Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2024, Vol. 19 Issue (3) : 157-180    https://doi.org/10.3868/s140-DDD-024-0010-x
An overview of image restoration based on variational regularization
Qibin FAN(), Yuling JIAO
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
 Download: PDF(523 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Image restoration is a complicated process in which the original information can be recovered from the degraded image model caused by lots of factors. Mathematically, image restoration problems are ill-posed inverse problems. In this paper image restoration models and algorithms based on variational regularization are surveyed. First, we review and analyze the typical models for denoising, deblurring and inpainting. Second, we construct a unified restoration model based on variational regularization and summarize the typical numerical methods for the model. At last, we point out eight diffcult problems which remain open in this field.

Keywords Regularization      image restoration      inverse problem      total variation      wavelet     
Corresponding Author(s): Qibin FAN   
Online First Date: 18 June 2024    Issue Date: 01 July 2024
 Cite this article:   
Qibin FAN,Yuling JIAO. An overview of image restoration based on variational regularization[J]. Front. Math. China, 2024, 19(3): 157-180.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-024-0010-x
https://academic.hep.com.cn/fmc/EN/Y2024/V19/I3/157
1 S Alliney. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Processing 1997; 45(4): 913–917
2 L AmbrosioN FuscoD Pallara. Functions of Bounded Variation and Free Discontinuity Problems. New York: Clarendon Press, 2000
3 G Aubert, J F Aujol. Modeling very oscillating signals: application to image processing. Appl Math Optim 2005; 51(2): 163–182
4 G Aubert, J F Aujol. A variational approach to remove multiplicative noise. SIAM J Appl. Math. 2008; 68(4): 925–946
5 J F Aujol. Dual norms and image decomposition models. Int. J. Comput. Vision 2005; 63(1): 85–104
6 J F Aujol, G Gilboa, T F Chan, S J Osher. Structure-texture image decomposition modeling, algorithms and parameter selection. Int J Comput Vis 2005; 67(1): 111–136
7 C Ballester, M Bertalmio, V Caselles, G Sapiro, J Verdera. Filling-in by joint interpolation of vector fields and grey levels. IEEE Trans Image Processing 2001; 10(8): 1200–1211
8 M R Banham, A K Katsaggelos. Digital image restoration. IEEE Signal Processing Mag 1997; 14(2): 24–41
9 J M Bardsley, A Luttman. Total variation-penalized Poisson likelihood estimation for ill-posed problems. Advances in Computational Mathematics, Special Volume on Mathematical Methods for Image Processing 2009; 31(13): 35–59
10 J M Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems and Imaging 2008; 2(2): 167–185
11 M BertalmioG SapiromV CasellesC Ballester. Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, USA, July 2000, 417‒424
12 S BoydL Vandenberghe. Convex Optimization. Cambridge University Press, 2004
13 X Bresson, T F Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2008; 2(4): 455–484
14 X BressonT F Chan. Non-local unsupervised variational image segmentation models. UCLA CAM Report, 2008
15 J F Cai, S J Osher, Z W Shen. Convergence of the linearized Bregman iteration for l1-norm minimization. Math Comput 2009; 78(268): 2127–2136
16 J F Cai, R H Chan, Z W Shen. A framelet-based image inpainting algorithm. Appl Comput Harmon Anal 2008; 24(2): 131–149
17 J F CaiB DongS J OsherZ W Shen. Image restoration: total variation; wavelet frames; and beyond. UCLA CAM Report, 2011
18 J F CaiH JiC Q LiuZ W Shen. Blind motion deblurring from a single image using sparse approximation. In: IEEE Conf Computer Vision and Pattern Recognition, CVPR 2009
19 J F Cai, H Ji, C Q Liu, Z W Shen. Blind motion deblurring using multiple images. J Computational Physics 2009; 228(14): 5057–5071
20 J F Cai, S J Osher, Z W Shen. Linearized Bregman iterations for compressed sensing. Math Comput 2009; 78(267): 1515–1536
21 J F Cai, S J Osher, Z W Shen. Linearized Bregman Iterations for frame based image deblurring. SIAM J Imaging Sciences 2009; 2(1): 226–252
22 J F Cai, S J Osher, Z W Shen. Split Bregman methods and frame based image restoration. Multiscale Model Simul 2009; 8(2): 337–369
23 E Candès, J Romberg, T Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Information Theory 2006; 52(2): 489–509
24 A S Carasso. Linear and nonlinear image deblurring: a documented study. SIAM J Numer Anal 1999; 36(6): 1659–1689
25 A S Carasso. Singular integrals, image smoothness, and the recovery of texture in image deblurring. SIAM J Appl Math 2004; 64(5): 1749–1774
26 J L Carter. Dual Methods for Total Variation Based Image Restoration, Ph D thesis. Los Angeles, CA: UCLA, 2001
27 A Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 2004; 20(12): 89–97
28 R H Chan, C W Ho, M Nikolova. Salt-and-pepper noise removal by median type noise detectors and detail preserving regularization. IEEE Trans Image Processing 2005; 14(10): 1479–1485
29 T F Chan, S Esedoglu. Aspects of total variation regularized function approximation. SIAM J Appl Math 2005; 65(5): 1817–1837
30 T F Chan, J Shen. Variational image inpainting. Communications on Pure and Applied Mathematics 2005; 58(5): 579–619
31 T F Chan, J H Shen. Nontexture inpainting by curvature-driven diffusions. J Visual Commun Image Rep 2001; 12(4): 436–449
32 T F Chan, J H Shen. Mathematical models for local nontexture inpaintings. SIAM J Appl Math 2002; 62(3): 1019–1043
33 T F ChanJ H Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Philadelphia: SIAM, 2005
34 T F ChanJ H Shen. Theory and computation of variational image deblurring. In: IMS Lecture Notes, 2006, 93‒131
35 T F Chan, C K Wong. Total variation blind deconvolution. IEEE Trans Image Processing 1998; 7(3): 370–375
36 T F Chan, G H Golub, P Mulet. A nonlinear primal-dual method for total variation based image restoration. SIAM J Sci Comp 1999; 20(6): 1964–1977
37 T F Chan, J H Shen, H M Zhou. Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision 2006; 25(1): 107–125
38 T ChenT S HuangW T YinX S Zhou. A new coarse-to-fine framework for 3D brain MR image registration. In: Computer Vision for Biomedical Image, Lecture Notes in Computer Science, 2005, 3765: 114‒124
39 A Cohen, W Dahmen, R DeVore. Compressed sensing and best k-term approximation. J American Mathematical Society 2009; 22(1): 211–231
40 P L Combettes, V R Wajs. Signal recovery by proximal forward backward splitting. SIAM J Multiscale Modeling and Simulation 2005; 4(4): 1168–1200
41 N Costanzino. EN161 Project Presentation Ⅲ: Structure Inpainting via Variational Methods, 2004
42 W Dai, M Sheikh, O Milenkovic, R G Baraniuk. Compressed sensing DNA microarrays. EURASIP J Bioinformatics and Systems Biology 2009; 162824
43 J Darbon, M Sigelle. Image restoration with discrete constrained total variation part I: fast and exact optimization. J Math Imaging Vis 2006; 26(3): 261–276
44 I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm Pure and Applied Math 2004; 57(11): 1413–1457
45 I Daubechies, G Teschke. Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Applied and Computational Harmonic Analysis 2005; 19(1): 1–16
46 R A DeVore. Nonlinear approximation. Acta Numerica 1998; 7: 51–150
47 D Donoho. Compressed sensing. IEEE Trans Information Theory 2006; 52(4): 1289–1306
48 J Eckstein, D P Bertsekas. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 1992; 55(13): 293–318
49 I EkelandR Temam. Convex Analysis and Variational Problems. Philadelphia: SIAM, 1999
50 S Esedogl, J H Shen. Digital inpainting based on the Mumford-Shah-Euler image model. European J Appl Math 2002; 13(4): 353–370
51 E EsserX Q ZhangT F Chan. A general framework for a class of first order primal-dual algorithms for TV minimization. UCLA CAM Report (09–67), 2009
52 L C EvansR F Gariep. Measure Theory and Fine Properties of Functions. Boca Raton, FL: CRC Press, 1992
53 D A Fish, A M Brinicombe, E R Pike, J G Walker. Blind deconvolution by means of the Richardson-Lucy algorithm. J Opt Soc Am A 1996; 12(1): 58–65
54 H Y Fu, M K Ng, M Nikolova, J L Barlow. Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J Scientific Computing 2006; 27(6): 1881–1902
55 D Gabay, B Mercier. A dual algorithm for the solution of non-linear variational problems via finite element approximations. Comp Math Appl 1976; 2(1): 17–40
56 L Gan. Block compressed sensing of natural images. In: Proc Int Conf Digital Signal Processing, Cardiff, UK, 2007
57 J B Garnett, T M Le, Y Meyer, L A Vese. Image decompositions using bounded variation and generalized homogeneous Besov spaces. Appl Comput Harmon Anal 2007; 23(1): 25–56
58 S Geman, D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984; 6(6): 721–741
59 G Gilboa, N Sochen, Y Zeevi. Texture preserving variational denoising using an adaptive fidelity term. IEEE Trans Image Processing 2006; 15(8): 2281–2289
60 J Gilles, Y Meyer. Properties of BV-G structures + textures decomposition models: application to road detection in satellite images. IEEE Trans Image Processing 2010; 19(11): 2793–2800
61 R GlowinskiP Le Tallec. Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. Philadelphia: SIAM, 1989
62 D Goldfarb, W T Yin. Second-order cone programming methods for total variation based image restoration. SIAM J Scientific Computing 2006; 27(2): 622–645
63 T Goldstein, S J Osher. The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2009; 2(2): 323–343
64 M Grasmair. Generalized Bregman distances and convergence rates for non-convex regularization methods. Inverse Problems 2010; 26(11): 115014
65 A B HamzaH Krim. A variational approach to maximum a posteriori estimation for image denoising. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, 2001, 19–34
66 A B. Krim H Hamza, B Unal. Unifying probabilistic and variational estimation. IEEE Signal Process Mag 2002; 19(5): 37–47
67 Y Huang, M K Ng, Y W Wen. A fast total variation minimization method for image restoration. SIAM J Multiscale Modeling and Simulation 2008; 7(2): 774–795
68 D H Hubel, T N Wiesel. Receptive fields, binocular intersection and functional architecture in the cat’s visual cortex. J Physiology 1962; 160(1): 106–154
69 K Ito, K Kunisch. Semi-smooth Newton methods for variational inequalities of the first kind. Math Modelling and Numerical Analysis 2003; 37(1): 41–62
70 Y L JiaoQ B Fan. An Efficient Model for Distinguishing Between Texture and Noise. Tech Report, School of Math, Stat, Wuhan University, Nov 2010
71 C Johnson. Numerical Solution of Partial Differental Equations by the Finite Element Method. UK: Cambridge University Press, 1987
72 G Kanizsa. Organization in Vision. New York: Praeger, 1979
73 D Krishnan, P Lin, A M Yip. A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans Image Processing 2007; 16(11): 2766–2777
74 D Krishnan, Q V Pham, A M Yip. A primal-dual active-Set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems. Advances in Comput Math 2009; 31(13): 237–266
75 K Kunisch, M Hintermüller. Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J Appl Math 2004; 64(4): 1311–1333
76 K L Lange. Optimization. New York: Springer-Verlag, 2004
77 T M Le, L A Vese. Image decomposition using total variation and div(BMO), Multiscale Modeling and Simulation. SIAM Interdis Journal 2005; 4(2): 390–423
78 R J LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems (Classics in Applied Mathematics). SIAM, 2007
79 D Y Lu, Q B Fan. Characterizations of Lp(R) using tight wavelet frames. Wuhan University J of Natural Sciences 2010; 15(6): 461–466
80 D Y Lu, Q B Fan. Gabor frames generated by multiple generators. Scientia Sinica Mathematica 2010; 40(7): 693–708
81 D Y Lu, Q B Fan. A class of tight framelet packets. Czechoslovak Mathematical Journal 2011; 61(3): 623–639
82 M Lustig, D Donoho, J M Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 2007; 58(6): 1182–1195
83 F Malgouyres, T Zeng. A predual proximal point algorithm solving anon negative basis pursuit denoising model. Int Journal of Computer Vision 2009; 83(3): 294–311
84 S Mallat. A Wavelet Tour of Signal Processing, 3rd Ed. Academic Press, 2008
85 D Marr, E Hildreth. Theory of edge detection. Proc Roy Soc London, Ser B 1980; 207(1167): 187–217
86 P MaurelJ F AujolG Peyré. Locally parallel textures modeling with adapted Hilbert spaces. In: Lecture Notes in Computer Science, 2009, 5681: 429‒442
87 Y Meyer. Wavelets and Operators. UK: Cambridge University Press, 1992
88 Y Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, Vol 22, Providence, RI: American Mathematical Society, 2001
89 C A Micchelli, L.X Shen, Y S Xu. Proximity algorithms for image models: denoising. Inverse Problems 2011; 27(4): 045009
90 V A Morozov. Methods for Solving Incorrectly Posed Problems. New York: Springer-Verlag, 1984
91 A NealenM Alexa. Hybrid texture synthesis. In: Proceedings of the Eurographics Symposium on Rendering, 2003, 97‒105
92 M K Ng, L Q Qi, Y F Tang, Y M Huang. On semismooth Newton’s methods for total variation minimization. Journal of Mathematical Imaging and Vision 2007; 27(3): 265–276
93 M Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision 2004; 20(1-2): 99–120
94 M Nikolova. Model distortions in Bayesian map reconstruction. Inverse Problems and Imaging 2007; 1(2): 399–422
95 M M OliveiraB BowenR McKennaY S Chang. Fast digital image inpainting. In: Proceedings of the International Conference on Visualization, Imaging and Image Processing (VⅡP 2001), Marbella, Spain, Sep 3‒5, 2001
96 S Osher, M Burger, D Goldfarb, J J Xu, W T Yin. An iterative regularization method for total variation based image restoration. Multiscale Model Simul 2005; 4(2): 460–489
97 S J OsherR P Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2003
98 S J Osher, Y Mao, B Dong, W T Yin. Fast linearized Bregman iteration for compressed sensing and sparse denoising. Communications in Mathematical Sciences 2010; 8(1): 93–111
99 S J Osher, A Solé, L A Vese. Image decomposition and restoration using total variation minimization and the H−1 norm. Multiscale Modeling and Simulation 2003; 1(3): 349–370
100 G Peyré. Texture synthesis with grouplets. IEEE Trans on Pattern Analysis and Machine Inte 2010; 32(4): 733–746
101 G Peyré. A review of adaptive image representations. IEEE Journal of Selected Topics in Signal Processing 2011; 5(5): 896–911
102 A Pruessner, D P O’Leary. Blind deconvolution using a regularized structured total least norm algorithm. SIAM J Matrix Anal Appl 2003; 24(4): 1018–1037
103 R C Puetter. Pixons and Bayesian image reconstruction. In: Proceedings of SPIE, 1994, 23(2): 112‒131
104 M RabbatJ HauptA SinghRD Nowak. Decentralized compression and predistribution via randomized gossiping. In: Proc Int Conf on Information Processing in Sensor Networks, Nashville, Tennessee, 2006
105 T RahmanX C TaiS J Osher. A TV-Stokes denoising algorithm. In: Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2007, 4485: 473‒483
106 L I Rudin, S J Osher, E Fatemi. Nonlinear total variation based noise removal algorithms. Physica D 1992; 60: 259–268
107 O Scherzer. Scale space methods for denoising and inverse problem. Advances in Imaging and Electron Physics 2003; 128: 445–530
108 O Scherzer. Handbook of Mathematical Methods in Imaging. Berlin: Springer-Verlag, 2010
109 O ScherzerM GrasmairH GrossauerM HaltmeierF Lenzen. Variational Methods in Imaging. New York: Springer-Verlag, 2009
110 A Shikhmin. Synthesizing natural textures. In: Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, 2001, 217‒226
111 D L Snyder, A M Hammoud, R L White. Image recovery from data acquired with a charged-coupled-device camera. J Opt Soc Am A 1993; 10(5): 1014–1023
112 B Song. Topics in Variational PDE Image Segmentation, Inpainting and Denoising. Ph D thesis, Los Angeles, CA: University of California, 2003
113 J L StarckF MurtaghJ M Fadili. Compressed sensing. In: Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, Cambridge University Press, 2010
114 J StoecklerG V Welland. Beyond Wavelet. New York: Academic Press, 2003
115 X C TaiS J OsherHolmR. Image inpainting using a TV-Stokes equation. In: Image Processing Based on Partial Differential Equations, Heidelberg: Springer-Verlag, 2007, 3‒22
116 D TakharJ LaskaM B WakinM F DuarteD BaronS SarvothamK F KellyR G Baraniuk. A new compressive imaging camera architecture using optical-domain compression. In: Proc Computational Imaging IV at SPIE Electronic Image, San Jose, California, 2006
117 A N TikhonovV Y Arsenin. Solutions of Ill-Posed Problems. Washington D C: John Wiley and Sons, 1977
118 H Triebel. Theory of Function Spaces Ⅱ. Monographs in Mathematics, Vol 84, Boston: Birkhäuser, 1992
119 A Tsai, A R Yezzi, A S Willsky. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Processing 2001; 10(8): 1169–1186
120 P Tseng. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J Control and Optimization 1991; 29(1): 119–138
121 L A Vese, S J Osher. Modeling textures with total variation minimization and oscillating patterns in image processing. J Sci Comput 2003; 19: 553–572
122 C R Vogel. Computational Methods for Inverse Problems. Frontiers Appl Math, Vol 23, Philadelphia: SIAM, 2002
123 W WangM N GarofalakisK Ramchandran. Distributed sparse random projections for refinable approximation. In: Proc Int Conf Information Processing in Sensor Networks, Cambridge, Massachusetts, 2007
124 P Weiss, L Blanc-Féraud, G Aubert. Efficient schemes for total variation minimization under constraints in image processing. SIAM J Scientific Computing 2009; 31(3): 2047–2080
125 A Woiselle, J L Starck, J Fadili. 3-D data denoising and inpaint- ing with the low redundancy fast curvelet transform. Journal of Mathematical Imaging and Vision 2011; 39(2): 121–139
126 C L Wu, X C Tai. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences 2010; 3(3): 300–313
127 H YamauchiJ HaberH P Seidel. Image restoration using multiresolution texture synthesis and image inpainting. In: Proceedings of Computer Graphics International Conference, Japan, 2003, 120‒125
128 J C Ye. Compressed sensing shape estimation of star-shaped objects in Fourier imaging. IEEE Signal Processing Letters 2007; 14(10): 750–753
129 W T Yin, D Goldfarb, S J Osher. A comparison of three total variation based texture extraction models. J Visual Communication and Image Representation 2007; 18(3): 240–252
130 K Yosida. Functional Analysis: Reprint of the 1980 Edition. Berlin: Springer-Verlag, 1995
131 H Y Zhang, Q C Peng, Y D Wu. Wavelet inpainting based on p-Laplace operator. Acta Automatica Sinica 2007; 33(5): 546–549
132 H Y Zhang, B Wu, Q C Peng, Y D Wu. Digital image inpainting based on p-harmonic energy minimization. Chinese Journal of Electronics 2007; 3: 525–530
133 T Zhang, Q B Fan. Wavelet characterization of dyadic BMO norm and its application in image decomposition for distinguishing between texture and noise. Int Journal of Wavelet, Multiresolution and Information Processing 2011; 9(3): 445–457
134 T Zhang, Q B Fan, Q L Gao. Wavelet characterization of Hardy space and its application in variational image decomposition. Int Journal of Wavelet, Multiresolution and Information Processing 2010; 8(1): 71–87
135 X Q Zhang, M Burger, S J Osher. A unified primal-dual algorithm gramework based on Bregman iteration. J Sci Comput 2011; 46(1): 20–46
136 M Y Zhou. Deconvolution and Signal Recovery. Beijing: National Defence Industry Press, 2001 (in Chinese)
137 M Q ZhuT F Chan. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report (08–34), 2008
138 M Q Zhu, J Wright, T F Chan. Duality based algorithms for total variation regularized image restoration. Comput Optim Appl 2008; 47(3): 377–400
139 W P Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, Vol 120, New York: Springer-Verlag, 1989
[1] Dengfeng LI. Connectivity of wavelets[J]. Front. Math. China, 2023, 18(2): 95-104.
[2] Dengfeng LI. Linear independence of a finite set of time-frequency shifts[J]. Front. Math. China, 2022, 17(4): 501-509.
[3] Pengtao LI, Wenchang SUN. Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces[J]. Front. Math. China, 2022, 17(3): 373-435.
[4] Jiangtao PENG, Yongke QU, Yuanlin LI. Inverse problems associated with subsequence sums in GpCp[J]. Front. Math. China, 2020, 15(5): 985-1000.
[5] Xing FU. Equivalent characterizations of Hardy spaces with variable exponent via wavelets[J]. Front. Math. China, 2019, 14(4): 737-759.
[6] Yan FENG,Shouzhi YANG. Construction of two-direction tight wavelet frames[J]. Front. Math. China, 2014, 9(6): 1293-1308.
[7] Junlian XU. Wavelet linear estimations of density derivatives from a negatively associated stratified size-biased sample[J]. Front. Math. China, 2014, 9(3): 623-640.
[8] Dayong LU, Dengfeng LI. Construction of periodic wavelet frames with dilation matrix[J]. Front Math Chin, 2014, 9(1): 111-134.
[9] Duokui YAN. A simple existence proof of Schubart periodic orbit with arbitrary masses[J]. Front Math Chin, 2012, 7(1): 145-160.
[10] Fengying ZHOU, Yunzhang LI. Construction of a class of multivariate compactly supported wavelet bases for L2(?d)[J]. Front Math Chin, 2012, 7(1): 177-195.
[11] ZHAO Jiman, PENG Lizhong. Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2),H)[J]. Front. Math. China, 2007, 2(3): 491-499.
[12] LU Shuai, WANG Yanbo. First and second order numerical differentiation with Tikhonov regularization[J]. Front. Math. China, 2006, 1(3): 354-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed