1 |
S Alliney. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Processing 1997; 45(4): 913–917
|
2 |
L AmbrosioN FuscoD Pallara. Functions of Bounded Variation and Free Discontinuity Problems. New York: Clarendon Press, 2000
|
3 |
G Aubert, J F Aujol. Modeling very oscillating signals: application to image processing. Appl Math Optim 2005; 51(2): 163–182
|
4 |
G Aubert, J F Aujol. A variational approach to remove multiplicative noise. SIAM J Appl. Math. 2008; 68(4): 925–946
|
5 |
J F Aujol. Dual norms and image decomposition models. Int. J. Comput. Vision 2005; 63(1): 85–104
|
6 |
J F Aujol, G Gilboa, T F Chan, S J Osher. Structure-texture image decomposition modeling, algorithms and parameter selection. Int J Comput Vis 2005; 67(1): 111–136
|
7 |
C Ballester, M Bertalmio, V Caselles, G Sapiro, J Verdera. Filling-in by joint interpolation of vector fields and grey levels. IEEE Trans Image Processing 2001; 10(8): 1200–1211
|
8 |
M R Banham, A K Katsaggelos. Digital image restoration. IEEE Signal Processing Mag 1997; 14(2): 24–41
|
9 |
J M Bardsley, A Luttman. Total variation-penalized Poisson likelihood estimation for ill-posed problems. Advances in Computational Mathematics, Special Volume on Mathematical Methods for Image Processing 2009; 31(13): 35–59
|
10 |
J M Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems and Imaging 2008; 2(2): 167–185
|
11 |
M BertalmioG SapiromV CasellesC Ballester. Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, USA, July 2000, 417‒424
|
12 |
S BoydL Vandenberghe. Convex Optimization. Cambridge University Press, 2004
|
13 |
X Bresson, T F Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2008; 2(4): 455–484
|
14 |
X BressonT F Chan. Non-local unsupervised variational image segmentation models. UCLA CAM Report, 2008
|
15 |
J F Cai, S J Osher, Z W Shen. Convergence of the linearized Bregman iteration for l1-norm minimization. Math Comput 2009; 78(268): 2127–2136
|
16 |
J F Cai, R H Chan, Z W Shen. A framelet-based image inpainting algorithm. Appl Comput Harmon Anal 2008; 24(2): 131–149
|
17 |
J F CaiB DongS J OsherZ W Shen. Image restoration: total variation; wavelet frames; and beyond. UCLA CAM Report, 2011
|
18 |
J F CaiH JiC Q LiuZ W Shen. Blind motion deblurring from a single image using sparse approximation. In: IEEE Conf Computer Vision and Pattern Recognition, CVPR 2009
|
19 |
J F Cai, H Ji, C Q Liu, Z W Shen. Blind motion deblurring using multiple images. J Computational Physics 2009; 228(14): 5057–5071
|
20 |
J F Cai, S J Osher, Z W Shen. Linearized Bregman iterations for compressed sensing. Math Comput 2009; 78(267): 1515–1536
|
21 |
J F Cai, S J Osher, Z W Shen. Linearized Bregman Iterations for frame based image deblurring. SIAM J Imaging Sciences 2009; 2(1): 226–252
|
22 |
J F Cai, S J Osher, Z W Shen. Split Bregman methods and frame based image restoration. Multiscale Model Simul 2009; 8(2): 337–369
|
23 |
E Candès, J Romberg, T Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Information Theory 2006; 52(2): 489–509
|
24 |
A S Carasso. Linear and nonlinear image deblurring: a documented study. SIAM J Numer Anal 1999; 36(6): 1659–1689
|
25 |
A S Carasso. Singular integrals, image smoothness, and the recovery of texture in image deblurring. SIAM J Appl Math 2004; 64(5): 1749–1774
|
26 |
J L Carter. Dual Methods for Total Variation Based Image Restoration, Ph D thesis. Los Angeles, CA: UCLA, 2001
|
27 |
A Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 2004; 20(12): 89–97
|
28 |
R H Chan, C W Ho, M Nikolova. Salt-and-pepper noise removal by median type noise detectors and detail preserving regularization. IEEE Trans Image Processing 2005; 14(10): 1479–1485
|
29 |
T F Chan, S Esedoglu. Aspects of total variation regularized function approximation. SIAM J Appl Math 2005; 65(5): 1817–1837
|
30 |
T F Chan, J Shen. Variational image inpainting. Communications on Pure and Applied Mathematics 2005; 58(5): 579–619
|
31 |
T F Chan, J H Shen. Nontexture inpainting by curvature-driven diffusions. J Visual Commun Image Rep 2001; 12(4): 436–449
|
32 |
T F Chan, J H Shen. Mathematical models for local nontexture inpaintings. SIAM J Appl Math 2002; 62(3): 1019–1043
|
33 |
T F ChanJ H Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Philadelphia: SIAM, 2005
|
34 |
T F ChanJ H Shen. Theory and computation of variational image deblurring. In: IMS Lecture Notes, 2006, 93‒131
|
35 |
T F Chan, C K Wong. Total variation blind deconvolution. IEEE Trans Image Processing 1998; 7(3): 370–375
|
36 |
T F Chan, G H Golub, P Mulet. A nonlinear primal-dual method for total variation based image restoration. SIAM J Sci Comp 1999; 20(6): 1964–1977
|
37 |
T F Chan, J H Shen, H M Zhou. Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision 2006; 25(1): 107–125
|
38 |
T ChenT S HuangW T YinX S Zhou. A new coarse-to-fine framework for 3D brain MR image registration. In: Computer Vision for Biomedical Image, Lecture Notes in Computer Science, 2005, 3765: 114‒124
|
39 |
A Cohen, W Dahmen, R DeVore. Compressed sensing and best k-term approximation. J American Mathematical Society 2009; 22(1): 211–231
|
40 |
P L Combettes, V R Wajs. Signal recovery by proximal forward backward splitting. SIAM J Multiscale Modeling and Simulation 2005; 4(4): 1168–1200
|
41 |
N Costanzino. EN161 Project Presentation Ⅲ: Structure Inpainting via Variational Methods, 2004
|
42 |
W Dai, M Sheikh, O Milenkovic, R G Baraniuk. Compressed sensing DNA microarrays. EURASIP J Bioinformatics and Systems Biology 2009; 162824
|
43 |
J Darbon, M Sigelle. Image restoration with discrete constrained total variation part I: fast and exact optimization. J Math Imaging Vis 2006; 26(3): 261–276
|
44 |
I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm Pure and Applied Math 2004; 57(11): 1413–1457
|
45 |
I Daubechies, G Teschke. Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Applied and Computational Harmonic Analysis 2005; 19(1): 1–16
|
46 |
R A DeVore. Nonlinear approximation. Acta Numerica 1998; 7: 51–150
|
47 |
D Donoho. Compressed sensing. IEEE Trans Information Theory 2006; 52(4): 1289–1306
|
48 |
J Eckstein, D P Bertsekas. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 1992; 55(13): 293–318
|
49 |
I EkelandR Temam. Convex Analysis and Variational Problems. Philadelphia: SIAM, 1999
|
50 |
S Esedogl, J H Shen. Digital inpainting based on the Mumford-Shah-Euler image model. European J Appl Math 2002; 13(4): 353–370
|
51 |
E EsserX Q ZhangT F Chan. A general framework for a class of first order primal-dual algorithms for TV minimization. UCLA CAM Report (09–67), 2009
|
52 |
L C EvansR F Gariep. Measure Theory and Fine Properties of Functions. Boca Raton, FL: CRC Press, 1992
|
53 |
D A Fish, A M Brinicombe, E R Pike, J G Walker. Blind deconvolution by means of the Richardson-Lucy algorithm. J Opt Soc Am A 1996; 12(1): 58–65
|
54 |
H Y Fu, M K Ng, M Nikolova, J L Barlow. Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J Scientific Computing 2006; 27(6): 1881–1902
|
55 |
D Gabay, B Mercier. A dual algorithm for the solution of non-linear variational problems via finite element approximations. Comp Math Appl 1976; 2(1): 17–40
|
56 |
L Gan. Block compressed sensing of natural images. In: Proc Int Conf Digital Signal Processing, Cardiff, UK, 2007
|
57 |
J B Garnett, T M Le, Y Meyer, L A Vese. Image decompositions using bounded variation and generalized homogeneous Besov spaces. Appl Comput Harmon Anal 2007; 23(1): 25–56
|
58 |
S Geman, D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984; 6(6): 721–741
|
59 |
G Gilboa, N Sochen, Y Zeevi. Texture preserving variational denoising using an adaptive fidelity term. IEEE Trans Image Processing 2006; 15(8): 2281–2289
|
60 |
J Gilles, Y Meyer. Properties of BV-G structures + textures decomposition models: application to road detection in satellite images. IEEE Trans Image Processing 2010; 19(11): 2793–2800
|
61 |
R GlowinskiP Le Tallec. Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. Philadelphia: SIAM, 1989
|
62 |
D Goldfarb, W T Yin. Second-order cone programming methods for total variation based image restoration. SIAM J Scientific Computing 2006; 27(2): 622–645
|
63 |
T Goldstein, S J Osher. The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2009; 2(2): 323–343
|
64 |
M Grasmair. Generalized Bregman distances and convergence rates for non-convex regularization methods. Inverse Problems 2010; 26(11): 115014
|
65 |
A B HamzaH Krim. A variational approach to maximum a posteriori estimation for image denoising. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, 2001, 19–34
|
66 |
A B. Krim H Hamza, B Unal. Unifying probabilistic and variational estimation. IEEE Signal Process Mag 2002; 19(5): 37–47
|
67 |
Y Huang, M K Ng, Y W Wen. A fast total variation minimization method for image restoration. SIAM J Multiscale Modeling and Simulation 2008; 7(2): 774–795
|
68 |
D H Hubel, T N Wiesel. Receptive fields, binocular intersection and functional architecture in the cat’s visual cortex. J Physiology 1962; 160(1): 106–154
|
69 |
K Ito, K Kunisch. Semi-smooth Newton methods for variational inequalities of the first kind. Math Modelling and Numerical Analysis 2003; 37(1): 41–62
|
70 |
Y L JiaoQ B Fan. An Efficient Model for Distinguishing Between Texture and Noise. Tech Report, School of Math, Stat, Wuhan University, Nov 2010
|
71 |
C Johnson. Numerical Solution of Partial Differental Equations by the Finite Element Method. UK: Cambridge University Press, 1987
|
72 |
G Kanizsa. Organization in Vision. New York: Praeger, 1979
|
73 |
D Krishnan, P Lin, A M Yip. A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans Image Processing 2007; 16(11): 2766–2777
|
74 |
D Krishnan, Q V Pham, A M Yip. A primal-dual active-Set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems. Advances in Comput Math 2009; 31(13): 237–266
|
75 |
K Kunisch, M Hintermüller. Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J Appl Math 2004; 64(4): 1311–1333
|
76 |
K L Lange. Optimization. New York: Springer-Verlag, 2004
|
77 |
T M Le, L A Vese. Image decomposition using total variation and div(BMO), Multiscale Modeling and Simulation. SIAM Interdis Journal 2005; 4(2): 390–423
|
78 |
R J LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems (Classics in Applied Mathematics). SIAM, 2007
|
79 |
D Y Lu, Q B Fan. Characterizations of Lp(R) using tight wavelet frames. Wuhan University J of Natural Sciences 2010; 15(6): 461–466
|
80 |
D Y Lu, Q B Fan. Gabor frames generated by multiple generators. Scientia Sinica Mathematica 2010; 40(7): 693–708
|
81 |
D Y Lu, Q B Fan. A class of tight framelet packets. Czechoslovak Mathematical Journal 2011; 61(3): 623–639
|
82 |
M Lustig, D Donoho, J M Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 2007; 58(6): 1182–1195
|
83 |
F Malgouyres, T Zeng. A predual proximal point algorithm solving anon negative basis pursuit denoising model. Int Journal of Computer Vision 2009; 83(3): 294–311
|
84 |
S Mallat. A Wavelet Tour of Signal Processing, 3rd Ed. Academic Press, 2008
|
85 |
D Marr, E Hildreth. Theory of edge detection. Proc Roy Soc London, Ser B 1980; 207(1167): 187–217
|
86 |
P MaurelJ F AujolG Peyré. Locally parallel textures modeling with adapted Hilbert spaces. In: Lecture Notes in Computer Science, 2009, 5681: 429‒442
|
87 |
Y Meyer. Wavelets and Operators. UK: Cambridge University Press, 1992
|
88 |
Y Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, Vol 22, Providence, RI: American Mathematical Society, 2001
|
89 |
C A Micchelli, L.X Shen, Y S Xu. Proximity algorithms for image models: denoising. Inverse Problems 2011; 27(4): 045009
|
90 |
V A Morozov. Methods for Solving Incorrectly Posed Problems. New York: Springer-Verlag, 1984
|
91 |
A NealenM Alexa. Hybrid texture synthesis. In: Proceedings of the Eurographics Symposium on Rendering, 2003, 97‒105
|
92 |
M K Ng, L Q Qi, Y F Tang, Y M Huang. On semismooth Newton’s methods for total variation minimization. Journal of Mathematical Imaging and Vision 2007; 27(3): 265–276
|
93 |
M Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision 2004; 20(1-2): 99–120
|
94 |
M Nikolova. Model distortions in Bayesian map reconstruction. Inverse Problems and Imaging 2007; 1(2): 399–422
|
95 |
M M OliveiraB BowenR McKennaY S Chang. Fast digital image inpainting. In: Proceedings of the International Conference on Visualization, Imaging and Image Processing (VⅡP 2001), Marbella, Spain, Sep 3‒5, 2001
|
96 |
S Osher, M Burger, D Goldfarb, J J Xu, W T Yin. An iterative regularization method for total variation based image restoration. Multiscale Model Simul 2005; 4(2): 460–489
|
97 |
S J OsherR P Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2003
|
98 |
S J Osher, Y Mao, B Dong, W T Yin. Fast linearized Bregman iteration for compressed sensing and sparse denoising. Communications in Mathematical Sciences 2010; 8(1): 93–111
|
99 |
S J Osher, A Solé, L A Vese. Image decomposition and restoration using total variation minimization and the H−1 norm. Multiscale Modeling and Simulation 2003; 1(3): 349–370
|
100 |
G Peyré. Texture synthesis with grouplets. IEEE Trans on Pattern Analysis and Machine Inte 2010; 32(4): 733–746
|
101 |
G Peyré. A review of adaptive image representations. IEEE Journal of Selected Topics in Signal Processing 2011; 5(5): 896–911
|
102 |
A Pruessner, D P O’Leary. Blind deconvolution using a regularized structured total least norm algorithm. SIAM J Matrix Anal Appl 2003; 24(4): 1018–1037
|
103 |
R C Puetter. Pixons and Bayesian image reconstruction. In: Proceedings of SPIE, 1994, 23(2): 112‒131
|
104 |
M RabbatJ HauptA SinghRD Nowak. Decentralized compression and predistribution via randomized gossiping. In: Proc Int Conf on Information Processing in Sensor Networks, Nashville, Tennessee, 2006
|
105 |
T RahmanX C TaiS J Osher. A TV-Stokes denoising algorithm. In: Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2007, 4485: 473‒483
|
106 |
L I Rudin, S J Osher, E Fatemi. Nonlinear total variation based noise removal algorithms. Physica D 1992; 60: 259–268
|
107 |
O Scherzer. Scale space methods for denoising and inverse problem. Advances in Imaging and Electron Physics 2003; 128: 445–530
|
108 |
O Scherzer. Handbook of Mathematical Methods in Imaging. Berlin: Springer-Verlag, 2010
|
109 |
O ScherzerM GrasmairH GrossauerM HaltmeierF Lenzen. Variational Methods in Imaging. New York: Springer-Verlag, 2009
|
110 |
A Shikhmin. Synthesizing natural textures. In: Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, 2001, 217‒226
|
111 |
D L Snyder, A M Hammoud, R L White. Image recovery from data acquired with a charged-coupled-device camera. J Opt Soc Am A 1993; 10(5): 1014–1023
|
112 |
B Song. Topics in Variational PDE Image Segmentation, Inpainting and Denoising. Ph D thesis, Los Angeles, CA: University of California, 2003
|
113 |
J L StarckF MurtaghJ M Fadili. Compressed sensing. In: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, Cambridge University Press, 2010
|
114 |
J StoecklerG V Welland. Beyond Wavelet. New York: Academic Press, 2003
|
115 |
X C TaiS J OsherHolmR. Image inpainting using a TV-Stokes equation. In: Image Processing Based on Partial Differential Equations, Heidelberg: Springer-Verlag, 2007, 3‒22
|
116 |
D TakharJ LaskaM B WakinM F DuarteD BaronS SarvothamK F KellyR G Baraniuk. A new compressive imaging camera architecture using optical-domain compression. In: Proc Computational Imaging IV at SPIE Electronic Image, San Jose, California, 2006
|
117 |
A N TikhonovV Y Arsenin. Solutions of Ill-Posed Problems. Washington D C: John Wiley and Sons, 1977
|
118 |
H Triebel. Theory of Function Spaces Ⅱ. Monographs in Mathematics, Vol 84, Boston: Birkhäuser, 1992
|
119 |
A Tsai, A R Yezzi, A S Willsky. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Processing 2001; 10(8): 1169–1186
|
120 |
P Tseng. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J Control and Optimization 1991; 29(1): 119–138
|
121 |
L A Vese, S J Osher. Modeling textures with total variation minimization and oscillating patterns in image processing. J Sci Comput 2003; 19: 553–572
|
122 |
C R Vogel. Computational Methods for Inverse Problems. Frontiers Appl Math, Vol 23, Philadelphia: SIAM, 2002
|
123 |
W WangM N GarofalakisK Ramchandran. Distributed sparse random projections for refinable approximation. In: Proc Int Conf Information Processing in Sensor Networks, Cambridge, Massachusetts, 2007
|
124 |
P Weiss, L Blanc-Féraud, G Aubert. Efficient schemes for total variation minimization under constraints in image processing. SIAM J Scientific Computing 2009; 31(3): 2047–2080
|
125 |
A Woiselle, J L Starck, J Fadili. 3-D data denoising and inpaint- ing with the low redundancy fast curvelet transform. Journal of Mathematical Imaging and Vision 2011; 39(2): 121–139
|
126 |
C L Wu, X C Tai. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences 2010; 3(3): 300–313
|
127 |
H YamauchiJ HaberH P Seidel. Image restoration using multiresolution texture synthesis and image inpainting. In: Proceedings of Computer Graphics International Conference, Japan, 2003, 120‒125
|
128 |
J C Ye. Compressed sensing shape estimation of star-shaped objects in Fourier imaging. IEEE Signal Processing Letters 2007; 14(10): 750–753
|
129 |
W T Yin, D Goldfarb, S J Osher. A comparison of three total variation based texture extraction models. J Visual Communication and Image Representation 2007; 18(3): 240–252
|
130 |
K Yosida. Functional Analysis: Reprint of the 1980 Edition. Berlin: Springer-Verlag, 1995
|
131 |
H Y Zhang, Q C Peng, Y D Wu. Wavelet inpainting based on p-Laplace operator. Acta Automatica Sinica 2007; 33(5): 546–549
|
132 |
H Y Zhang, B Wu, Q C Peng, Y D Wu. Digital image inpainting based on p-harmonic energy minimization. Chinese Journal of Electronics 2007; 3: 525–530
|
133 |
T Zhang, Q B Fan. Wavelet characterization of dyadic BMO norm and its application in image decomposition for distinguishing between texture and noise. Int Journal of Wavelet, Multiresolution and Information Processing 2011; 9(3): 445–457
|
134 |
T Zhang, Q B Fan, Q L Gao. Wavelet characterization of Hardy space and its application in variational image decomposition. Int Journal of Wavelet, Multiresolution and Information Processing 2010; 8(1): 71–87
|
135 |
X Q Zhang, M Burger, S J Osher. A unified primal-dual algorithm gramework based on Bregman iteration. J Sci Comput 2011; 46(1): 20–46
|
136 |
M Y Zhou. Deconvolution and Signal Recovery. Beijing: National Defence Industry Press, 2001 (in Chinese)
|
137 |
M Q ZhuT F Chan. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report (08–34), 2008
|
138 |
M Q Zhu, J Wright, T F Chan. Duality based algorithms for total variation regularized image restoration. Comput Optim Appl 2008; 47(3): 377–400
|
139 |
W P Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, Vol 120, New York: Springer-Verlag, 1989
|