler B, Howitz K T, Gorospe M, de Cabo R, Sinclair D A (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 305(5682): 390–392

doi: 10.1126/science.1099196
Cui L, Jeong H, Borovecki F, Parkhurst C N, Tanese N, Krainc D (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127(1): 59–69
Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia M P, Invidia L, Celani L, Scurti M, Cevenini E, Castellani G C, Salvioli S (2007). Inflammaging and anti-inflammaging: a systemic perspectiveon aging and longevity emerged from studies in humans. Mech Ageing Dev, 128(1): 92–105

doi: 10.1016/j.mad.2006.11.016
Frye R A (2000). Phylogenetic classification of prokaryoticand eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798

doi: 10.1006/bbrc.2000.3000
Gan L, Mucke L (2008). Paths of convergence: sirtuins in aging and neurodegeneration. Neuron, 58(1): 10–14

doi: 10.1016/j.neuron.2008.03.015
Gr?nroos E, Hellman U, Heldin C H, Ericsson J (2002). Control of Smad7 stability by competitionbetween acetylation and ubiquitination. Mol Cell, 10(3): 483–493

doi: 10.1016/S1097-2765(02)00639-1
Hardy J, Selkoe D J (2002). The amyloid hypothesis of Alzheimer’s disease:progress and problems on the road to therapeutics. Science, 297(5580): 353–356

doi: 10.1126/science.1072994
Hirschey M D, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard D B, Grueter C A, Harris C, Biddinger S, Ilkayeva O R, Stevens R D, Li Y, Saha A K, Ruderman N B, Bain J R, Newgard C B, Farese R V Jr, Alt F W, Kahn C R, Verdin E (2010). SIRT3 regulates mitochondrial fatty-acid oxidation byreversible enzyme deacetylation. Nature, 464(7285): 121–125

doi: 10.1038/nature08778
Ito A, Kawaguchi Y, Lai C H, Kovacs J J, Higashimoto Y, Appella E, Yao T P (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J, 21(22): 6236–6245

doi: 10.1093/emboj/cdf616
Jin Y H, Jeon E J, Li Q L, Lee Y H, Choi J K, Kim W J, Lee K Y, Bae S C (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibitsubiquitination-mediated degradation. J Biol Chem, 279(28): 29409–29417

doi: 10.1074/jbc.M313120200
Joseph S B, Castrillo A, Laffitte B A, Mangelsdorf D J, Tontonoz P (2003). Reciprocal regulation of inflammation and lipid metabolismby liver X receptors. Nat Med, 9(2): 213–219

doi: 10.1038/nm820
Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005). Redox regulation of NF-kappaB activation: distinct redox regulation betweenthe cytoplasm and the nucleus. Antioxid Redox Signal, 7(3―4): 395–403

doi: 10.1089/ars.2005.7.395
Kaeberlein M, Kirkland K T, Fields S, Kennedy B K (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol, 2(9): E296

doi: 10.1371/journal.pbio.0020296
Kaeberlein M, McVey M, Guarente L (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by twodifferent mechanisms. Genes Dev, 13(19): 2570–2580

doi: 10.1101/gad.13.19.2570
Kawahara T L, Michishita E, Adler A S, Damian M, Berber E, Lin M, McCord R A, Ongaigui K C, Boxer L D, Chang H Y, Chua K F (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependentgene expression and organismal life span. Cell, 136(1): 62–74
Kenyon C (2001). A conserved regulatory system foraging. Cell, 105(2): 165–168
Kim D, Nguyen M D, Dobbin M M, Fischer A, Sananbenesi F, Rodgers J T, Delalle I, Baur J A, Sui G, Armour S M, Puigserver P, Sinclair D A, Tsai L H (2007). SIRT1 deacetylase protects against neurodegeneration in models forAlzheimer’s disease and amyotrophic lateral sclerosis. EMBO J, 26(13): 3169–3179

doi: 10.1038/sj.emboj.7601758
Kim S C, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin N V, White M, Yang X J, Zhao Y (2006). Substrate and functional diversityof lysine acetylation revealed by a proteomics survey. Mol Cell, 23(4): 607–618

doi: 10.1016/j.molcel.2006.06.026
Klein W L (2002). Abeta toxicity in Alzheimer’sdisease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int, 41(5): 345–352

doi: 10.1016/S0197-0186(02)00050-5
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006). Resveratrol improves mitochondrial function and protects against metabolic diseaseby activating SIRT1 and PGC-1alpha. Cell, 127(6): 1109–1122
Lee I H, Cao L, Mostoslavsky R, Lombard D B, Liu J, Bruns N E, Tsokos M, Alt F W, Finkel T (2008). A role for the NAD-dependent deacetylaseSirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A, 105(9): 3374–3379

doi: 10.1073/pnas.0712145105
Lesné S, Koh M T, Kotilinek L, Kayed R, Glabe C G, Yang A, Gallagher M, Ashe K H (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440(7082): 352–357
Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell, 132(1): 27–42
Li X, Zhang S, Blander G, Tse J G, Krieger M, Guarente L (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28(1): 91–106

doi: 10.1016/j.molcel.2007.07.032
Li Y, Xu W, McBurney M W, Longo V D (2008). SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab, 8(1): 38–48

doi: 10.1016/j.cmet.2008.05.004
Lin M T, Beal M F (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerativediseases. Nature, 443(7113): 787–795

doi: 10.1038/nature05292
Lin S J, Defossez P A, Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction inSaccharomyces cerevisiae. Science, 289(5487): 2126–2128

doi: 10.1126/science.289.5487.2126
Lu T, Pan Y, Kao S Y, Li C, Kohane I, Chan J, Yankner B A (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994): 883–891

doi: 10.1038/nature02661
Luo J, Nikolaev A Y, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001). Negativecontrol of p53 by Sir2? promotes cell survival under stress. Cell, 107(2): 137–148
Mattson M P, Meffert M K (2006). Roles for NF-kappaB in nerve cell survival, plasticity,and disease. Cell Death Differ, 13(5): 852–860

doi: 10.1038/sj.cdd.4401837
Morley J F, Brignull H R, Weyers J J, Morimoto R I (2002). The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influencedby aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 99(16): 10417–10422

doi: 10.1073/pnas.152161099
Pacholec M, Bleasdale J E, Chrunyk B, Cunningham D, Flynn D, Garofalo R S, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem, 285(11): 8340–8351

doi: 10.1074/jbc.M109.088682
Parker J A, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 37(4): 349–350

doi: 10.1038/ng1534
Peck B, Chen C Y, Ho K K, Di Fruscia P, Myatt S S, Coombes R C, Fuchter M J, Hsiao C D, Lam E W (2010). SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther, 9(4): 844–855

doi: 10.1158/1535-7163.MCT-09-0971
Pinkston-Gosse J, Kenyon C (2007). DAF-16/FOXO targets genes that regulate tumor growthin Caenorhabditis elegans. Nat Genet, 39(11): 1403–1409

doi: 10.1038/ng.2007.1
Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers J T, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve A A, Pasinetti G M (2006). Neuronal SIRT1 activation as a novel mechanism underlyingthe prevention of Alzheimer disease amyloid neuropathology by calorierestriction. J Biol Chem, 281(31): 21745–21754

doi: 10.1074/jbc.M602909200
Rass U, Ahel I, West S C (2007). Defective DNA repair and neurodegenerative disease. Cell, 130(6): 991–1004
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118

doi: 10.1038/nature03354
Rogina B, Helfand S L (2004). Sir2 mediates longevity in the fly through a pathwayrelated to calorie restriction. Proc Natl Acad Sci U S A, 101(45): 15998–16003

doi: 10.1073/pnas.0404184101
Saunders L R, Verdin E (2007). Sirtuins: critical regulators at the crossroads betweencancer and aging. Oncogene, 26(37): 5489–5504

doi: 10.1038/sj.onc.1210616
Solomon J M, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano P S, Huber L J (2006). Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival followingDNA damage. Mol Cell Biol, 26(1): 28–38
Sun Y, Yao J, Kim T W, Tall A R (2003). Expression of liver X receptor target genes decreasescellular amyloid beta peptide secretion. J Biol Chem, 278(30): 27688–27694

doi: 10.1074/jbc.M300760200
Tanner K G, Landry J, Sternglanz R, Denu J M (2000). Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a uniqueproduct, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A, 97(26): 14178–14182

doi: 10.1073/pnas.250422697
Tanzi R E, Bertram L (2005). Twenty years of the Alzheimer’s disease amyloidhypothesis: a genetic perspective. Cell, 120(4): 545–555
Tissenbaum H A, Guarente L (2001). Increased dosage of a sir-2 gene extends lifespan inCaenorhabditis elegans. Nature, 410(6825): 227–230

doi: 10.1038/35065638
Vaziri H, Dessain S K, Ng Eaton E, Imai S I, Frye R A, Pandita T K, Guarente L, Weinberg R A (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107(2): 149–159
Wood J G, Rogina B, Lavu S, Howitz K, Helfand S L, Tatar M, Sinclair D (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430(7000): 686–689

doi: 10.1038/nature02789
Yeung F, Hoberg J E, Ramsey C S, Keller M D, Jones D R, Frye R A, Mayo M W (2004). Modulation of NF-kappaB-dependent transcription andcell survival by the SIRT1 deacetylase. EMBO J, 23(12): 2369–2380

doi: 10.1038/sj.emboj.7600244
Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan E G, Landreth G E, Vinters H V, Tontonoz P (2007). Attenuation of neuroinflammation and Alzheimer’sdisease pathology by liver x receptors. Proc Natl Acad SciU S A, 104(25): 10601–10606

doi: 10.1073/pnas.0701096104
[1] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[2] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[3] Chenglong Yu,Min Zhang,Xianan Qin,Xiaofeng Yang,Hyokeun Park. Real-time imaging of single synaptic vesicles in live neurons[J]. Front. Biol., 2016, 11(2): 109-118.
[4] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[5] B. Preethi,V. Shanthi,K. Ramanathan. Reckoning the SIX1 mutation’s effects in branchio-oto-renal syndrome — A bioinformatics approach[J]. Front. Biol., 2015, 10(5): 448-457.
[6] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[7] Yingjun LIU, Jiawei ZHOU. Oligodendrocytes in neurodegenerative diseases[J]. Front Biol, 2013, 8(2): 127-133.
[8] Weiguo DONG, Fang HUANG, Hongwen HE. Melatonin and mitochondria in aging[J]. Front Biol, 2010, 5(6): 532-539.
[9] LU Xianwen, SUN Kun, MA Ruijun, ZHANG Hui, SU Xue, WANG Mingli. Fruits foraging patterns and seed dispersal effect of frugivorous birds on Hippophae rhamnoides sinensis[J]. Front. Biol., 2006, 1(3): 318-322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed