Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (1) : 49-61    https://doi.org/10.1007/s11708-013-0285-3
REVIEW ARTICLE
Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade
Yunxia GAO1, Lei WANG1, Haiyan LI1, Jing LIU1,2()
1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 Download: PDF(548 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

Keywords liquid metal      cryogenics      low melting point      thermal management      aircraft      liquid cooling      space exploration     
Corresponding Author(s): Jing LIU   
Issue Date: 05 March 2014
 Cite this article:   
Yunxia GAO,Lei WANG,Haiyan LI, et al. Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Front. Energy, 2014, 8(1): 49-61.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-013-0285-3
https://academic.hep.com.cn/fie/EN/Y2014/V8/I1/49
Fig.1  Typical cryogenic devices which can work under temperatures below zero degree centigrade
Fig.2  Photo various spacecrafts
Metal/ alloy Melting point/°C Evaporation point/°C Evaporation pressure/mmHg Specific heat/(kJ·kg−1·K−1) Density/
(kg·m−3)
Thermal conductivity/
(W·m−1·°C−1)
Surface tension/(N·m−1)
Mercury − 38.87 356.65 1.68 × 10 −3a) 0.139a) 13546a) 8.34a) 0.455a)
Gallium 29.8 2204.8 10−12 0.37n) 5907n) 29.4n) 0.707n)
Galinstan − 19 >1300 <10 −8d) * 6440a) 16.5 0.718a)
Cesium 28.65 2023.84 10 −6c) 0.236c) 1796c) 17.4c) 0.248c)
Rubidium 38.85 685.73 6 × 10−6 0.363m) 1470m) 29.3m) 0.081
Potassium 63.2 756.5 6 × 10−7 0.78 664m) 54.0m) 0.103c)
Sodium 97.83 881.4 10−10 1.38 926.9c) 86.9c) 0.194c)
Lithium 186 1342.3 10−10 4.389b) 515b) 41.3b) 0.405b)−
Na23.3K76.7 − 12.6 785 2.5 × 10 −8c) 0.9538n) 855c) 23 0.11m)
Tab.1  Thermal properties of typical metal and alloys with low melting point [4147]
Fig.3  Appearance of mercury and its typical applications
Fig.4  A phase diagram for GaIn alloy [57]
Alloys Melting point/°C Alloys Melting point/°C
Galinstan − 19 GaIn29Zn4 13
GaIn15Sn13Zn1 3 Ga75In25 16
GaIn25Sn13 5 GaSn12 17
Ga62.5In21.5Sn16 10.7 GaIn12Zn16 17
Ga69.8In17.6Sn12.6 10.8 GaSn8 20
GaIn60Sn10 12 GaZn5 25
Tab.2  Typical low-melting-point gallium alloys [5961]
Fig.5  Applications of Na-K alloy in SNAP-10A reactor [64] and CPU coolers [68]
Alloys Melting point/°C Eutectic state
Cs73.71K22.14Na4.14 − 78.2 Yes
Cs77K23 − 37.5 No
Cs94.6Na5.4 − 31.83 Yes
K76.7Na23.3 − 12.7 Yes
K78Na22 − 11 No
Na6.2Rb93.8 − 4.5 Yes
Tab.3  Typical alkali metal containing alloys [69,70]
Fig.6  Calculated phase diagrams of the Cs-K system and comparison with the experimental data [74]
Fig.7  A phase diagram for a fictitious binary chemical mixture (with the two components denoted by α and β) used to depict the eutectic composition, temperature, and point (L denotes liquid state.)
Fig.8  Phase diagram of NaK alloy [81]
Metal Maximum subcooling/°C T/Tm σ
Bulk Aggregates of small droplets
Tin 31 110 0.78 65
Mercury 14 46 0.80 23
Gallium 55 70 0.75 55
Tab.4  Maximum subcooling obtained in bulk and small droplets [90]
Fig.9  Temperature of gallium in solidifying process [41]
Ga/% In/% Sn/% Ag/% Bi/% Physical state
62.5 21.5 16 0 0 Solid
61.99 25 13 0 0 Solid
67.98 20.01 10.5 1.51 0 Liquid
59.52 20.48 15.24 4.76 0 Solid
67.99 20 10.5 0 1.51 Solid
68.10 19.9 10.5 1.1 0.4 Liquid
68 20 10.5 0.75 0.75 Liquid
67.98 20.01 10.5 0.38 1.13 Solid
Tab.5  Compositions of a plurality of alloys and their physical state at 4°C
Fig.10  Application areas of liquid metal with a melting temperature below zero degree centigrade
Fig.11  Characteristics of new optimized coolants
1 I Chowdhury, R Prasher, K Lofgreen, G Chrysler, S Narasimhan, R Mahajan, D Koester, R Alley, R Venkatasubramanian. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235 −238
https://doi.org/10.1038/nnano.2008.417 pmid: 19350033
2 M Arik, C Becker, S Weaver, J Petroski. Thermal management of LEDs: package to system. In: 3rd International Conference on Solid State Lighting. San Diego, CA, 2003, 64 −75
3 Y Tzuk, A Tal, S Goldring, Y Glick, E Lebiush, G Kaufman, R Lavi. Diamond cooling of high-power diode-pumped solid-state lasers. IEEE Journal of Quantum Electronics, 2004, 40(3): 262−269
https://doi.org/10.1109/JQE.2003.823028
4 D Strassberg. Cooling hot microprocessors. EDN (European Edition), 1994, 39: 40−48
5 C Lundquist, V P Carey. Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Proceedings of the 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2001, 168−173
6 H Xie, A Ali, R Bhatia. Use of heat pipes in personal computers. In: Proceedings of the Intersociety Conference—Thermo Mechanical Phenomena in Electronic Systems. Seattle, USA, 1998, 442−448
7 T Nquyen, M Mochizuki, K Mashiko, Y Saito, I Sauciuc. Use of heat pipe/heat sink for thermal management of high performance CPUs. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2000, 76−79
8 W Rao, Y X Zhou, J Liu, Z S Deng, K Q Ma, S H Xiang. Vapor-compression-refrigerator enabled thermal management of high performance computer. International Congress of Refrigeration, Beijing, China, 2007
9 C Amon, J Murthy, S C Yao, S Narumanchi, C F Wu, C C Hsieh. MEMS-enabled thermal management of high-heat-flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science, 2001, 25(5): 231−242
https://doi.org/10.1016/S0894-1777(01)00071-1
10 D B Tuckerman, R F W Pease. High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, 2(5): 126−129
https://doi.org/10.1109/EDL.1981.25367
11 K Q Ma, J Liu. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384−402
https://doi.org/10.1007/s11708-007-0057-3
12 Y G Deng, J Liu. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer, 2010, 46(11−12): 1327−1334
https://doi.org/10.1007/s00231-010-0658-7
13 Y G Deng, J Liu. A liquid metal cooling system for the thermal management of high power LEDs. International Communications in Heat and Mass Transfer, 2010, 37(7): 788−791
https://doi.org/10.1016/j.icheatmasstransfer.2010.04.011
14 K Q Ma, J Liu, S H Xiang, K W Xie, Y X Zhou. Study of thawing behavior of liquid metal used as computer chip coolant. International Journal of Thermal Sciences, 2009, 48(5): 964−974
https://doi.org/10.1016/j.ijthermalsci.2008.08.005
15 D Dai, Y Zhou, J Liu. Liquid metal based thermoelectric generation system for waste heat recovery. Renewable Energy, 2011, 36(12): 3530−3536
https://doi.org/10.1016/j.renene.2011.06.012
16 Y G Deng, J Liu. Heat spreader based on room-temperature liquid metal. ASME Journal of Thermal Science and Engineering Applications, 2012, 4(2): 024501
https://doi.org/10.1115/1.4006274
17 P P Li, J Liu. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Applied Physics Letters, 2011, 99(9): 094106–3
https://doi.org/10.1063/1.3635393
18 J Liu, Y X Zhou. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent 02131419.5. 2002
19 Y G Deng, J Liu. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. ASME Journal of Electronic Packaging, 2010, 132(3): 031009
https://doi.org/10.1115/1.4002012
20 J Ryall. Space probe set to “collide” with earth to simulate approaching asteroid. 2009-06-11
21 S Weinberger. Lockheed trumps boeing for new GPS. 2008-05-16
22 R Coppinger. ESA’s manned ARV team despondent over cash.
23 THERMACORE. Satellite thermal control: unique products for unique challenges. 2013-05-26
24 Z J Zuo, M T North, K L Wert. High heat flux heat pipe mechanism for cooling of electronics. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 220−225
https://doi.org/10.1109/6144.926386
25 J Haws. E Short. Method and apparatus for cooling with phase change materials and heat pipes. European Patent 00965034.2–2220–US0025297. 2002
26 L Meyer, S Dasgupta, D Shaddock, J Tucker. R Fillion. A silicon-carbide micro-capillary pumped loop for cooling high power devices. In: 9th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management. Austin, USA, 1993, 364−368
27 D Butler, J Ku. T Swanson. Loop heat pipes and capilary pump loops—an application perspective. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 49−56
28 E L Golliher. Microscale technology electronics cooling overview. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 250−257
29 M Ohadi, J Qi. Thermal management of harsh environment electronics. Microscale Heat Transfer Fundamentals and Applications, 2005, 193: 479−498
https://doi.org/10.1007/1-4020-3361-3_26
30 S N Heffington, W Z Black, A Glezer. Vibration-induced droplet atomization heat transfer cell for high-heat flux dissipation. Thermal Challenges in Next Generation Electronic Systems (THERMES-2002). Santa Fe, USA, 2002
31 X Fan, G Zeng, C LaBounty, E Croke, D Vashaee, A Shakouri, C Ahn, J E Bowers. High cooling power density SiGe/Si micro coolers. Electronics Letters, 2001, 37(2): 126−127
https://doi.org/10.1049/el:20010096
32 C Zimm, A Jastrab, A Sternberg, V Jr Pecharsky, K Gschneidner, M Osborne, I Anderson. Description and performance of a near-room temperature magnetic refrigerator. Advances in Cryogenic Engineering, 1998, 43: 1759−1766
33 G W Swfit. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York: Acoustical Society of America (ASA) Publications, 2002
34 V P Dawson, M D Bowles. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket 1958−2002. Washington, DC: NASA Office of External Relations, 2004
35 D W Kwon, R J Sedwick. Cryogenic heat pipe for cooling high temperature superconductors. Cryogenics, 2009, 49(9): 514−523
https://doi.org/10.1016/j.cryogenics.2009.07.005
36 T Purvis, J M Vaughn, T L Rogers, X Chen, K A Overhoff, P Sinswat, J Hu, J T McConville, K P Johnston, R O Williams 3rd. Cryogenic liquids, nanoparticles, and microencapsulation. International Journal of Pharmaceutics, 2006, 324(1): 43−50
https://doi.org/10.1016/j.ijpharm.2006.04.012 pmid: 16814968
37 Y Yildiz, M Nalbant. A review of cryogenic cooling in machining processes. International Journal of Machine Tools & Manufacture, 2008, 48(9): 947−964
https://doi.org/10.1016/j.ijmachtools.2008.01.008
38 S Y Hong. Economical and ecological cryogenic machining. Journal of Manufacturing Science and Engineering, 2001, 123(2): 331−338
https://doi.org/10.1115/1.1315297
39 J C Pacio, C A Dorao. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 2011, 51(7): 366−379
https://doi.org/10.1016/j.cryogenics.2011.04.005
40 R S R Gorla. Rapid calculation procedure to determine the pressurizing period for stored cryogenic fluids. Applied Thermal Engineering, 2010, 30(14−15): 1997−2002
https://doi.org/10.1016/j.applthermaleng.2010.05.002
41 J Liu. Development of new generation miniaturized chip-cooling device using metal with low melting point or its alloy as the cooling fluid. In: Proceedings of the International Conference on Micro Energy Systems. Sanya, China, 2005, 89−97
42 R K Smither. Liquid metal cooling of synchrotron optics. In: Society of Photo-Optical Instrumentation Engineers (SPIE) International Symposium on Optical Applied Science and Engineering, San Diego, USA, 1992, 116−134
43 T Iida, R I L Guthrie. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993
44 M Shimoji. Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State. New York: Academic Press, 1977
45 C Karcher, V Kocourek, D Schulze. Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop. In: International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany, 2003, 105−110
46 Wikipedia. NaK. 2013-05-26
47 D H Bradhurst, A S Buchanan. Surface properties of liquid sodium and sodium potassium alloys in contact with metal-oxide surfaces. Australian Journal of Chemistry, 1961, 14(3): 397−408
https://doi.org/10.1071/CH9610397
48 K Y Chu. Sodium loses its luster: A liquid metal that's not really metallic.
49 Wikipedia. Mercury (element). 2013-05-26
50 F Senese. Why is mercury a liquid at STP? 2013-05-26
51 L J Norrby. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? Journal of Chemical Education, 1991, 68(2): 110−113
https://doi.org/10.1021/ed068p110
52 D R Lide. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. 2005, 4.125−4.126
53 MDCH. Mercury and Your Health.
54 R Lovegrove. Artemide Mercury Suspension. 2013-05-26
55 P E I Dental Amalgam. 2013-05-26
56 C Vargel, M Jacques, M P Schmidt. Corrosion of Aluminium. Elsevier, 2004, 158
57 T J Anderson, I Ansara. The Ga-Sn (Gallium-Tin) system. Journal of Phase Equilibria, 1992, 13(2): 181−189
https://doi.org/10.1007/BF02667485
58 P Surmann, H Zeyat. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry, 2005, 383(6): 1009−1013
https://doi.org/10.1007/s00216-005-0069-7 pmid: 16228199
59 U Ghoshal, D Grimm, S Ibrani, C Johnston, A Miner. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2005, 16−19
60 G Y Liu, H D Tan. Gallium and gallium compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials. Beijing: Chemical Industry Press, 1994, 329−335(in Chinese)
61 M Schormann, K S Klimek, H Hatop, S P Varkey, H W Roesky, C Lehmann, C Röpken, R Herbst-Irmer, M Noltemeyer. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. Journal of Solid State Chemistry, 2001, 162(2): 225−236
https://doi.org/10.1006/jssc.2001.9278
62 H Y Li, J Liu. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Frontiers in Energy, 2011, 5(1): 20−42
https://doi.org/10.1007/s11708-011-0139-9
63 D N Kagan, G A Krechetova, E E Shpilrain. Elaborating and applying a new method of Gibbs energy determination for multicomponent alkali-metal coolants. Journal of Physics: Conference Series, 2008, 98(3): 032007
https://doi.org/10.1088/1742-6596/98/3/032007
64 EnviroReporter.com. SSFL Area IV-SNAP. 2013-05-27
65 R W Dyson, B Penswick, M Robbie, S M Geng. Investigation of liquid metal heat exchanger designs for fission surface power. In: Sixth International Energy Conversion Engineering Conference (IECEC). Cleveland, USA, 2008, 1−6
66 H Klinkrad. Space Debris: Models and Risk Analysis. Springer, 2006, 83
67 K W Xie. Study on the liquid metal cooling method for thermal management of computer. Dissertation for the Master′s Degree. Beijing: the Chinese Academy of Science, 2009: 58−76
68 H Butler. Danamics LMX Superleggera Cooler Review. 2013-05-28
69 R W Oshe. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Oxford. UK: Blackwell Scientific Publications Ltd, 1985, 987
70 Wikipedia. Fusible alloy. 2013-05-28
71 E Rinck. Diagram of solidification and electric conductivityof the potassium-cesium alloys. Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Science, 1936, 203: 255−257
72 U Shmueli, V Steinberg, T Sverbilova, A Voronel. New crystalline phases of an equiatomic K-Cs alloy at low temperature. Journal of Physics and Chemistry of Solids, 1981, 42(1): 19−22
https://doi.org/10.1016/0022-3697(81)90005-6
73 A Simon, W Brumer, B Hillenkotter, H J Kullmann. Novel compounds between potassium and cesium. Zeitschrift fur Anorganische und Allgemeine Chemie, 1976, 419: 253−274
https://doi.org/10.1002/zaac.19764190306
74 X Ren, C R Li, Z M Du, C P Guo. Thermodynamic assessments of six binary systems of alkali metals. Calphad, 2011, 35(3): 446−454
https://doi.org/10.1016/j.calphad.2011.06.005
75 N Saunders, A P Miodownik. CALPHAD (Calculation of Phase Diagrams—A Comprehensive Guide. Elsevier Science Ltd., 1998
76 L Kaufman, H Bernstein. Computer Calculation of Phase Diagrams. New York: Academic Press, 1970
77 Wikipedia. Eutectic system. 2013-05-28
78 F Von Buch, J Lietzau, B L Mordike, A Pisch, R Schmid-Fetzer. Development of Mg-Sc-Mn alloys. Materials Science and Engineering A, 1999, 263(1): 1−7
https://doi.org/10.1016/S0921-5093(98)01040-5
79 J Grobner, R Schmid-Fetzer. Selection of promising quaternary candidates from Mg–Mn–(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys. Journal of Alloys and Compounds, 2001, 320(2): 296−301
https://doi.org/10.1016/S0925-8388(00)01480-8
80 M Ohno, D Mirkovic, R Schmid-Fetzer. Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Materials Science and Engineering A, 2006, 421(1−2): 328−337
https://doi.org/10.1016/j.msea.2006.02.006
81 R Z Tang, R Z Tian. Binary eutectic phase diagram and the crystal structures of intermediate phase. Changsha:Zhongnan University Press, 2009, 736 (in Chinese)
82 W H Newhouse, A F Hagner, G W Devore. Structural control in the formation of gneisses and metamorphic rocks. Science, 1949, 109(2825): 168−169
https://doi.org/10.1126/science.109.2825.168 pmid: 17791298
83 L Wang, J Liu. Discontinuous structural phase transition of liquid metal and alloys. Physics Letters [Part A], 2004, 328(2−3): 241−245
https://doi.org/10.1016/j.physleta.2004.06.025
84 Y N Zhang, L Wang, W M Wang, J K Zhou. Structural transition of sheared-liquid metal in quenching state. Physics Letters [Part A], 2006, 355(2): 142−147
https://doi.org/10.1016/j.physleta.2006.02.020
85 K N Prabhu, B N Ravishankar. Effect of modification metal treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A, 2003, 360(1−2): 293−298
https://doi.org/10.1016/S0921-5093(03)00467-2
86 J H Shim, S C Lee, B J Lee, J Y Suh, Y W Cho. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth, 2003, 250(3−4): 558−564
https://doi.org/10.1016/S0022-0248(02)02490-9
87 H Li, X F Bian, G H Wang. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Materials Science and Engineering A, 2001, 298(1−2): 245−250
https://doi.org/10.1016/S0921-5093(01)01187-X
88 X S Chen, J J Zhao, Q Sun, F Liu, G Wang, X C Shen. Surface thermal stability of nickel clusters. Physica Status Solidi. B, Basic Research, 1996, 193(2): 355−361
https://doi.org/10.1002/pssb.2221930210
89 T Hattori, T Kinoshita, N Taga, Y Takasugi, T Mori, K Tsuji. Pressure and temperature dependence of the structure of liquid InSb. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(6): 064205
https://doi.org/10.1103/PhysRevB.72.064205
90 D Turnbull. The Subcooling of liquid metals. Journal of Applied Physics, 1949, 20(8): 817
https://doi.org/10.1063/1.1698534
91 T Li, Y G Lv, J Liu, Y X Zhou. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung im Ingenieurwesen, 2005, 70(4): 243−251
https://doi.org/10.1007/s10010-006-0037-1
92 Z Liu, Y Bando, M Mitome, J H Zhan. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Physical Review Letters, 2004, 93(9): 095504
https://doi.org/10.1103/PhysRevLett.93.095504 pmid: 15447113
93 D Platzek. Liquid metal undercooled below its Curie temperature. Physical Review Letters, 1994, 65(13): 1723−1724
94 B B Wei, G C Yang, Y H Zhon. High undercooling and rapid solidification of Ni 32.5%Sn eutectic alloy. Acta Metallurgica et Materialia, 1991, 39(6): 1249−1258
https://doi.org/10.1016/0956-7151(91)90212-J
95 R P Liu, T Volkraann, D M Herlach. Undereooling and solidification of Si by electromagnetic levitation. Acta Materialia, 2001, 49(3): 439−444
https://doi.org/10.1016/S1359-6454(00)00330-X
96 W H Hofmeister, M B Robinson, R J Bayuzick. Undercooling of pure metals in a containerless, microgravity environment. Applied Physics Letters, 1986, 49(20): 1342−1344
https://doi.org/10.1063/1.97372
97 L Bosio, C G Windsor. Observation of a metastability limit in liquid gallium. Physical Review Letters, 1975, 35(24): 1652−1655
https://doi.org/10.1103/PhysRevLett.35.1652
98 A D Cicco. Phase transitions in confined gallium droplets. Physical Review Letters, 1998, 81(14): 2942−2945
https://doi.org/10.1103/PhysRevLett.81.2942
99 G B Parravicini, A Stella, P Ghignaa, G Spinolo, A Migliori, F d’Acapito, R Kofman. Extreme undercooling (down to 90 K) of liquid metal nanoparticles. Applied Physics Letters, 2006, 89(3): 033123
https://doi.org/10.1063/1.2221395
100 L T Taylor, J Rancourt. Non-toxic liquid metal composition for use as a mercury substitute. United States Patent No. 5,792, 236. 1998-08-11
101 Y Y Wu, X F Liu, X J Liu, X F Bian. Effect of Sb, Bi and Fe on melting points and microstructures of eutectic Cu-8P alloys. Chinese Journal of Nonferrous Metals, 2004, 14(7): 1206−1210
102 ARMY. Hermes® 90 UAS unmanned aircraft system. 2013-05-28
103 LOCKHEED MARTIN. IRST sensor system. 2013-06-01
104 NORTHROP GRUMMAN. 2008photo archive.2013-06-01
105 Cortney. China Launches Beidou GPS System, Set to Rival US GPS. 2012-01-03
[1] Chuanke LIU, Zhizhu HE. High heat flux thermal management through liquid metal driven with electromagnetic induction pump[J]. Front. Energy, 2022, 16(3): 460-470.
[2] Zerong XING, Junheng FU, Sen CHEN, Jianye GAO, Ruiqi ZHAO, Jing LIU. Perspective on gallium-based room temperature liquid metal batteries[J]. Front. Energy, 2022, 16(1): 23-48.
[3] Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU. Room temperature liquid metal: its melting point, dominating mechanism and applications[J]. Front. Energy, 2020, 14(1): 81-104.
[4] Shen GUO, Peng WANG, Jichuan ZHANG, Wenpeng LUAN, Zishuo XIA, Lingxiao CAO, Zhizhu HE. Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging[J]. Front. Energy, 2019, 13(3): 474-482.
[5] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[6] Xu-Dong ZHANG, Yue SUN, Sen CHEN, Jing LIU. Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields[J]. Front. Energy, 2018, 12(2): 276-296.
[7] Sevket U. YURUKER, Michael C. FISH, Zhi YANG, Nicholas BALDASARO, Philip BARLETTA, Avram BAR-COHEN, Bao YANG. System-level Pareto frontiers for on-chip thermoelectric coolers[J]. Front. Energy, 2018, 12(1): 109-120.
[8] Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
[9] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[10] Qin ZHANG, Yi ZHENG, Jing LIU. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences[J]. Front Energ, 2012, 6(4): 311-340.
[11] Dan DAI, Jing LIU, Yixin ZHOU. Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics[J]. Front Energ, 2012, 6(2): 112-121.
[12] MA Kunquan, LIU Jing. Liquid metal cooling in thermal management of computer chips[J]. Front. Energy, 2007, 1(4): 384-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed