Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (5) : 667-685    https://doi.org/10.1007/s11684-022-0960-z
REVIEW
Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives
Yuqiu Han1, Lanjuan Li1,2,3, Baohong Wang1,2,3()
1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2. Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
3. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
 Download: PDF(3098 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and a common cause of liver cirrhosis and cancer. Akkermansia muciniphila (A. muciniphila) is a next-generation probiotic that has been reported to improve metabolic disorders. Emerging evidence indicates the therapeutic potential of A. muciniphila for NAFLD, especially in the inflammatory stage, nonalcoholic steatohepatitis. Here, the current knowledge on the role of A. muciniphila in the progression of NAFLD was summarized. A. muciniphila abundancy is decreased in animals and humans with NAFLD. The recovery of A. muciniphila presented benefits in preventing hepatic fat accumulation and inflammation in NAFLD. The details of how microbes regulate hepatic immunity and lipid accumulation in NAFLD were further discussed. The modulation mechanisms by which A. muciniphila acts to improve hepatic inflammation are mainly attributed to the alleviation of inflammatory cytokines and LPS signals and the downregulation of microbiota-related innate immune cells (such as macrophages). This review provides insights into the roles of A. muciniphila in NAFLD, thereby providing a blueprint to facilitate clinical therapeutic applications.

Keywords Akkermansia muciniphila      NAFLD      NASH      steatosis      inflammation     
Corresponding Author(s): Baohong Wang   
Just Accepted Date: 23 September 2022   Online First Date: 27 October 2022    Issue Date: 18 November 2022
 Cite this article:   
Yuqiu Han,Lanjuan Li,Baohong Wang. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives[J]. Front. Med., 2022, 16(5): 667-685.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0960-z
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I5/667
Fig.1  A. muciniphila protects intestinal barrier function. A. muciniphila enhances intestinal barrier function by regulating mucosal (turnover of mucin), microbial (production of antibacterial peptide), epithelial (tight junction protein), metabolic (e.g., SCFAs, tryptophan metabolites, and BAs), and immunological (e.g., adaptive immune T cells) components. Abbreviations: AhR, aryl hydrocarbon receptor; BAs, bile acids; CTLs, cytotoxic T lymphocytes; DC, dendritic cell; FXR, farnesoid X receptor; GPR43/41, G protein-coupled receptors 41/43; IgA, immunoglobulin A; ISCs, intestinal stem cells; LPS, lipopolysaccharide; SCFAs, short-chain fatty acids.
Reference Subjects/diets Severity of NAFLD Study group Sample type (detection method) Changes in Akkermansia muciniphila or Akkermansia
Animals  
Kim et al. (2020) [21] Male C57BL/6N mice, HFD, 10 weeks NAFL (H&E staining; serum ALT and AST↑) 1. Normal diet (ND + PBS, n = 5); 2. HFD + PBS (n = 5); 3. ND + A. muciniphila (n = 5); 4. HFD + A. muciniphila (n = 5) Cecal contents (16S rRNA gene sequencing)
Shi et al. (2021) [44] Female C57BL/6 mice, saccharin or sucralose, 11 weeks NASH (histopathological changes) 1. Control (n = 10); 2. neohesperidin dihydrochalcone (NHDC, n = 10); 3. saccharin (n = 10); 4. sucralose (n = 10) Cecal contents (16S rRNA gene sequencing, metagenomic sequencing)
Natividad et al. (2018) [48] Male C57BL/6J mice, HFD, 9 weeks NAFL (H&E staining; serum ALT and AST↑) 1. Control diet (CD, n = 10); 2. HFD (n = 10); 3. CD + B. wadsworthia (n = 10); 4. HFD + B. wadsworthia (n = 10) Feces (16S rRNA gene sequencing)
Hussain et al. (2016) [49] Male C57BL/6 mice, HFD, 12 weeks NAFL (Oil Red O staining) 1. Normal chow diet (NCR, n = 7); 2. HFD (n = 7); 3. HFD + orilistat (ORL, n = 7); 4. HFD + daesiho-tang (DSHT, n = 7) Feces (qPCR) ↓ (tendency)
Lee et al. (2018) [50] Male C57BL/6 mice, HFD, 12 weeks NAFL (H&E staining) 1. ND (n = 5); 2. HFD (n = 5); 3. HFD-fed mice treated with a mixture of two L. plantarum strains (DSR, n = 5) Cecal contents (16S rRNA gene sequencing, qPCR)
Wang et al. (2019) [51] Male C57BL/6 mice, HFD, 13 weeks NAFL (H&E and Oil Red O staining; serum ALT ↑) 1. Normal control (NC, n = 6); 2. HFD (n = 6); 3. NC + puerarin (NC + PUE) (n = 6); 4. HFD + PUE (n = 6) Feces (16S rRNA gene sequencing)
Schneeberger et al. (2015) [52] Male C57BL/6 mice, HFD, 16 weeks Unknown 1. CT diet (CT, n = 6); 2. HFD (n = 6) Cecal contents (qPCR) Negative correlation with age and HFD feeding
Ye et al. (2018) [53] Male C57BL/6 mice, methionine-choline-deficient (MCD) diet, 4 weeks NASH (histopathological changes) 1. Control (n = 6); 2. MCD (n = 6) Feces (16S rRNA gene sequencing)
Moreira et al. (2018) [72] Male C57BL/6 mice, HFD, 10 weeks NASH (histopathological changes) 1. Control group (C); 2. C + liraglutide (C + L); 3. HFD; 4. HFD + liraglutide (HFD + L) Feces (16S rRNA gene sequencing) Liraglutide increased its abundance in HFD mice
Du et al. (2021) [73] Kunming female mice, HFD, 23 weeks NAFL (Oil Red O staining; serum ALT and AST ↑) 1. Normal chow (Chow, n = 6); 2. HFD (n = 6); 3. chow + betaine (Chow + B) (n = 6); 4. HFD + B (n = 6) Feces (16S rRNA gene sequencing)
Zhang et al. (2022) [74] Male C57BL/6 mice, HFD, 12 weeks NASH (histopathological changes; serum ALT/AST ↑) 1. Control group (Con, n = 5); 2. HFD (n = 5); 3. HFD + purified MDG (MDG-1. n = 5); 4. HFD + coarse MDG (MDG-C, n = 5); 5. HFD + inulin (Inu, n = 5); 6. HFD + antibiotics (Anti, n = 5) Feces (metagenomic sequencing) ↓, negative correlation with most NAFLD parameters
Wang et al. (2021) [75] Male C57BL/6J mice, HFD, 30 weeks NASH (hepatic steatosis; hepatic TNFα, MCP-1, IL-6 and ROS ↑; serum ALT, AST, ALP, and γ-GT ↑; hepatic fibrosis) 1. NCD-fed mice (Control); 2. HFD-fed mice (Model); 3. HFD + metformin (Metf); 4. HFD + 100 mg/kg/day of PYOs (PYOs-L); 5. HFD + 300 mg/kg/d of PYOs (PYOs-H) Cecal contents (16S rRNA gene sequencing) Negative correlation with the development of NAFLD
Han et al. (2021) [76] Male C57BL/6 mice, high fat/high sucrose (HFHS), 16 weeks NAFL (H&E and Oil Red O staining; serum ALT and AST ↑) 1. Control group (Con, n = 5); 2. HFHS (n = 5); 3. HFHS + low-dose SMF (SMF-L, n = 5); 4. HFHS + high-dose SMF (SMF-H, n = 5) Cecal contents (16S rRNA gene sequencing) ↑ (tendency)
Bao et al. (2021) [79] Male C57BL/6J mice, HFD, 14 weeks NASH (NAS scores ↑; hepatic IL-1β, IL-18, IL-6 and TNF-α ↑; hepatic macrophages ↑) 1. ND (n = 5); 2. HFD (n = 5); 3. ND + inulin (ND-INU, n = 5); 4. HFD + inulin (HFD-INU, n = 5) Feces (16S rRNA gene sequencing)
Cui et al. (2020) [80] Male Sprague–Dawley rats, HFD, 12 weeks NASH (histopathological changes; serum ALT/AST ↑) 1. Control (n = 10); 2. HFD (model, n = 10); 3. HFD + metformin (positive control, n = 10); 4. HFD + Da-Chai-Hu (DCH, n = 10) Feces (16S rRNA gene sequencing)
Nakano et al. (2020) [81] Male C57BL/6J mice, Western diet, 12 weeks NAFL (Oil Red O staining; serum ALT ↑) 1. ND (n = 4); 2. ND + 2% BA group (NDBA, n = 2); 3. Western diet (WD, n = 4); 4. WD + 2% BA (WDBA, n = 4) Feces (16S rRNA gene sequencing) AST and ALT were positively correlated with family Verrucomicrobiaceae
Mu et al. (2020) [82] Male C57BL/6J mice, HFD/F (high fat + 10% fructose solution), 8 weeks NAFL (H&E staining; serum ALT, AST, AKP and hepatic ROS ↑) 1. Normal group (Normal); 2. HFD (Model); 3. L-carnitine; 4. HFD + low-concentration L. fermentum CQPC06 (LCQPC06); 5. HFD + high-concentration L. fermentum CQPC06 (HCQPC06); 6. HFD + Lactobacillus delbrueckii subsp. Bulgaricus (LDSB) Feces (16S rRNA gene sequencing)
Xie et al. (2020) [83] Male C57BL/6J mice, Western diet, 12 weeks NAFL (H&E staining; serum ALT and AST ↑) 1. ND (n = 4); 2. ND + 1% vine tea polyphenols (ND + 1% VTP, n = 4); 3. WD (n = 4); 4. WD + 0.5% VTP (n = 4); 5. WD + 1% VTP (n = 4); 6. WD + 2% VTP (n = 4) Feces (16S rRNA gene sequencing)
Nishiyama et al. (2020) [84] Male ob/ob mice, standard diet, 4 weeks NASH (histopathological changes; serum ALT/AST ↑) 1. C57BL/6J mice fed standard diet (WILD, n = 6); 2. ob/ob mice fed with standard diet (CONT, n = 6); 3. ob/ob mice fed with standard diet containing 5% bofutsushosan (BTS) (n = 6) Feces (16S rRNA gene sequencing, qPCR) Negative correlation with suppression of body weight gain
Li et al. (2020) [85] Male C57BL/6J mice, HFD, 18 weeks NASH (histopathological changes; serum ALT and AST ↑) 1. Normal chow diet (NCD, n = 8); 2. HFD (n = 8); 3. HFD + fed with 0.5% carboxymethylcellulose sodium (CMC-Na) (n = 8); 4. HFD + Sil (100 mg/kg, HFD + Sil group 1, n = 8); 5. HFD + Sil (300 mg/kg, HFD + Sil group 2, n = 8) Cecal contents (16S rRNA gene sequencing)
Régnier et al. (2020) [87] Male C57BL/6J mice, high-fat and high-sucrose diet (HFHS), 8 weeks NAFL (hepatic triglycerides ↑) 1. Control diet (CTRL, n = 10); 2. HFHS (n = 10); 3. HFHS + 0.3% (g/g) of rhubarb (RHUB, n = 10) Feces (16S rRNA gene sequencing, qPCR) Rhubarb promotes its growth in HFHS-fed mice
Juárez-Fernández et al. (2022) [88] Wistar rats, HFD, 9 weeks NAL (histopathological changes; serum ALT and AST ↑) 1. Control group (C) (n = 7); 2. HFD (n = 7); 3. C + quercetin (n = 7); 4. C + A. muciniphila; 5. HFD + quercetin (n = 7); 6. HFD + A. muciniphila (n = 8); 7. C + quercetin + A. muciniphila (n = 8); 8. HFD + quercetin + A. muciniphila (n = 8) Feces (16S rRNA gene sequencing) The colonization with Akkermansia muciniphila was associated with less body fat
Human  
Hoyles et al. (2018) [59] Morbidly obese women NAFL (diagnosed by histology) 1. No liver steatosis (n = 10); 2. liver steatosis 1 (n = 22); 3. liver steatosis 2 (n = 14); 4. liver steatosis 3 (n = 10) Feces (metagenomic sequencing) Increased trend in women with obesity. Verrucomicrobia and Akkermansia were significantly correlated with liver steatosis
Nistal et al. (2019) [60] Adults with obesity NAFLD (diagnosed by clinical, analytical and ultrasonographic data) 1. Twenty healthy adults (n = 20); 2. obese patients with NAFLD (n = 36); 3. obese patients without NAFLD (n = 17) Feces (16S rRNA gene sequencing) Reduced trend in patients with obesity with NAFLD
Tsai et al. (2021) [61] Patients with T2DM NAFLD (diagnosed by ultrasonographic data) 1. Patients with T2DM with no or mild NAFLD (n = 80); 2. patients with T2DM with moderate or severe NAFLD (n = 83) Feces (qPCR) Decreased trend in patients with T2DM with moderate/severe NAFLD
Lee et al. (2021) [62] Patients with NAFLD NAFLD (diagnosed by abdominal ultrasound or computed tomography with elevated liver enzyme) 1. Healthy controls (n = 37); 2. NAFLD (n = 57) Feces (16S rRNA gene sequencing)
Özkul et al. (2017) [63] Patients with NASH NASH (diagnosed by histology) 1. Healthy controls (n = 38); 2. NAFLD (n = 46) Feces (qPCR)
Chierico et al. (2017) [64] Children and adolescents NAFL and NASH (diagnosed by liver ultrasound and percutaneous liver biopsy) 1. NAFL (n = 27); 2. NASH (n = 26); 3. obesity (n = 8) 4. case-controls (CTRLs, n = 54) Feces (16S rRNA gene sequencing) Decreased trend in pediatric patients with NAFLD
Pan et al. (2021) [65] Children with obesity NAFL (diagnosed by ultrasonography) and NASH (unknown diagnostic criterion) 1. NAFL (n = 25); 2. NASH (n = 25); 3. obese without NAFLD (n = 25) Feces (16S rRNA gene sequencing)
Schwimmer et al. (2019) [66] Children who are overweight/obese NAFLD (diagnosed by liver biopsy) 1. Overweight/obese children without NAFLD (n = 37); 2. children with NAFLD (n = 86, including 38 NAFL, 37 borderline NASH, and 11 NASH) Feces (16S rRNA gene sequencing, metagenomic sequencing) Decreased in children with NASH or moderate/severe fibrosis
Ponziani et al. (2019) [67] Patients with NAFLD NAFLD with cirrhosis (diagnosed by histological and/or clinical findings) and HCC (diagnosed by histology) 1. Patients with NAFLD-related cirrhosis and HCC (n = 21); 2. NAFLD-related cirrhosis without HCC (n = 20); 3. healthy controls (n = 20) Feces (16S rRNA gene sequencing) Decreased in NAFLD patients with cirrhosis
Dao et al. (2016) [58] Adults who are overweight and obese Unknown 1. Lower A. muciniphila abundance in baseline (Akk LO, n = 24); 2. higher A. muciniphila abundance in baseline (Akk HI, n = 25) Feces (qPCR) Akk HI group had lower AST and GGT and greatest benefits from dietary intervention
Liu et al. (2017) [68] Patients with obesity Obesity with elevation of serum ALT, AST, ALP, and GGT levels 1. Lean controls (n = 79); 2. individuals with obesity (n = 72) Feces (metagenomic sequencing) Enriched in lean controls; positive correlation with the concentration of circulating adiponectin
Kordy et al. (2021) [70] Children and adolescents NASH (diagnosed by liver biopsy) 1. NASH (n = 20); 2. control subjects (n = 20) Feces (metagenomic sequencing)
Tab.1  Alteration of Akkermansia muciniphila in NAFLD models and patients
Reference Diet Subjects Diseases Dosages Time Colonization (detection method) Study group Efficiency of treatment
Animals              
Kim et al. (2020) [21] HFD Male C57BL/6N mice NAFL (H&E staining; serum ALT and AST levels ↑) Live, 108–109 CFU/mL 10 weeks Obviously increased abundance (16S rRNA gene sequencing) 1. Normal diet (ND + PBS, n = 5); 2. HFD + PBS (n = 5); 3. ND + A. muciniphila (n = 5); 4. HFD + A. muciniphila (n = 5) Serum TG and ALT levels↓; the gene expression of hepatic TG synthesis and inflammatory factor IL-6↓
Rao et al. (2021) [38] High-fat and high-cholesterol (HFC) diet Male C57BL/6J mice NASH (histopathological changes) Live, 1 × 108 CFU/ mL, 200 μL, every other day 6 weeks Increased by 20-fold (qPCR) 1. HFC (n = 5–8); 2. HFC + A. muciniphila (n = 5–8) Hepatic steatosis/ inflammatory (indicated by HE staining) ↓, serum ALT/AST/ALP↓, and hepatic genes expression related to steatosis and inflammation↓
Higarza et al. (2021) [92] High-fat, high cholesterol diet (HFHC) Male Sprague–Dawley rats NASH-induced cognitive damage Live, 109 CFU, 100 μL, daily 4 weeks No differences (16S rRNA gene sequencing and qPCR) 1. NC group (n = 8); 2. HFHC + PBS (n = 8); 3. HFHC + Lacticaseibacillus rhamnosus GG (HFHC + LGG, n = 8); 4. HFHC + A. muciniphila CIP107961(HFHC + AKK, n = 8) HFHC-induced cognitive dysfunction (including impaired spatial working memory and novel object recognition) ↓
Human                
Depommier et al. (2019) [18] / / Overweight/obese insulin-resistant volunteers Live (1010 or 109 CFU per day) or pasteurized A. muciniphila (1010 CFU per day) 3 months Unknown 1. Placebo group (n = 11); 2. pasteurized bacteria group (n = 12); 3. live bacteria group (n = 9) Blood markers for liver dysfunction including γ-glutamyltransferase (GGT) and AST↓
Other liver diseases            
Grander et al. (2018) [22] Lieber-De-Carli diet containing 1–5 vol.% Female WT mice Alcoholic liver disease (ALD) Live, 1.5 × 109 CFU, 200 μL, every other day 2 day or 15 days or 6 days Obviously increased abundance (qPCR) 1. Pair fed (Ctrl); 2. Pair fed + A. muciniphila (Ctrl + A.muc); 3. ethanol fed (EtOH); 4. ethanol fed + A. muciniphila (EtOH + A.muc) Acute ethanol-induced hepatic injury and inflammation↓; chronic ethanol-induced hepatic inflammation and steatosis↓
Keshavarz et al. (2021) [23] HFD (+ CCl4 injection) Male C57BL/6 mice Liver injury (liver fabrosis) 109 CFU/200 μL live or pasteurized A. muciniphila, 50 mg/200 μL Evs, daily 4 weeks Obviously increased abundance (qPCR) 1. Healthy control animals (ND, n = 5); 2. HFD/CCl4 + PBS (PBS, n = 5); 3. HFD/CCl4 + live A. muciniphila (Am) (n = 5); 4. HFD/CCl4 + pasteurized A. muciniphila (Pam, n = 5); 5. HFD/CCl4 + EV (EV, n = 5) Serum liver enzymes↓; hepatic inflammation and fibrosis markers↓
Wu et al. (2017) [25] Normal chow diets (+ concanavalin A injection) Male C57BL/6 mice Liver injury (resembling autoimmune liver diseases and virus hepatitis) Live, 3 × 109 CFU, 200 μL, daily 14 days Obviously increased abundance (16S rRNA gene sequencing) 1. A. muciniphila + Con A (Akk, n = 7); 2. PBS + Con A (Control, n = 7); 3. PBS + PBS (Normal, n = 8) Serum ALT and AST↓; liver histopathological damage↓
Tab.2  Efficacy of Akkermansia muciniphila in treating NAFLD and other liver injuries
Fig.2  Potential mechanism by which A. muciniphila alleviates hepatic fat accumulation in NAFLD. Live or pasteurized A. muciniphila and its active ingredient (Amuc_1100, P9 and AmEVs) alleviate steatosis and its related insulin resistance. Abbreviations: AKK, A. muciniphila; AmEVs, A. muciniphila-derived extracellular vesicles; GLP-1, glucagon-like peptide-1; IR, insulin resistance; LPS, lipopolysaccharide; TMAO, trimetly-lamine oxide.
Fig.3  Potential mechanism by which A. muciniphila prevents hepatic inflammation in NAFLD. A. muciniphila regulates hepatic inflammation and the immune response in NAFLD via multiple potential mechanisms. The current focus on the mechanisms of A. muciniphila in improving hepatic inflammation mainly centers on the production of inflammatory factors, LPS signals, and macrophages. Abbreviations: AKK, A. muciniphila; AhR, aryl hydrocarbon receptor; LPS, lipopolysaccharide; M1/2 cells; macrophage type 1/2; TLR4, toll-like receptor 4.
Fig.4  Perspectives on the regulation of NAFLD by A. muciniphila.
1 SK Asrani, H Devarbhavi, J Eaton, PS Kamath. Burden of liver diseases in the world. J Hepatol 2019; 70(1): 151–171
https://doi.org/10.1016/j.jhep.2018.09.014 pmid: 30266282
2 JV Lazarus, HE Mark, QM Anstee, JP Arab, RL Batterham, L Castera, H Cortez-Pinto, J Crespo, K Cusi, MA Dirac, S Francque, J George, H Hagström, TT Huang, MH Ismail, A Kautz, SK Sarin, R Loomba, V Miller, PN Newsome, M Ninburg, P Ocama, V Ratziu, M Rinella, D Romero, M Romero-Gómez, JM Schattenberg, EA Tsochatzis, L Valenti, VW Wong, Y Yilmaz, ZM Younossi, SNAFLD Consensus Consortium Zelber-Sagi;. Advancing the global public health agenda for NAFLD: a consensus statement. Nat Rev Gastroenterol Hepatol 2022; 19(1): 60–78
https://doi.org/10.1038/s41575-021-00523-4 pmid: 34707258
3 SR Sharpton, B Schnabl, R Knight, R Loomba. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease. Cell Metab 2021; 33(1): 21–32
https://doi.org/10.1016/j.cmet.2020.11.010 pmid: 33296678
4 SL Friedman, BA Neuschwander-Tetri, M Rinella, AJ Sanyal. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24(7): 908–922
https://doi.org/10.1038/s41591-018-0104-9 pmid: 29967350
5 J Aron-Wisnewsky, MV Warmbrunn, M Nieuwdorp, K Clément. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity?. Gastroenterology 2020; 158(7): 1881–1898
https://doi.org/10.1053/j.gastro.2020.01.049 pmid: 32044317
6 AA Kolodziejczyk, D Zheng, O Shibolet, E Elinav. The role of the microbiome in NAFLD and NASH. EMBO Mol Med 2019; 11(2): e9302
https://doi.org/10.15252/emmm.201809302 pmid: 30591521
7 AR Moschen, S Kaser, H Tilg. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol Metab 2013; 24(11): 537–545
https://doi.org/10.1016/j.tem.2013.05.009 pmid: 23827477
8 C Leung, L Rivera, JB Furness, PW Angus. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016; 13(7): 412–425
https://doi.org/10.1038/nrgastro.2016.85 pmid: 27273168
9 JS Bajaj, A Khoruts. Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. J Hepatol 2020; 72(5): 1003–1027
https://doi.org/10.1016/j.jhep.2020.01.017 pmid: 32004593
10 T Zhang, Q Li, L Cheng, H Buch, F Zhang. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 2019; 12(6): 1109–1125
https://doi.org/10.1111/1751-7915.13410 pmid: 31006995
11 PD CaniC DepommierM DerrienA EverardWM de Vos. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; [Epub ahead of print] doi: 10.1038/s41575-022-00631-9
12 Q Zhai, S Feng, N Arjan, W Chen. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 2019; 59(19): 3227–3236
https://doi.org/10.1080/10408398.2018.1517725 pmid: 30373382
13 J Yan, L Sheng, H Li. Akkermansia muciniphila: is it the Holy Grail for ameliorating metabolic diseases?. Gut Microbes 2021; 13(1): 1984104
https://doi.org/10.1080/19490976.2021.1984104 pmid: 34674606
14 M Derrien, EE Vaughan, CM Plugge, WM de Vos. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54(5): 1469–1476
https://doi.org/10.1099/ijs.0.02873-0 pmid: 15388697
15 M Derrien, MC Collado, K Ben-Amor, S Salminen, WM de Vos. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 2008; 74(5): 1646–1648
https://doi.org/10.1128/AEM.01226-07 pmid: 18083887
16 Q ZhaoJ YuY HaoH ZhouY Hu C ZhangH ZhengX WangF ZengJ Hu L GuZ Wang F ZhaoC YueP ZhouH ZhangN Huang W WuY Zhou J Li. Akkermansia muciniphila plays critical roles in host health. Crit Rev Microbiol 2022; [Epub ahead of print] doi: 10.1080/1040841X.2022.2037506
pmid: 35603929
17 J Si, H Kang, HJ You, G Ko. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes 2022; 14(1): 2078619
https://doi.org/10.1080/19490976.2022.2078619 pmid: 35613313
18 C Depommier, A Everard, C Druart, H Plovier, M Van Hul, S Vieira-Silva, G Falony, J Raes, D Maiter, NM Delzenne, M de Barsy, A Loumaye, MP Hermans, JP Thissen, WM de Vos, PD Cani. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019; 25(7): 1096–1103
https://doi.org/10.1038/s41591-019-0495-2 pmid: 31263284
19 A Everard, C Belzer, L Geurts, JP Ouwerkerk, C Druart, LB Bindels, Y Guiot, M Derrien, GG Muccioli, NM Delzenne, WM de Vos, PD Cani. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110(22): 9066–9071
https://doi.org/10.1073/pnas.1219451110 pmid: 23671105
20 M Bae, CD Cassilly, X Liu, SM Park, BK Tusi, X Chen, J Kwon, P Filipčík, AS Bolze, Z Liu, H Vlamakis, DB Graham, SJ Buhrlage, RJ Xavier, J Clardy. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 2022; 608(7921): 168–173
https://doi.org/10.1038/s41586-022-04985-7 pmid: 35896748
21 S Kim, Y Lee, Y Kim, Y Seo, H Lee, J Ha, J Lee, Y Choi, H Oh, Y Yoon. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol 2020; 86(7): e03004–19
https://doi.org/10.1128/AEM.03004-19 pmid: 31953338
22 C Grander, TE Adolph, V Wieser, P Lowe, L Wrzosek, B Gyongyosi, DV Ward, F Grabherr, RR Gerner, A Pfister, B Enrich, D Ciocan, S Macheiner, L Mayr, M Drach, P Moser, AR Moschen, G Perlemuter, G Szabo, AM Cassard, H Tilg. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67(5): 891–901
https://doi.org/10.1136/gutjnl-2016-313432 pmid: 28550049
23 S Keshavarz Azizi Raftar, F Ashrafian, A Yadegar, A Lari, HR Moradi, A Shahriary, M Azimirad, H Alavifard, Z Mohsenifar, M Davari, F Vaziri, A Moshiri, SD Siadat, MR Zali. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol Spectr 2021; 9(2): e0048421
https://doi.org/10.1128/Spectrum.00484-21 pmid: 34549998
24 M Derrien, C Belzer, WM de Vos. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 2017; 106: 171–181
https://doi.org/10.1016/j.micpath.2016.02.005 pmid: 26875998
25 W Wu, L Lv, D Shi, J Ye, D Fang, F Guo, Y Li, X He, L Li. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol 2017; 8: 1804
https://doi.org/10.3389/fmicb.2017.01804 pmid: 29033903
26 C Chelakkot, Y Choi, DK Kim, HT Park, J Ghim, Y Kwon, J Jeon, MS Kim, YK Jee, YS Gho, HS Park, YK Kim, SH Ryu. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50(2): e450
https://doi.org/10.1038/emm.2017.282 pmid: 29472701
27 A Alam, G Leoni, M Quiros, H Wu, C Desai, H Nishio, RM Jones, A Nusrat, AS Neish. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 2016; 1(2): 15021
https://doi.org/10.1038/nmicrobiol.2015.21 pmid: 27571978
28 S Kim, YC Shin, TY Kim, Y Kim, YS Lee, SH Lee, MN Kim, E O, KS Kim, MN Kweon. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 2021; 13(1): 1892441
https://doi.org/10.1080/19490976.2021.1892441 pmid: 33678130
29 MM Pérez, LMS Martins, MS Dias, CA Pereira, JA Leite, ECS Gonçalves, Almeida PZ de, Freitas EN de, RC Tostes, SG Ramos, Zoete MR de, B Ryffel, JS Silva, D Carlos. Interleukin-17/interleukin-17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in high-fat diet-induced metabolic syndrome model. Immunology 2019; 156(4): 339–355
https://doi.org/10.1111/imm.13028 pmid: 30472727
30 JS Lee, CM Tato, B Joyce-Shaikh, MF Gulen, C Cayatte, Y Chen, WM Blumenschein, M Judo, G Ayanoglu, TK McClanahan, X Li, DJ Cua. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 2015; 43(4): 727–738
https://doi.org/10.1016/j.immuni.2015.09.003 pmid: 26431948
31 G Tarantino, S Costantini, C Finelli, F Capone, E Guerriero, N La Sala, S Gioia, G Castello. Is serum interleukin-17 associated with early atherosclerosis in obese patients?. J Transl Med 2014; 12(1): 214
https://doi.org/10.1186/s12967-014-0214-1 pmid: 25092442
32 S Qu, L Fan, Y Qi, C Xu, Y Hu, S Chen, W Liu, W Liu, J Si. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation. Microbiol Spectr 2021; 9(2): e0073021
https://doi.org/10.1128/Spectrum.00730-21 pmid: 34612661
33 L Wang, L Tang, Y Feng, S Zhao, M Han, C Zhang, G Yuan, J Zhu, S Cao, Q Wu, L Li, Z Zhang. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 2020; 69(11): 1988–1997
https://doi.org/10.1136/gutjnl-2019-320105 pmid: 32169907
34 Y Liu, M Yang, L Tang, F Wang, S Huang, S Liu, Y Lei, S Wang, Z Xie, W Wang, X Zhao, B Tang, S Yang. TLR4 regulates RORγt+ regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila. Microbiome 2022; 10(1): 98
https://doi.org/10.1186/s40168-022-01296-x pmid: 35761415
35 S Lukovac, C Belzer, L Pellis, BJ Keijser, WM de Vos, RC Montijn, G Roeselers. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 2014; 5(4): e01438–14
https://doi.org/10.1128/mBio.01438-14 pmid: 25118238
36 Z Gu, W Pei, Y Shen, L Wang, J Zhu, Y Zhang, S Fan, Q Wu, L Li, Z Zhang. Akkermansia muciniphila and its outer protein Amuc_1100 regulates tryptophan metabolism in colitis. Food Funct 2021; 12(20): 10184–10195
https://doi.org/10.1039/D1FO02172A pmid: 34532729
37 B Stockinger, K Shah, E Wincent. AHR in the intestinal microenvironment: safeguarding barrier function. Nat Rev Gastroenterol Hepatol 2021; 18(8): 559–570
https://doi.org/10.1038/s41575-021-00430-8 pmid: 33742166
38 Y Rao, Z Kuang, C Li, S Guo, Y Xu, D Zhao, Y Hu, B Song, Z Jiang, Z Ge, X Liu, C Li, S Chen, J Ye, Z Huang, Y Lu. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes 2021; 13(1): 1927633
https://doi.org/10.1080/19490976.2021.1927633 pmid: 34030573
39 A Albillos, A de Gottardi, M Rescigno. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 2020; 72(3): 558–577
https://doi.org/10.1016/j.jhep.2019.10.003 pmid: 31622696
40 DM Chopyk, A Grakoui. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 2020; 159(3): 849–863
https://doi.org/10.1053/j.gastro.2020.04.077 pmid: 32569766
41 H Plovier, A Everard, C Druart, C Depommier, M Van Hul, L Geurts, J Chilloux, N Ottman, T Duparc, L Lichtenstein, A Myridakis, NM Delzenne, J Klievink, A Bhattacharjee, KC van der Ark, S Aalvink, LO Martinez, ME Dumas, D Maiter, A Loumaye, MP Hermans, JP Thissen, C Belzer, WM de Vos, PD Cani. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23(1): 107–113
https://doi.org/10.1038/nm.4236 pmid: 27892954
42 HS Yoon, CH Cho, MS Yun, SJ Jang, HJ You, JH Kim, D Han, KH Cha, SH Moon, K Lee, YJ Kim, SJ Lee, TW Nam, G Ko. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol 2021; 6(5): 563–573
https://doi.org/10.1038/s41564-021-00880-5 pmid: 33820962
43 JJ Holst, CF Deacon, T Vilsbøll, T Krarup, S Madsbad. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med 2008; 14(4): 161–168
https://doi.org/10.1016/j.molmed.2008.01.003 pmid: 18353723
44 Z Shi, H Lei, G Chen, P Yuan, Z Cao, HL Ser, X Zhu, F Wu, C Liu, M Dong, Y Song, Y Guo, C Chen, K Hu, Y Zhu, XA Zeng, J Zhou, Y Lu, AD Patterson, L Zhang. Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice. mSystems 2021; 6(1): e00985–20
https://doi.org/10.1128/mSystems.00985-20 pmid: 33622853
45 H Wang, L Wang, Y Li, S Luo, J Ye, Z Lu, X Li, H Lu. The HIF-2α/PPARα pathway is essential for liraglutide-alleviated, lipid-induced hepatic steatosis. Biomed Pharmacother 2021; 140: 111778
https://doi.org/10.1016/j.biopha.2021.111778 pmid: 34062416
46 A Everard, V Lazarevic, N Gaïa, M Johansson, M Ståhlman, F Backhed, NM Delzenne, J Schrenzel, P François, PD Cani. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 2014; 8(10): 2116–2130
https://doi.org/10.1038/ismej.2014.45 pmid: 24694712
47 P Mehrpouya-Bahrami, KN Chitrala, MS Ganewatta, C Tang, EA Murphy, RT Enos, KT Velazquez, J McCellan, M Nagarkatti, P Nagarkatti. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7(1): 15645
https://doi.org/10.1038/s41598-017-15154-6 pmid: 29142285
48 JM Natividad, B Lamas, HP Pham, ML Michel, D Rainteau, C Bridonneau, G da Costa, J van Hylckama Vlieg, B Sovran, C Chamignon, J Planchais, ML Richard, P Langella, P Veiga, H Sokol. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun 2018; 9(1): 2802
https://doi.org/10.1038/s41467-018-05249-7 pmid: 30022049
49 A Hussain, MK Yadav, S Bose, JH Wang, D Lim, YK Song, SG Ko, H Kim. Daesiho-Tang is an effective herbal formulation in attenuation of obesity in mice through alteration of gene expression and modulation of intestinal microbiota. PLoS One 2016; 11(11): e0165483
https://doi.org/10.1371/journal.pone.0165483 pmid: 27812119
50 J Lee, JY Jang, MS Kwon, SK Lim, N Kim, J Lee, HK Park, M Yun, MY Shin, HE Jo, YJ Oh, BH Ryu, MY Ko, W Joo, HJ Choi. Mixture of two Lactobacillus plantarum strains modulates the gut microbiota structure and regulatory T cell response in diet-induced obese mice. Mol Nutr Food Res 2018; 62(24): e1800329
https://doi.org/10.1002/mnfr.201800329 pmid: 30362639
51 L Wang, Y Wu, L Zhuang, X Chen, H Min, S Song, Q Liang, AD Li, Q Gao. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice. PLoS One 2019; 14(6): e0218490
https://doi.org/10.1371/journal.pone.0218490 pmid: 31233515
52 M Schneeberger, A Everard, AG Gómez-Valadés, S Matamoros, S Ramírez, NM Delzenne, R Gomis, M Claret, PD Cani. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 2015; 5(1): 16643
https://doi.org/10.1038/srep16643 pmid: 26563823
53 JZ Ye, YT Li, WR Wu, D Shi, DQ Fang, LY Yang, XY Bian, JJ Wu, Q Wang, XW Jiang, CG Peng, WC Ye, PC Xia, LJ Li. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis. World J Gastroenterol 2018; 24(23): 2468–2481
https://doi.org/10.3748/wjg.v24.i23.2468 pmid: 29930468
54 LK Brahe, E Le Chatelier, E Prifti, N Pons, S Kennedy, T Hansen, O Pedersen, A Astrup, SD Ehrlich, LH Larsen. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes 2015; 5(6): e159
https://doi.org/10.1038/nutd.2015.9 pmid: 26075636
55 X Zhang, D Shen, Z Fang, Z Jie, X Qiu, C Zhang, Y Chen, L Ji. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8(8): e71108
https://doi.org/10.1371/journal.pone.0071108 pmid: 24013136
56 M Yassour, MY Lim, HS Yun, TL Tickle, J Sung, YM Song, K Lee, EA Franzosa, XC Morgan, D Gevers, ES Lander, RJ Xavier, BW Birren, G Ko, C Huttenhower. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med 2016; 8(1): 17
https://doi.org/10.1186/s13073-016-0271-6 pmid: 26884067
57 J Li, F Zhao, Y Wang, J Chen, J Tao, G Tian, S Wu, W Liu, Q Cui, B Geng, W Zhang, R Weldon, K Auguste, L Yang, X Liu, L Chen, X Yang, B Zhu, J Cai. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5(1): 14
https://doi.org/10.1186/s40168-016-0222-x pmid: 28143587
58 MC Dao, A Everard, J Aron-Wisnewsky, N Sokolovska, E Prifti, EO Verger, BD Kayser, F Levenez, J Chilloux, L Hoyles, Consortium; Dumas ME MICRO-Obes, SW Rizkalla, J Doré, PD Cani, K Clément. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426–436
https://doi.org/10.1136/gutjnl-2014-308778 pmid: 26100928
59 L Hoyles, JM Fernández-Real, M Federici, M Serino, J Abbott, J Charpentier, C Heymes, JL Luque, E Anthony, RH Barton, J Chilloux, A Myridakis, L Martinez-Gili, JM Moreno-Navarrete, F Benhamed, V Azalbert, V Blasco-Baque, J Puig, G Xifra, W Ricart, C Tomlinson, M Woodbridge, M Cardellini, F Davato, I Cardolini, O Porzio, P Gentileschi, F Lopez, F Foufelle, SA Butcher, E Holmes, JK Nicholson, C Postic, R Burcelin, ME Dumas. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018; 24(7): 1070–1080
https://doi.org/10.1038/s41591-018-0061-3 pmid: 29942096
60 E Nistal, de Miera LE Sáenz, Pomar M Ballesteros, S Sánchez-Campos, MV García-Mediavilla, B Álvarez-Cuenllas, P Linares, JL Olcoz, MT Arias-Loste, JM García-Lobo, J Crespo, J González-Gallego, Plaza F Jorquera. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Rev Esp Enferm Dig 2019; 111(4): 275–282
https://doi.org/10.17235/reed.2019.6068/2018 pmid: 30810328
61 HJ Tsai, YC Tsai, WW Hung, WC Hung, CC Chang, CY Dai. Gut microbiota and non-alcoholic fatty liver disease severity in type 2 diabetes patients. J Pers Med 2021; 11(3): 238
https://doi.org/10.3390/jpm11030238 pmid: 33807075
62 NY Lee, MJ Shin, GS Youn, SJ Yoon, YR Choi, HS Kim, H Gupta, SH Han, BK Kim, DY Lee, TS Park, H Sung, BY Kim, KT Suk. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol 2021; 27(1): 110–124
https://doi.org/10.3350/cmh.2020.0125 pmid: 33317254
63 C Özkul, M Yalınay, T Karakan, G Yılmaz. Determination of certain bacterial groups in gut microbiota and endotoxin levels in patients with nonalcoholic steatohepatitis. Turk J Gastroenterol 2017; 28(5): 361–369
https://doi.org/10.5152/tjg.2017.17033 pmid: 28705785
64 Chierico F Del, V Nobili, P Vernocchi, A Russo, Stefanis C De, D Gnani, C Furlanello, A Zandonà, P Paci, G Capuani, B Dallapiccola, A Miccheli, A Alisi, L Putignani. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017; 65(2): 451–464
https://doi.org/10.1002/hep.28572 pmid: 27028797
65 X Pan, AC Kaminga, A Liu, SW Wen, M Luo, J Luo. Gut microbiota, glucose, lipid, and water-electrolyte metabolism in children with nonalcoholic fatty liver disease. Front Cell Infect Microbiol 2021; 11: 683743
https://doi.org/10.3389/fcimb.2021.683743 pmid: 34778099
66 JB Schwimmer, JS Johnson, JE Angeles, C Behling, PH Belt, I Borecki, C Bross, J Durelle, NP Goyal, G Hamilton, ML Holtz, JE Lavine, M Mitreva, KP Newton, A Pan, PM Simpson, CB Sirlin, E Sodergren, R Tyagi, KP Yates, GM Weinstock, NH Salzman. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019; 157(4): 1109–1122
https://doi.org/10.1053/j.gastro.2019.06.028 pmid: 31255652
67 FR Ponziani, S Bhoori, C Castelli, L Putignani, L Rivoltini, F Del Chierico, M Sanguinetti, D Morelli, F Paroni Sterbini, V Petito, S Reddel, R Calvani, C Camisaschi, A Picca, A Tuccitto, A Gasbarrini, M Pompili, V Mazzaferro. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2019; 69(1): 107–120
https://doi.org/10.1002/hep.30036 pmid: 29665135
68 R Liu, J Hong, X Xu, Q Feng, D Zhang, Y Gu, J Shi, S Zhao, W Liu, X Wang, H Xia, Z Liu, B Cui, P Liang, L Xi, J Jin, X Ying, X Wang, X Zhao, W Li, H Jia, Z Lan, F Li, R Wang, Y Sun, M Yang, Y Shen, Z Jie, J Li, X Chen, H Zhong, H Xie, Y Zhang, W Gu, X Deng, B Shen, X Xu, H Yang, G Xu, Y Bi, S Lai, J Wang, L Qi, L Madsen, J Wang, G Ning, K Kristiansen, W Wang. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23(7): 859–868
https://doi.org/10.1038/nm.4358 pmid: 28628112
69 AS Lihn, SB Pedersen, B Richelsen. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005; 6(1): 13–21
https://doi.org/10.1111/j.1467-789X.2005.00159.x pmid: 15655035
70 K Kordy, F Li, DJ Lee, JM Kinchen, MH Jew, ME La Rocque, S Zabih, M Saavedra, C Woodward, NJ Cunningham, NH Tobin, GM Aldrovandi. Metabolomic predictors of non-alcoholic steatohepatitis and advanced fibrosis in children. Front Microbiol 2021; 12: 713234
https://doi.org/10.3389/fmicb.2021.713234 pmid: 34475864
71 CK Negi, P Babica, L Bajard, J Bienertova-Vasku, G Tarantino. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 2022; 126: 154925
https://doi.org/10.1016/j.metabol.2021.154925 pmid: 34740573
72 GV Moreira, FF Azevedo, LM Ribeiro, A Santos, D Guadagnini, P Gama, EA Liberti, M Saad, C Carvalho. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem 2018; 62: 143–154
https://doi.org/10.1016/j.jnutbio.2018.07.009 pmid: 30292107
73 J Du, P Zhang, J Luo, L Shen, S Zhang, H Gu, J He, L Wang, X Zhao, M Gan, L Yang, L Niu, Y Zhao, Q Tang, G Tang, D Jiang, Y Jiang, M Li, A Jiang, L Jin, J Ma, S Shuai, L Bai, J Wang, B Zeng, D Wu, X Li, L Zhu. Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut Microbes 2021; 13(1): 1862612
https://doi.org/10.1080/19490976.2020.1862612 pmid: 33550882
74 L Zhang, Y Wang, F Wu, X Wang, Y Feng, Y Wang. MDG, an Ophiopogon japonicus polysaccharide, inhibits non-alcoholic fatty liver disease by regulating the abundance of Akkermansia muciniphila. Int J Biol Macromol 2022; 196: 23–34
https://doi.org/10.1016/j.ijbiomac.2021.12.036 pmid: 34920070
75 X Wang, D Liu, Z Wang, C Cai, H Jiang, G Yu. Porphyran-derived oligosaccharides alleviate NAFLD and related cecal microbiota dysbiosis in mice. FASEB J 2021; 35(6): e21458
https://doi.org/10.1096/fj.202000763RRR pmid: 33948987
76 R Han, H Qiu, J Zhong, N Zheng, B Li, Y Hong, J Ma, G Wu, L Chen, L Sheng, H Li. Si Miao Formula attenuates non-alcoholic fatty liver disease by modulating hepatic lipid metabolism and gut microbiota. Phytomedicine 2021; 85: 153544
https://doi.org/10.1016/j.phymed.2021.153544 pmid: 33773192
77 S Ghosh, X Yang, L Wang, C Zhang, L Zhao. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Comput Struct Biotechnol J 2021; 19: 448–458
https://doi.org/10.1016/j.csbj.2020.12.011 pmid: 33510856
78 X Hua, DY Sun, WJ Zhang, JT Fu, J Tong, SJ Sun, FY Zeng, SX Ouyang, GY Zhang, SN Wang, DJ Li, CY Miao, P Wang. P7C3-A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP-activated protein kinase/CREB regulated transcription coactivator 2 pathway. Br J Pharmacol 2021; 178(10): 2111–2130
https://doi.org/10.1111/bph.15008 pmid: 32037512
79 T Bao, F He, X Zhang, L Zhu, Z Wang, H Lu, T Wang, Y Li, S Yang, H Wang. Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the lipopolysaccharide-Toll-like receptor 4-Mψ-nuclear factor-κB-Nod-like receptor protein 3 pathway via gut-liver axis in mice. Front Pharmacol 2020; 11: 558525
https://doi.org/10.3389/fphar.2020.558525 pmid: 33390939
80 H Cui, Y Li, Y Wang, L Jin, L Yang, L Wang, J Liao, H Wang, Y Peng, Z Zhang, H Wang, X Liu. Da-Chai-Hu Decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease through remodeling the gut microbiota and modulating the serum metabolism. Front Pharmacol 2020; 11: 584090
https://doi.org/10.3389/fphar.2020.584090 pmid: 33328987
81 H Nakano, S Wu, K Sakao, T Hara, J He, S Garcia, K Shetty, DX Hou. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis. Nutrients 2020; 12(11): 3252
https://doi.org/10.3390/nu12113252 pmid: 33114130
82 J Mu, F Tan, X Zhou, X Zhao. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food Funct 2020; 11(10): 8707–8723
https://doi.org/10.1039/D0FO01823F pmid: 32945305
83 K Xie, X He, K Chen, K Sakao, DX Hou. Ameliorative effects and molecular mechanisms of vine tea on western diet-induced NAFLD. Food Funct 2020; 11(7): 5976–5991
https://doi.org/10.1039/D0FO00795A pmid: 32666969
84 M Nishiyama, N Ohtake, A Kaneko, N Tsuchiya, S Imamura, S Iizuka, S Ishizawa, A Nishi, M Yamamoto, A Taketomi, T Kono. Increase of Akkermansia muciniphila by a diet containing Japanese traditional medicine bofutsushosan in a mouse model of non-alcoholic fatty liver disease. Nutrients 2020; 12(3): 839
https://doi.org/10.3390/nu12030839 pmid: 32245128
85 X Li, Y Wang, Y Xing, R Xing, Y Liu, Y Xu. Changes of gut microbiota during silybin-mediated treatment of high-fat diet-induced non-alcoholic fatty liver disease in mice. Hepatol Res 2020; 50(1): 5–14
https://doi.org/10.1111/hepr.13444 pmid: 31661720
86 D Porras, E Nistal, S Martínez-Flórez, JL Olcoz, R Jover, F Jorquera, J González-Gallego, MV García-Mediavilla, S Sánchez-Campos. Functional interactions between gut microbiota transplantation, quercetin, and high-fat diet determine non-alcoholic fatty liver disease development in germ-free mice. Mol Nutr Food Res 2019; 63(8): e1800930
https://doi.org/10.1002/mnfr.201800930 pmid: 30680920
87 M Régnier, M Rastelli, A Morissette, F Suriano, Roy T Le, G Pilon, NM Delzenne, A Marette, Hul M Van, PD Cani. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia muciniphila in mice. Nutrients 2020; 12(10): 2932
https://doi.org/10.3390/nu12102932 pmid: 32987923
88 M Juárez-Fernández, D Porras, P Petrov, S Román-Sagüillo, MV García-Mediavilla, P Soluyanova, S Martínez-Flórez, J González-Gallego, E Nistal, R Jover, S Sánchez-Campos. The synbiotic combination of Akkermansia muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation. Antioxidants (Basel) 2021; 10(12): 2001
https://doi.org/10.3390/antiox10122001 pmid: 34943104
89 M Guevara-Cruz, AG Flores-López, M Aguilar-López, M Sánchez-Tapia, I Medina-Vera, D Díaz, AR Tovar, N Torres. Improvement of lipoprotein profile and metabolic endotoxemia by a lifestyle intervention that modifies the gut microbiota in subjects with metabolic syndrome. J Am Heart Assoc 2019; 8(17): e012401
https://doi.org/10.1161/JAHA.119.012401 pmid: 31451009
90 A Palleja, A Kashani, KH Allin, T Nielsen, C Zhang, Y Li, T Brach, S Liang, Q Feng, NB Jørgensen, KN Bojsen-Møller, C Dirksen, KS Burgdorf, JJ Holst, S Madsbad, J Wang, O Pedersen, T Hansen, M Arumugam. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 2016; 8(1): 67
https://doi.org/10.1186/s13073-016-0312-1 pmid: 27306058
91 C Depommier, M Van Hul, A Everard, NM Delzenne, WM De Vos, PD Cani. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 2020; 11(5): 1231–1245
https://doi.org/10.1080/19490976.2020.1737307 pmid: 32167023
92 SG Higarza, S Arboleya, JL Arias, M Gueimonde, N Arias. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2021; 13(1): 1880240
https://doi.org/10.1080/19490976.2021.1880240 pmid: 33678110
93 Y Yang, Z Zhong, B Wang, X Xia, W Yao, L Huang, Y Wang, W Ding. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 2019; 44(12): 2054–2064
https://doi.org/10.1038/s41386-019-0437-1 pmid: 31207607
94 M Eslam, AJ Sanyal, Jnternational Consensus Panel George;. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158(7): 1999–2014.e1
https://doi.org/10.1053/j.gastro.2019.11.312 pmid: 32044314
95 R Lomonaco, C Ortiz-Lopez, B Orsak, A Webb, J Hardies, C Darland, J Finch, A Gastaldelli, S Harrison, F Tio, K Cusi. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55(5): 1389–1397
https://doi.org/10.1002/hep.25539 pmid: 22183689
96 RS Khan, PN Newsome. NAFLD in 2017: novel insights into mechanisms of disease progression. Nat Rev Gastroenterol Hepatol 2018; 15(2): 71–72
https://doi.org/10.1038/nrgastro.2017.181 pmid: 29300050
97 F Ashrafian, A Shahriary, A Behrouzi, HR Moradi, S Keshavarz Azizi Raftar, A Lari, S Hadifar, R Yaghoubfar, S Ahmadi Badi, S Khatami, F Vaziri, SD Siadat. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 2019; 10: 2155
https://doi.org/10.3389/fmicb.2019.02155 pmid: 31632356
98 J Shen, X Tong, N Sud, R Khound, Y Song, MX Maldonado-Gomez, J Walter, Q Su. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler Thromb Vasc Biol 2016; 36(7): 1448–1456
https://doi.org/10.1161/ATVBAHA.116.307597 pmid: 27230129
99 S Zhao, W Liu, J Wang, J Shi, Y Sun, W Wang, G Ning, R Liu, J Hong. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 2017; 58(1): 1–14
https://doi.org/10.1530/JME-16-0054 pmid: 27821438
100 X Gao, Q Xie, P Kong, L Liu, S Sun, B Xiong, B Huang, L Yan, J Sheng, H Xiang. Polyphenol- and caffeine-rich postfermented Pu-erh Tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect Immun 2018; 86(1): e00601–17
https://doi.org/10.1128/IAI.00601-17 pmid: 29061705
101 L Sheng, PK Jena, HX Liu, Y Hu, N Nagar, DN Bronner, ML Settles, AJ Bäumler, YY Wan. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J 2018; 32(12): fj201800370R
https://doi.org/10.1096/fj.201800370R pmid: 29882708
102 S Katiraei, Vries MR de, AH Costain, K Thiem, LR Hoving, Diepen JA van, HH Smits, KE Bouter, PCN Rensen, PHA Quax, M Nieuwdorp, MG Netea, Vos WM de, PD Cani, C Belzer, Dijk KW van, JFP Berbée, Harmelen V van. Akkermansia muciniphila exerts lipid-lowering and immunomodulatory effects without affecting neointima formation in hyperlipidemic APOE*3-Leiden. CETP mice. Mol Nutr Food Res 2020; 64(15): e1900732
https://doi.org/10.1002/mnfr.201900732 pmid: 31389129
103 H Lee, Y Lee, J Kim, J An, S Lee, H Kong, Y Song, CK Lee, K Kim. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 2018; 9(2): 155–165
https://doi.org/10.1080/19490976.2017.1405209 pmid: 29157127
104 H Tilg. The role of cytokines in non-alcoholic fatty liver disease. Dig Dis 2010; 28(1): 179–185
https://doi.org/10.1159/000282083 pmid: 20460908
105 G Carpino, M Del Ben, D Pastori, R Carnevale, F Baratta, D Overi, H Francis, V Cardinale, P Onori, S Safarikia, V Cammisotto, D Alvaro, G Svegliati-Baroni, F Angelico, E Gaudio, F Violi. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 2020; 72(2): 470–485
https://doi.org/10.1002/hep.31056 pmid: 31808577
106 T Sharifnia, J Antoun, TG Verriere, G Suarez, J Wattacheril, KT Wilson, RM Jr Peek, NN Abumrad, CR Flynn. Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 2015; 309(4): G270–G278
https://doi.org/10.1152/ajpgi.00304.2014 pmid: 26113297
107 C Michaudel, H Sokol. The gut microbiota at the service of immunometabolism. Cell Metab 2020; 32(4): 514–523
https://doi.org/10.1016/j.cmet.2020.09.004 pmid: 32946809
108 J Cai, XJ Zhang, H Li. Role of innate immune signaling in non-alcoholic fatty liver disease. Trends Endocrinol Metab 2018; 29(10): 712–722
https://doi.org/10.1016/j.tem.2018.08.003 pmid: 30131212
109 K Miura, L Yang, N van Rooijen, DA Brenner, H Ohnishi, E Seki. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 2013; 57(2): 577–589
https://doi.org/10.1002/hep.26081 pmid: 22987396
110 K Kazankov, SMD Jørgensen, KL Thomsen, HJ Møller, H Vilstrup, J George, D Schuppan, H Grønbæk. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16(3): 145–159
https://doi.org/10.1038/s41575-018-0082-x pmid: 30482910
111 X Yang, H Liu, T Ye, C Duan, P Lv, X Wu, J Liu, K Jiang, H Lu, H Yang, D Xia, E Peng, Z Chen, K Tang, Z Ye. AhR activation attenuates calcium oxalate nephrocalcinosis by diminishing M1 macrophage polarization and promoting M2 macrophage polarization. Theranostics 2020; 10(26): 12011–12025
https://doi.org/10.7150/thno.51144 pmid: 33204326
112 Y Huang, J He, H Liang, K Hu, S Jiang, L Yang, S Mei, X Zhu, J Yu, A Kijlstra, P Yang, S Hou. Aryl Hydrocarbon receptor regulates apoptosis and inflammation in a murine model of experimental autoimmune uveitis. Front Immunol 2018; 9: 1713
https://doi.org/10.3389/fimmu.2018.01713 pmid: 30090104
113 Z Cui, Y Feng, D Li, T Li, P Gao, T Xu. Activation of aryl hydrocarbon receptor (AhR) in mesenchymal stem cells modulates macrophage polarization in asthma. J Immunotoxicol 2020; 17(1): 21–30
https://doi.org/10.1080/1547691X.2019.1706671 pmid: 31922435
114 KW Bock. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: non-genomic and genomic signaling. Biochem Pharmacol 2020; 182: 114220
https://doi.org/10.1016/j.bcp.2020.114220 pmid: 32941865
115 YH Lin, H Luck, S Khan, PHH Schneeberger, S Tsai, X Clemente-Casares, H Lei, YL Leu, YT Chan, HY Chen, SH Yang, B Coburn, S Winer, DA Winer. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes 2019; 43(12): 2407–2421
https://doi.org/10.1038/s41366-019-0340-1 pmid: 30944419
116 T Wada, H Sunaga, K Miyata, H Shirasaki, Y Uchiyama, S Shimba. Aryl hydrocarbon receptor plays protective roles against high fat diet (HFD)-induced hepatic steatosis and the subsequent lipotoxicity via direct transcriptional regulation of Socs3 gene expression. J Biol Chem 2016; 291(13): 7004–7016
https://doi.org/10.1074/jbc.M115.693655 pmid: 26865635
117 F Yang, JAA DeLuca, R Menon, E Garcia-Vilarato, E Callaway, KK Landrock, K Lee, SH Safe, RS Chapkin, CD Allred, A Jayaraman. Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles. Microb Cell Fact 2020; 19(1): 219
https://doi.org/10.1186/s12934-020-01463-5 pmid: 33256731
118 SKA Raftar, F Ashrafian, S Abdollahiyan, A Yadegar, HR Moradi, M Masoumi, F Vaziri, A Moshiri, SD Siadat, MR Zali. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCl4-induced murine model of liver injury. Sci Rep 2022; 12(1): 2453
https://doi.org/10.1038/s41598-022-06414-1 pmid: 35165344
[1] Yves Ingenbleek. Plasma transthyretin is a nutritional biomarker in human morbidities[J]. Front. Med., 2022, 16(4): 540-550.
[2] Qiaoli Shi, Fei Xia, Qixin Wang, Fulong Liao, Qiuyan Guo, Chengchao Xu, Jigang Wang. Discovery and repurposing of artemisinin[J]. Front. Med., 2022, 16(1): 1-9.
[3] Manling Liu, Zhaoling Shi, Yue Yin, Yishi Wang, Nan Mu, Chen Li, Heng Ma, Qiong Wang. Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2--p65 pathway[J]. Front. Med., 2021, 15(5): 750-766.
[4] Weijian Hang, Chen Chen, Xin A. Zhang, Dao Wen Wang. Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2[J]. Front. Med., 2021, 15(4): 638-643.
[5] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[6] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[7] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[8] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[9] Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis[J]. Front. Med., 2017, 11(3): 349-358.
[10] Marijke A. de Vries,Arash Alipour,Erwin Birnie,Andrew Westzaan,Selvetta van Santen,Ellen van der Zwan,Anho H. Liem,Noëlle van der Meulen,Manuel Castro Cabezas. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
[11] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[12] Juan Zheng,Shih-Lung Woo,Xiang Hu,Rachel Botchlett,Lulu Chen,Yuqing Huo,Chaodong Wu. Metformin and metabolic diseases: a focus on hepatic aspects[J]. Front. Med., 2015, 9(2): 173-186.
[13] Zhicheng Zhang,Jun Yang,Mingchao Li,Wei Cai,Qingquan Liu,Tao Wang,Xiaolin Guo,Shaogang Wang,Jihong Liu,Zhangqun Ye. Paratesticular fibrous pseudotumor: a report of five cases and literature review[J]. Front. Med., 2014, 8(4): 484-488.
[14] Khurram Siddique, Shirin Mirza, Gandra Harinath. Appendiceal inflammation affects the length of stay following appendicectomy amongst children: a myth or reality?[J]. Front Med, 2013, 7(2): 264-269.
[15] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed