Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (3) : 345-354    https://doi.org/10.1007/s11708-014-0330-x
RESEARCH ARTICLE
DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine
Youcef BEKAKRA1,*(),Djilani BEN ATTOUS2
1. Department of Electrical Engineering, University of Biskra, Biskra 07000, Algeria
2. University of El Oued, El Oued 39000, Algeria
 Download: PDF(846 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposes an indirect power control of doubly fed induction generator (DFIG) with the rotor connected to the electric grid through a back-to-back pulse width modulation (PWM) converter for variable speed wind power generation. Appropriate state space model of the DFIG is deduced. An original control strategy based on a variable structure control theory, also called sliding mode control, is applied to achieve the control of the active and reactive power exchanged between the stator of the DFIG and the grid. A proportional-integral-(PI) controller is used to keep the DC-link voltage constant for a back-to-back PWM converter. Simulations are conducted for validation of the digital controller operation using Matlab/Simulink software.

Keywords doubly fed induction generator (DFIG)      wind turbine      back-to-back pulse width modulation (PWM)      DC-link voltage      sliding mode control     
Corresponding Author(s): Youcef BEKAKRA   
Issue Date: 09 September 2014
 Cite this article:   
Youcef BEKAKRA,Djilani BEN ATTOUS. DFIG sliding mode control fed by back-to-back PWM converter with DC-link voltage control for variable speed wind turbine[J]. Front. Energy, 2014, 8(3): 345-354.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0330-x
https://academic.hep.com.cn/fie/EN/Y2014/V8/I3/345
Fig.1  Aerodynamic power coefficient variation Cpagainst tip speed ratio λ and pitch angle β
Fig.2  Main circuit topology of a back-to-back PWM converter for DFIG
Fig.3  GSC configuration
Fig.4  Vector control block diagram of grid-side PWM converter
Fig.5  Block diagram of SMC applied in RSC and PI controller applied in GSC of the DFIG
Fig.6  Wind speed profiles
Fig.7  Turbine rotor speed
Fig.8  Power coefficient Cp variation
Fig.9  Stator active power injected into the grid
Fig.10  Stator reactive power
Fig.11  Stator current versus the time of the DFIG and its zoom

(a) Stator current; (b) its zoom

Fig.12  Spectrum of phase stator current harmonics
Fig.13  DC-link voltage and its zoom in startup

(a) DC-link voltage; (b) its zoom in start up

Cem_refReference electromagnetic torque
CgGenerator torque
CpPower coefficient
Cp_maxMaximum power coefficient
CtTurbine torque
GGear box
Pm_refReference mechanical power
PtTurbine aerodynamic power
RBlade length
vWind speed
βPitch angle
λTip speed ratio
λoptOptimum tip speed ratio
ΩmecMechanical speed of the DFIG
ΩtTurbine speed
DFIG
CeElectromagnetic torque
CrLoad torque
gSlip coefficient
isd, isq, ird, irqStator and rotor d-q frame current
JMoment of inertia
Ls, LrStator and rotor inductance
MMutual inductance
PNumber of pole pairs
Ps, QsActive and reactive stator power
Rs, RrStator and rotor resistance
Ts, TrStatoric and rotoric time-constant
Vsd, Vsq, Vrd, VrqStator and rotor d-q frame voltage
σLeakage factor
?sd,?sq,?rd, ?rqStator and rotor d-q frame flux
ωs, ωStator and rotor angular speed
ΩDFIG speed
Converters
LgGrid inductance
RgGrid resistance
UCDirect current voltage
Sliding mode control
eError vector
kfController gain
SSliding surface
satSaturation function
sgnSign function
uControl vector
ueqEquivalent control vector
unSwitching part of the control
xState vector
[?]TTransposed vector
Subscripts
d, qSynchronous d-q axis
s, rStator, rotor
Superscripts
“ * ”Reference value
“ … ”Derivative value
Tab.1  Notations
1 Datta R, Rangathan V T. Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Transactions on Energy Conversion, 2002, 17(3): 414-421
doi: 10.1109/TEC.2002.801993
2 Fan L, Yin H, Miao Z. A novel control scheme for DFIG-based wind energy systems under unbalanced grid conditions. Electric Power Systems Research, 2011, 81(2): 254-262
doi: 10.1016/j.epsr.2010.08.011
3 Wu G Q, Ni H J, Wu G X, Zhou J L, Zhu W N, Mao J F, Cao Y. On maximum power point tracking control strategy for variable speed constant frequency wind power generation. Journal of Chongqing University (English Edition), 2010, 9(1): 21-28
4 Hazzab A, Ismail Khalil B, Kamli M, Rahli M. Adaptive fuzzy PI-sliding mode controller for induction motor speed control. International Journal of Emerging Electric Power System, 2005, 4(1): 1-13
doi: 10.2202/1553-779X.1084
5 Benchouia M T, Zouzou S E, Golea A, Ghamri A. Modelling and simulation of variable speed drive system with different regulators. In: The International Conference on Electrical Machines and Systems (ICEMS 2004). Seoul, Korea, 2004
6 Aouzellag D, Ghedamsi K, Berkouk E M. Network power flux control of a wind generator. Renewable Energy, 2009, 34(3): 615-622
doi: 10.1016/j.renene.2008.05.049
7 Abdin E S, Xu W. Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Transactions on Energy Conversion, 2000, 15(1): 91-96
doi: 10.1109/60.849122
8 El Aimani S, Fran?ois B, Minne F, Robyns B. Comparison analysis of control structures for variable speed wind turbine. In: Proceedings of CESA: Computational Engineering in Systems Applications. Lille, France, 2003
9 Machmoum M, Poitiers F. Sliding mode control of a variable speed wind energy conversion system with DFIG. In: International Conference and Exhibition on Ecologic Vehicles and Renewable Energies. Monaco, 2009
10 Yao J, Li H, Liao Y, Chen Z. An improved control strategy of limiting the DC-Link voltage fluctuation for a doubly fed induction wind generator. IEEE Transactions on Power Electronics, 2008, 23(3): 1205-1213
doi: 10.1109/TPEL.2008.921177
11 Bekakra Y, Ben Attous D. A sliding mode speed and flux control of a doubly fed induction machine. IEEE Conference on Electrical and Electronics Engineering. Bursa, Turkey, 2009, 174-178
12 Lo J, Kuo Y. Decoupled fuzzy sliding mode control. IEEE Transactions on Fuzzy Systems, 1998, 6(3): 426-435
doi: 10.1109/91.705510
[1] Abdelkarim AMMAR, Amor BOUREK, Abdelhamid BENAKCHA. Robust SVM-direct torque control of induction motor based on sliding mode controller and sliding mode observer[J]. Front. Energy, 2020, 14(4): 836-849.
[2] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[3] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[4] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[5] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[6] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[7] Louar FATEH,Ouari AHMED,Omeiri AMAR,Djellad ABDELHAK,Bouras LAKHDAR. Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system[J]. Front. Energy, 2016, 10(2): 155-163.
[8] Abdelhak DIDA,Djilani BEN ATTOUS. Doubly-fed induction generator drive based WECS using fuzzy logic controller[J]. Front. Energy, 2015, 9(3): 272-281.
[9] Shantanu ACHARYA,Subhadeep BHATTACHARJEE. Analysis and characterization of wind-solar-constant torque spring hybridized model[J]. Front. Energy, 2014, 8(3): 279-289.
[10] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
[11] Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH. Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems[J]. Front. Energy, 2014, 8(2): 182-191.
[12] Yajvender Pal VERMA, Ashwani KUMAR. Load frequency control in deregulated power system with wind integrated system using fuzzy controller[J]. Front Energ, 2013, 7(2): 245-254.
[13] Ridha CHEIKH, Arezki MENACER, Said DRID. Robust control based on the Lyapunov theory of a grid-connected doubly fed induction generator[J]. Front Energ, 2013, 7(2): 191-196.
[14] Muyiwa S. ADARAMOLA, Olarenwaju M. OYEWOLA, Olayinka S. OHUNAKIN, Rufus R. DINRIFO. Techno-economic evaluation of wind energy in southwest Nigeria[J]. Front Energ, 2012, 6(4): 366-378.
[15] Yajvender Pal VERMA, Ashwani KUMAR. Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation[J]. Front Energ, 2012, 6(2): 184-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed