Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (3) : 246-254    https://doi.org/10.1007/s11515-010-0027-4
REVIEW
Proteomics characteristics of rice leaves in response to environmental factors
Sining KANG1, Sixue CHEN2, Shaojun DAI1()
1. Key Laboratory of Forestry Tree Genetics Improvement and Biotechnology, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; 2. Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rice is an important food crop worldwide. Its productivity has been influenced by various abiotic and biotic factors including temperature, drought, salt, microbe, ozone, hormone and glyphosate. The responses of plants to stress are regulated by multiple signaling pathways, and the mechanisms of leaf growth and development in response to stress remain unclear to date. Recently, proteomics studies have provided new evidence for better understanding the mechanisms. The proteins in response to different stress conditions are mainly involved in photosynthesis, signal transduction, transcription, protein synthesis and destination, defense response, cytoskeleton, energy, cell wall and other metabolism. In addition, some stress type-specific proteins have been identified, such as small heat shock proteins under temperature stress, S-like RNase homolog and actin depolymerizing factor under drought stress, ascorbate peroxidase and lipid peroxidation under salt stress, probenazole-inducible protein and rice pathogenesis-related proteins under blast fungus. Many of the proteins including ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), molecular chaperones, antioxidases and S-adenosylmethionine synthetase play very important roles in leaves. This paper reviews the proteomic characterization of rice leaves in response to various environmental factors.

Keywords rice      leaf      proteomics      environmental factor     
Corresponding Author(s): DAI Shaojun,Email:daishaojun@hotmail.com   
Issue Date: 01 June 2010
 Cite this article:   
Sining KANG,Sixue CHEN,Shaojun DAI. Proteomics characteristics of rice leaves in response to environmental factors[J]. Front Biol, 2010, 5(3): 246-254.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0027-4
https://academic.hep.com.cn/fib/EN/Y2010/V5/I3/246
1 Abbasi F M, Komatsu S (2004). A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics , 4: 2072–2081
doi: 10.1002/pmic.200300741
2 Agrawal G K, Jwa N, Rakwal R (2002a). A pathogen-induced novel rice (Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione S-transferases. Plant Sci , 163: 1153–1160
doi: 10.1016/S0168-9452(02)00331-X
3 Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H (2002b). Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics , 2: 947–959
doi: 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
4 Ahsan N, Lee D G, Kim K H, Alam I, Lee S H, Lee K Won, Lee H, Lee B H (2010). Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere , 78: 224–231
doi: 10.1016/j.chemosphere.2009.11.004
5 Ahsan N, Lee D G, Lee K W, Alam I, Lee S H, Bahk J D, Lee B H (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem , 46: 1062–1070
doi: 10.1016/j.plaphy.2008.07.002
6 Bokhari S A, Wan X, Yang Y, Zhou L, Tang W, Liu J (2007). Proteomic response of rice seedling leaves to elevated CO2 levels. J Proteome Res , 6: 4624–4633
doi: 10.1021/pr070524z
7 Borden K L, Freemont P S (1996). The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol , 6: 395–401
doi: 10.1016/S0959-440X(96)80060-1
8 Borsani O, Diaz P, Agius M F, Valpuesta V, Monza J (2001). Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci , 161: 757–763
9 Chaoui A, Mazhoudi S, Ghorbal M H, Ferjani E E (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci , 127: 139–147
doi: 10.1016/S0168-9452(97)00115-5
10 Cho K, Shibato J, Agrawal G K, Jung Y H, Kubo A, Jwa N S, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008). Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res , 7: 2980–2998
doi: 10.1021/pr800128q
11 Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics , 5: 3162–3172
doi: 10.1002/pmic.200401148
12 Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006). Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics , 6: 2504–2529
doi: 10.1002/pmic.200401351
13 Desimone M, Henke A, Wagner E (1996). Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol , 111: 789–796
14 Dooki A D, Mayer-Posner F J, Askari H, Zaiee A A, Salekdeh G H (2006). Proteomic responses of rice young panicles to salinity. Proteomics , 6: 6498–6507
doi: 10.1002/pmic.200600367
15 Edwards R, Dixon D P (2005). Plant glutathione transferases. Methods Enzymol , 401: 169–186
doi: 10.1016/S0076-6879(05)01011-6
16 Edwards R, Dixon D P, Walbot V (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci , 5: 193–198
doi: 10.1016/S1360-1385(00)01601-0
17 Feng Y W, Komatsu S, Furukawa T, Koshiba T, Kohno Y (2008). Proteome analysis of proteins responsive to ambient and elevated ozone in rice seedlings. Agri Eco Environ , 125: 255–265
doi: 10.1016/j.agee.2008.01.018
18 Ge C, Wang Z, Wan Di, Ding Y, Wang Y, Shang Q, Luo S (2009). Proteomic study for responses to cadmium stress in rice seedlings. Rice Science , 16: 33–44
doi: 10.1016/S1672-6308(08)60054-2
19 Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science , 296: 92–100
doi: 10.1126/science.1068275
20 Hajduch M, Rakwal R, Agrawal G K, Yonekura M, Pretova A (2001). High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stressrelated proteins. Electrophoresis , 22: 2824–2831
doi: 10.1002/1522-2683(200108)22:13<2824::AID-ELPS2824>3.0.CO;2-C
21 Han F, Chen H, Li X J, Yang M F, Liu G S, Shen S H (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta , 1794: 1625–1634
22 Hashimoto M, Komatsu S (2007). Proteomics analysis of rice seedlings during cold stress. Proteomics , 7:1293–1302
doi: 10.1002/pmic.200600921
23 He H, Li J (2008). Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun , 371: 883–888
doi: 10.1016/j.bbrc.2008.05.001
24 Kachroo P, Lee K H, Schwerdel C, Bailey J E, Chattoo B B (1997). Analysis of host-induced response in the rice blast fungus Magnaporthe grisea using two-dimensional polyacrylamide gel electrophoresis. Electrophoresis , 18: 163–169
doi: 10.1002/elps.1150180129
25 Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell , 13: 889–905
26 Ke Y, Han G, He H, Li J (2009). Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun , 379: 133–138
doi: 10.1016/j.bbrc.2008.12.067
27 Kim D W (2005). A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis , 26: 4521–4539
doi: 10.1002/elps.200500334
28 Kim H J, Song E J, Lee K J (2002). Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J Biol Chem , 277: 21193–23207
29 Kim S T, Kim S G, Hwang D H, Kang S Y, Kim H J, Lee B H, Lee J J, Kang K Y (2004). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics , 4: 3569–3578
doi: 10.1002/pmic.200400999
30 Koller A, Washburn M P, Lange B M, Andon N L, Deciu C, Haynes P A, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates J R (2002). Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci , 99: 11969–11974
doi: 10.1073/pnas.172183199
31 Konishi H, Ishiguro K, Komatsu S (2001). A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics , 1: 1162–1171
doi: 10.1002/1615-9861(200109)1:9<1162::AID-PROT1162>3.0.CO;2-S
32 Konishi H, Komatsu S (2003). A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol Pharm Bull , 26: 401–408
doi: 10.1248/bpb.26.401
33 Lee D G, Ahsan N, Lee S H, Kang K Y, Bahk J D, Lee I J, Lee B H (2007a). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics , 7: 3369–3383
doi: 10.1002/pmic.200700266
34 Lee D G, Ahsan N, Lee S H, Kang K Y, Lee J J, Lee B H (2007b). An approach to identify cold-induced low-abundant proteins in rice leaf. C R Biol , 330: 215–225
doi: 10.1016/j.crvi.2007.01.001
35 Lee K, Bae D W, Kim S H, Han H J, Liu X, Park H C, Lim C O, Lee S Y, Chung W S (2010). Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol , 167: 161–168
doi: 10.1016/j.jplph.2009.09.006
36 Lin Y Z, Chen H Y, Kao R, Chang S P, Chang S J, Lai E M (2008). Proteomic analysis of rice defense response induced by probenazole. Phytochemistry , 69: 715–728
doi: 10.1016/j.phytochem.2007.09.005
37 Lutts S, Kinet J M, Bouharmont J (1996). Ethylene production by leaves of rice Oryza sativa L. in relation to salinity tolerance and exogenous putrescine application. Plant Science , 116: 15–25
doi: 10.1016/0168-9452(96)04379-8
38 Mahmood T, Kakishima M, Komatsu S (2007). Proteomic analysis of jasmonic acid-regulated proteins in rice leaf blades. Protein Pep Lett , 14: 311–319
doi: 10.2174/092986607780363961
39 Maksymiec W (1997). Effect of copper on cellular processes in higher plants. Photosynthetica , 34: 321–342
doi: 10.1023/A:1006818815528
40 Mittler R, Zilinskas B A (1994). Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J , 5: 397–405
doi: 10.1111/j.1365-313X.1994.00397.x
41 Nozu Y, Tsugita A, Kamijo K (2006). Proteomic analysis of rice leaf, stem, and root tissues during growth course. Proteomics , 6: 3665–3670
doi: 10.1002/pmic.200600043
42 Osmond C B, Grace S C (1995). Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot , 46: 1351–1362
43 Parker R, Flowers T J, Moore A L, Harpham N V (2006). An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot , 57: 1109–1118
doi: 10.1093/jxb/erj134
44 Portis A R Jr (2003). Rubisco activase-Rubisco’s catalytic chaperone. Photosynth Res , 75: 11–27
doi: 10.1023/A:1022458108678
45 Rakwal R, Komatsu S (2004). Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Mol Biol Rep , 31: 217–230
doi: 10.1007/s11033-005-2710-0
46 Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research , 2: 1131–1145
47 Scafaro A P, Haynes P A, Atwell B J (2010). Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot , 61: 191–202
doi: 10.1093/jxb/erp294
48 Shen S, Jing Y, Kuang T (2003). Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics , 3: 527–535
doi: 10.1002/pmic.200390066
49 Shen S, Matsubae M, Takao T, Tanaka N, Komatsu S (2002). A proteomic analysis of leaf sheaths from rice. J Biochem , 132: 613–620
50 Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C (2004). Organisation and struc- tural evolution of the rice glutathione S- transferase gene family. Mol Genet Genomics , 271: 511–521
doi: 10.1007/s00438-004-1006-8
51 Tanaka N, Konishi H, Khan M M, Komatsu S (2004). Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genomics , 270: 485–496
doi: 10.1007/s00438-003-0929-9
52 Thomashow M F (2001). So what’s new in the field of plant cold acclimation? Plant Physiol , 125: 89–93
doi: 10.1104/pp.125.1.89
53 Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K (2005). Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol Plant Microbe Interact , 18: 52–59
doi: 10.1094/MPMI-18-0052
54 Yan S, Tang Z, Su W, Sun W (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics , 5: 235–244
doi: 10.1002/pmic.200400853
55 Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics , 5: 484–496
doi: 10.1074/mcp.M500251-MCP200
56 Yang P, Chen H, Liang Y, Shen S (2007a). Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics , 7: 2459–2468
doi: 10.1002/pmic.200600215
57 Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007b). Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics , 7: 3358–3368
doi: 10.1002/pmic.200700207
58 Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science , 296: 79–92
doi: 10.1126/science.1068037
59 Yu C L, Yan S P, Wang C C, Hu H T, Sun W N, Yan C Q, Chen J P, Yang L (2008). Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry , 69: 1989–1996
doi: 10.1016/j.phytochem.2008.04.006
60 Yuzo N, Akira T, Kenichi K (2006). Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics , 6: 3665–3670
doi: 10.1002/pmic.200600043
61 Zang X, Komatsu S (2007). A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry , 68: 426–437
doi: 10.1016/j.phytochem.2006.11.005
62 Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill G G, Xu N, Liu S (2005). Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics , 5: 961–972
doi: 10.1002/pmic.200401131
63 Zhao X C, Schaller G E (2004). Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Letters , 562: 189–192
doi: 10.1016/S0014-5793(04)00238-8
64 Zhong B, Karibe H, Komatsu S, Ichimura H, Nagamura Y, Sasaki T, Hirano H (1997). Screening of rice (Oryza sativa) genes from a cDNA based on the sequence data-file of proteins separated by two-dimensional electrophoresis. Breeding Sci , 47: 245–251
[1] Jinwei Suo,Sixue Chen,Qi Zhao,Lei SHI,Shaojun Dai. Fern spore germination in response to environmental factors[J]. Front. Biol., 2015, 10(4): 358-376.
[2] Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
[3] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
[4] Xiao-Shan YUE, Amanda B. HUMMON. Mass spectrometry-based phosphoproteomics in cancer research[J]. Front Biol, 2012, 7(6): 566-586.
[5] Robert CUNNINGHAM, Di MA, Lingjun LI. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery[J]. Front Biol, 2012, 7(4): 313-335.
[6] Wei HUANG, Ting BI, Weining SUN. Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress[J]. Front Biol, 2010, 5(6): 546-555.
[7] Wei HUANG, Lin WU, Guozhen LIU, Siqi LIU, . Protein microarray: A key approach of proteomics[J]. Front. Biol., 2010, 5(4): 331-338.
[8] Wenxiong LIN, Changxun FANG, Ting CHEN, Ruiyu LIN, Jun XIONG, Haibin WANG. Rice allelopathy and its properties of molecular ecology[J]. Front Biol, 2010, 5(3): 255-262.
[9] Ming ZHOU, Lianfeng GU, Pingchuan LI, Xianwei SONG, Liya WEI, Zhiyu CHEN, Xiaofeng CAO. Degradome sequencing reveals endogenous small RNA targets in rice ( Oryza sativa L. ssp . indica )[J]. Front. Biol., 2010, 5(1): 67-90.
[10] Jinhuan LIU, Dehui ZENG, Zhiping FAN, David PEPPER, Guangsheng CHEN, Lei ZHONG, . Leaf traits indicate survival strategies among 42 dominant plant species in a dry, sandy habitat, China[J]. Front. Biol., 2009, 4(4): 477-485.
[11] Bianfang HU, Shulian XIE, Jia FENG, Meng ZHANG. Study on the phenology of Chara vulgaris in Xin’an Spring, north China[J]. Front Biol Chin, 2009, 4(2): 207-213.
[12] YANG Guohua, TU Sansi, LI Shaoqing, FENG Lingling, KONG Jin, LI Hui, LI Yangsheng. Analysis of quantitative trait loci underlying the traits related to chlorophyll content of the flag leaf in rice[J]. Front. Biol., 2008, 3(4): 443-448.
[13] ZHAO Xiaofeng, WANG Shu, SHI Xuemin, WEN Jingrong. Proteomics analysis of cerebral cortex in Wistar rats[J]. Front. Biol., 2008, 3(4): 419-427.
[14] CHANG Wei, LI Shuyun, HU Hong, FAN Yayu. Photosynthetic characteristics of three varieties of “Oriental Hybrids” in the central areas of Yunnan Province, China[J]. Front. Biol., 2008, 3(4): 453-458.
[15] YAO Chunxin, XU Minghui, TIAN Wenzhong, TANG Zuoshun. Potential variability of trans-lysozyme gene rice under ecological conditions of Yunnan Province, China[J]. Front. Biol., 2008, 3(4): 449-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed