|
|
The development and benefits of metformin in various diseases |
Ying Dong1, Yingbei Qi1,5, Haowen Jiang1, Tian Mi1, Yunkai Zhang1,2, Chang Peng1,2, Wanchen Li1,2, Yongmei Zhang1,5, Yubo Zhou1,7( ), Yi Zang1,3,5( ), Jia Li1,2,4,5,6( ) |
1. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Lingang Laboratory, Shanghai 201203, China 4. Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China 5. School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China 6. Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China 7. Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China |
|
|
Abstract Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
|
Keywords
metformin
metabolism
cancer
aging
neurological disorder
|
Corresponding Author(s):
Yubo Zhou,Yi Zang,Jia Li
|
Just Accepted Date: 06 May 2023
Online First Date: 30 June 2023
Issue Date: 28 July 2023
|
|
1 |
B Viollet, B Guigas, N Sanz Garcia, J Leclerc, M Foretz, F Andreelli. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122(6): 253–270
https://doi.org/10.1042/CS20110386
pmid: 22117616
|
2 |
SR Salpeter, NS Buckley, JA Kahn, EE Salpeter. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am J Med 2008; 121(2): 149–157.e2
https://doi.org/10.1016/j.amjmed.2007.09.016
pmid: 18261504
|
3 |
M Foretz, B Guigas, L Bertrand, M Pollak, B Viollet. Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20(6): 953–966
https://doi.org/10.1016/j.cmet.2014.09.018
pmid: 25456737
|
4 |
D Carling. AMPK signalling in health and disease. Curr Opin Cell Biol 2017; 45: 31–37
https://doi.org/10.1016/j.ceb.2017.01.005
pmid: 28232179
|
5 |
CJ Bailey. Metformin: historical overview. Diabetologia 2017; 60(9): 1566–1576
https://doi.org/10.1007/s00125-017-4318-z
pmid: 28776081
|
6 |
CJ Bailey, C Day. Metformin: its botanical background. Pract Diabetes Int 2004; 21(3): 115–117
https://doi.org/10.1002/pdi.606
|
7 |
J Hill. The Vegetable System, or, The Internal Structure and The Life of Plants. London: the author, 1761–1775
|
8 |
CK Watanabe. Studies in the metabolic changes induced by administration of guanidine bases. J Biol Chem 1918; 34(1): 51–63
https://doi.org/10.1016/S0021-9258(18)86531-0
|
9 |
JL Ríos, F Francini, GR Schinella. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81(12–13): 975–994
https://doi.org/10.1055/s-0035-1546131
pmid: 26132858
|
10 |
CT Pineda, S Ramanathan, K Fon Tacer, JL Weon, MB Potts, YH Ou, MA White, PR Potts. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 2015; 160(4): 715–728
https://doi.org/10.1016/j.cell.2015.01.034
pmid: 25679763
|
11 |
GS Wang, C Hoyte. Review of biguanide (metformin) toxicity. J Intensive Care Med 2019; 34(11–12): 863–876
https://doi.org/10.1177/0885066618793385
pmid: 30126348
|
12 |
IM Rabinowitch. Observations on the use of synthalin in the treatment of diabetes mellitus. Can Med Assoc J 1927; 17(8): 901–904
pmid: 20316450
|
13 |
KH Slotta. Tschesche RJEJoIC. Über Biguanide, II: Die blutzucker-senkende Wirkung der Biguanide. 1929; 62: 1398–1405
|
14 |
E Hesse. Taubmann GJN-SAfePuP. Die Wirkung des Biguanids und seiner Derivate auf den Zuckerstoffwechsel. 1929; 142: 290–308
|
15 |
CJ Bailey, RC Turner. Metformin. N Engl J Med 1996; 334(9): 574–579
https://doi.org/10.1056/NEJM199602293340906
pmid: 8569826
|
16 |
EA Werner, J Bell. CCXIV—The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J Chem Soc Trans 1922; 121(0): 1790–1794
https://doi.org/10.1039/CT9222101790
|
17 |
L Sylow, M Kleinert, EA Richter, TE Jensen. Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133–148
https://doi.org/10.1038/nrendo.2016.162
pmid: 27739515
|
18 |
SL SamsonAJ Garber. Metformin and other biguanides: pharmacology and therapeutic usage. International Textbook of Diabetes Mellitus. 2015. 641–656
|
19 |
CL Meinert. Clinical Trials: Design, Conduct and Analysis. Oxford University Press, 1986
|
20 |
G Schäfer. Biguanides. A review of history, pharmacodynamics and therapy. Diabete Metab 1983; 9(2): 148–163
pmid: 6352352
|
21 |
TE LaMoia, GI Shulman. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021; 42(1): 77–96
https://doi.org/10.1210/endrev/bnaa023
pmid: 32897388
|
22 |
EY GARCIA. Flumamine, a new synthetic analgesic and anti-flu drug. J Philipp Med Assoc 1950; 26(7): 287–293
pmid: 14779282
|
23 |
FHS Curd, DG Davey, FL Rose. Studies on synthetic antimalarial drugs; some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 1945; 39(3–4): 208–216
https://doi.org/10.1080/00034983.1945.11685237
pmid: 21013252
|
24 |
JJMM Sterne. Du nouveau dans les antidiabetiques. La NN dimethylamine guanyl guanide (NNDG). 1957; 36: 1295–1296
|
25 |
J Sterne. Blood sugar-lowering effect of 1,1-dimethylbiguanide. Therapie 1958; 13(4): 650–659 (in French)
pmid: 13603402
|
26 |
A Beringer. Treatment of diabetes mellitus with biguanides. Wien Med Wochenschr 1958; 108(43): 880–882
pmid: 13604270
|
27 |
A Woods, D Vertommen, D Neumann, R Turk, J Bayliss, U Schlattner, T Wallimann, D Carling, MH Rider. Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 2003; 278(31): 28434–28442
https://doi.org/10.1074/jbc.M303946200
pmid: 12764152
|
28 |
KENDRY JB Mc, K Kuwayti, PP Rado. Clinical experience with DBI (phenformin) in the management of diabetes. Can Med Assoc J 1959; 80(10): 773–778
pmid: 13652024
|
29 |
G Ungar, L Freedman, SL Shapiro. Pharmacological studies of a new oral hypoglycemic drug. Proc Soc Exp Biol Med 1957; 95(1): 190–192
https://doi.org/10.3181/00379727-95-23163
pmid: 13432032
|
30 |
P King, I Peacock, R Donnelly. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 1999; 48(5): 643–648
https://doi.org/10.1046/j.1365-2125.1999.00092.x
pmid: 10594464
|
31 |
RC Turner. The U. K. prospective diabetes study. A review. Diabetes Care 1998; 21(Suppl 3): C35–C38
https://doi.org/10.2337/diacare.21.3.C35
pmid: 9850487
|
32 |
RR Holman, SK Paul, MA Bethel, DR Matthews, HA Neil. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577–1589
https://doi.org/10.1056/NEJMoa0806470
pmid: 18784090
|
33 |
SS Lund, P Rossing, AA Vaag. Follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2009; 360(4): 416–418
https://doi.org/10.1056/NEJMc082275
pmid: 19164195
|
34 |
P Kumar, K Khan. Effects of metformin use in pregnant patients with polycystic ovary syndrome. J Hum Reprod Sci 2012; 5(2): 166–169
https://doi.org/10.4103/0974-1208.101012
pmid: 23162354
|
35 |
GS Ghazeeri, AH Nassar, Z Younes, JT Awwad. Pregnancy outcomes and the effect of metformin treatment in women with polycystic ovary syndrome: an overview. Acta Obstet Gynecol Scand 2012; 91(6): 658–678
https://doi.org/10.1111/j.1600-0412.2012.01385.x
pmid: 22375613
|
36 |
W Nicholson, S Bolen, CT Witkop, D Neale, L Wilson, E Bass. Benefits and risks of oral diabetes agents compared with insulin in women with gestational diabetes: a systematic review. Obstet Gynecol 2009; 113(1): 193–205
https://doi.org/10.1097/AOG.0b013e318190a459
pmid: 19104375
|
37 |
YJ Choi. Efficacy of adjunctive treatments added to olanzapine or clozapine for weight control in patients with schizophrenia: a systematic review and meta-analysis. ScientificWorldJournal 2015; 2015: 970730
https://doi.org/10.1155/2015/970730
pmid: 25664341
|
38 |
JM Campbell, MD Stephenson, B de Courten, I Chapman, SM Bellman, E Aromataris. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimers Dis 2018; 65(4): 1225–1236
https://doi.org/10.3233/JAD-180263
pmid: 30149446
|
39 |
Y Yang. Metformin for cancer prevention. Front Med 2011; 5(2): 115–117
https://doi.org/10.1007/s11684-011-0112-3
pmid: 21695613
|
40 |
CJ Bailey, C Day. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12(8): 553–564
https://doi.org/10.2337/diacare.12.8.553
pmid: 2673695
|
41 |
T Kato, T Kondo, K Mizuno. Occurrence of guanidino compounds in several plants. Soil Sci Plant Nutr 1986; 32(3): 487–491
https://doi.org/10.1080/00380768.1986.10557530
|
42 |
B Rathke. Ueber biguanid. Ber Dtsch Chem Ges 1879; 12(1): 776–784
https://doi.org/10.1002/cber.187901201219
|
43 |
Metformin (Glucophage(R)). Mother To Baby | Fact Sheets. Brentwood: Organization of Teratology Information Specialists (OTIS). Copyright by OTIS. January 2022
|
44 |
RA DeFronzo, AM Goodman. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 1995; 333(9): 541–549
https://doi.org/10.1056/NEJM199508313330902
pmid: 7623902
|
45 |
WC Knowler, E Barrett-Connor, SE Fowler, RF Hamman, JM Lachin, EA Walker, DM; Diabetes Prevention Program Research Group Nathan. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393–403
https://doi.org/10.1056/NEJMoa012512
pmid: 11832527
|
46 |
The Selection and Use of Essential Medicines. World Health Organ Tech Rep Ser 2015; vii-xv: 1–546
|
47 |
GG Graham, J Punt, M Arora, RO Day, MP Doogue, JK Duong, TJ Furlong, JR Greenfield, LC Greenup, CM Kirkpatrick, JE Ray, P Timmins, KM Williams. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50(2): 81–98
https://doi.org/10.2165/11534750-000000000-00000
pmid: 21241070
|
48 |
PJ Pentikäinen, PJ Neuvonen, A Penttilä. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 1979; 16(3): 195–202
https://doi.org/10.1007/BF00562061
pmid: 499320
|
49 |
N Idkaidek, T Arafat. Metformin IR versus XR pharmacokinetics in humans. J Bioequiv Availab 2011; 3: 233–235
https://doi.org/10.4172/jbb.1000092
|
50 |
Y Harahap, S Purnasari, H Hayun, K Dianpratami, M Wulandari. Bioequivalence Study of Metformin HCl XR Caplet Formulations in Healthy Indonesian Volunteers. J Bioequiv Availab 2011; 3: 16–19
|
51 |
MG Oefelein, W Tong, S Kerr, K Bhasi, RK Patel, D Yu. Effect of concomitant administration of trospium chloride extended release on the steady-state pharmacokinetics of metformin in healthy adults. Clin Drug Investig 2013; 33(2): 123–131
https://doi.org/10.1007/s40261-012-0049-6
pmid: 23325481
|
52 |
P Timmins, S Donahue, J Meeker, P Marathe. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet 2005; 44(7): 721–729
https://doi.org/10.2165/00003088-200544070-00004
pmid: 15966755
|
53 |
SJ Rhee, S Lee, SH Yoon, JY Cho, IJ Jang, KS Yu. Pharmacokinetics of the evogliptin/metformin extended-release (5/1,000 mg) fixed-dose combination formulation compared to the corresponding loose combination, and food effect in healthy subjects. Drug Des Devel Ther 2016; 10: 1411–1418
pmid: 27110098
|
54 |
M Zhou, L Xia, J Wang. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35(10): 1956–1962
https://doi.org/10.1124/dmd.107.015495
pmid: 17600084
|
55 |
F Kawoosa, ZA Shah, SR Masoodi, A Amin, R Rasool, KM Fazili, AH Dar, A Lone, S Ul Bashir. Role of human organic cation transporter-1 (OCT-1/SLC22A1) in modulating the response to metformin in patients with type 2 diabetes. BMC Endocr Disord 2022; 22(1): 140
https://doi.org/10.1186/s12902-022-01033-3
pmid: 35619086
|
56 |
Y Shu, SA Sheardown, C Brown, RP Owen, S Zhang, RA Castro, AG Ianculescu, L Yue, JC Lo, EG Burchard, CM Brett, KM Giacomini. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117(5): 1422–1431
https://doi.org/10.1172/JCI30558
pmid: 17476361
|
57 |
MMH Christensen, K Højlund, O Hother-Nielsen, TB Stage, P Damkier, H Beck-Nielsen, K Brøsen. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur J Clin Pharmacol 2015; 71(6): 691–697
https://doi.org/10.1007/s00228-015-1853-8
pmid: 25939711
|
58 |
EC Chen, X Liang, SW Yee, EG Geier, SL Stocker, L Chen, KM Giacomini. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol 2015; 88(1): 75–83
https://doi.org/10.1124/mol.114.096776
pmid: 25920679
|
59 |
N Lee, MF Hebert, DJ Wagner, TR Easterling, CJ Liang, K Rice, J Wang. Organic cation transporter 3 facilitates fetal exposure to metformin during pregnancy. Mol Pharmacol 2018; 94(4): 1125–1131
https://doi.org/10.1124/mol.118.112482
pmid: 30012584
|
60 |
L Chen, Y Shu, X Liang, EC Chen, SW Yee, AA Zur, S Li, L Xu, KR Keshari, MJ Lin, HC Chien, Y Zhang, KM Morrissey, J Liu, J Ostrem, NS Younger, J Kurhanewicz, KM Shokat, K Ashrafi, KM Giacomini. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci USA 2014; 111(27): 9983–9988
https://doi.org/10.1073/pnas.1314939111
pmid: 24961373
|
61 |
J Müller, KS Lips, L Metzner, RH Neubert, H Koepsell, M Brandsch. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 2005; 70(12): 1851–1860
https://doi.org/10.1016/j.bcp.2005.09.011
pmid: 16263091
|
62 |
N Nakamichi, H Shima, S Asano, T Ishimoto, T Sugiura, K Matsubara, H Kusuhara, Y Sugiyama, Y Sai, K Miyamoto, A Tsuji, Y Kato. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci 2013; 102(9): 3407–3417
https://doi.org/10.1002/jps.23595
pmid: 23666872
|
63 |
H Takane, E Shikata, K Otsubo, S Higuchi, I Ieiri. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008; 9(4): 415–422
https://doi.org/10.2217/14622416.9.4.415
pmid: 18384255
|
64 |
H Yoon, HY Cho, HD Yoo, SM Kim, YB Lee. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J 2013; 15(2): 571–580
https://doi.org/10.1208/s12248-013-9460-z
pmid: 23417334
|
65 |
X Liang, HC Chien, SW Yee, MM Giacomini, EC Chen, M Piao, J Hao, J Twelves, EI Lepist, AS Ray, KM Giacomini. Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3). Mol Pharm 2015; 12(12): 4301–4310
https://doi.org/10.1021/acs.molpharmaceut.5b00501
pmid: 26528626
|
66 |
TK Han, WR Proctor, CL Costales, H Cai, RS Everett, DR Thakker. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther 2015; 352(3): 519–528
https://doi.org/10.1124/jpet.114.220350
pmid: 25563903
|
67 |
J Kurlovics, DM Zake, L Zaharenko, K Berzins, J Klovins, E Stalidzans. Metformin transport rates between plasma and red blood cells in humans. Clin Pharmacokinet 2022; 61(1): 133–142
https://doi.org/10.1007/s40262-021-01058-2
pmid: 34309806
|
68 |
M Markowicz-Piasecka, KM Huttunen, L Mateusiak, E Mikiciuk-Olasik, J Sikora. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharm Des 2017; 23(17): 2532–2550
pmid: 27908266
|
69 |
AJ Scheen. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996; 30(5): 359–371
https://doi.org/10.2165/00003088-199630050-00003
pmid: 8743335
|
70 |
R Song. Mechanism of metformin: a tale of two sites. Diabetes Care 2016; 39(2): 187–189
https://doi.org/10.2337/dci15-0013
pmid: 26798149
|
71 |
N Lee, H Duan, MF Hebert, CJ Liang, KM Rice, J Wang. Taste of a pill: organic cation transporter-3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem 2014; 289(39): 27055–27064
https://doi.org/10.1074/jbc.M114.570564
pmid: 25107910
|
72 |
JE Hibma, AA Zur, RA Castro, MB Wittwer, RJ Keizer, SW Yee, S Goswami, SL Stocker, X Zhang, Y Huang, CM Brett, RM Savic, KM Giacomini. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet 2016; 55(6): 711–721
https://doi.org/10.1007/s40262-015-0346-3
pmid: 26597253
|
73 |
RA Posma, LH Venema, TM Huijink, AC Westerkamp, AMA Wessels, NJ De Vries, F Doesburg, J Roggeveld, PJ Ottens, DJ Touw, MW Nijsten, HGD Leuvenink. Increasing metformin concentrations and its excretion in both rat and porcine ex vivo normothermic kidney perfusion model. BMJ Open Diabetes Res Care 2020; 8: e000816
https://doi.org/10.1136/bmjdrc-2019-000816
pmid: 32816871
|
74 |
Ma YR, Zhou Y, Huang J, Qin HY, Wang P, Wu XA. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: can creatinine predict renal tubular elimination? Life Sci 2018; 196: 110–117 doi:10.1016/j.lfs.2018.01.017
pmid: 29355545
|
75 |
L Gong, S Goswami, KM Giacomini, RB Altman, TE Klein. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2012; 22(11): 820–827
https://doi.org/10.1097/FPC.0b013e3283559b22
pmid: 22722338
|
76 |
LJ McCreight, CJ Bailey, ER Pearson. Metformin and the gastrointestinal tract. Diabetologia 2016; 59(3): 426–435
https://doi.org/10.1007/s00125-015-3844-9
pmid: 26780750
|
77 |
CR Sirtori, G Franceschini, M Galli-Kienle, G Cighetti, G Galli, A Bondioli, F Conti. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 1978; 24(6): 683–693
https://doi.org/10.1002/cpt1978246683
pmid: 710026
|
78 |
GT Tucker, C Casey, PJ Phillips, H Connor, JD Ward, HF Woods. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 1981; 12(2): 235–246
https://doi.org/10.1111/j.1365-2125.1981.tb01206.x
pmid: 7306436
|
79 |
I Szymczak-Pajor, S Wenclewska, A Śliwińska. Metabolic action of metformin. Pharmaceuticals (Basel) 2022; 15(7): 810
https://doi.org/10.3390/ph15070810
pmid: 35890109
|
80 |
L He, FE Wondisford. Metformin action: concentrations matter. Cell Metab 2015; 21(2): 159–162
https://doi.org/10.1016/j.cmet.2015.01.003
pmid: 25651170
|
81 |
T Ma, X Tian, B Zhang, M Li, Y Wang, C Yang, J Wu, X Wei, Q Qu, Y Yu, S Long, JW Feng, C Li, C Zhang, C Xie, Y Wu, Z Xu, J Chen, Y Yu, X Huang, Y He, L Yao, L Zhang, M Zhu, W Wang, ZC Wang, M Zhang, Y Bao, W Jia, SY Lin, Z Ye, HL Piao, X Deng, CS Zhang, SC Lin. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022; 603(7899): 159–165
https://doi.org/10.1038/s41586-022-04431-8
pmid: 35197629
|
82 |
G Rena, DG Hardie, ER Pearson. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577–1585
https://doi.org/10.1007/s00125-017-4342-z
pmid: 28776086
|
83 |
CH Saely, K Geiger, H Drexel. Brown versus white adipose tissue: a mini-review. Gerontology 2012; 58(1): 15–23
https://doi.org/10.1159/000321319
pmid: 21135534
|
84 |
A Abdullahi, MG Jeschke. Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions. Endocr Rev 2017; 38(6): 538–549
https://doi.org/10.1210/er.2017-00163
pmid: 28938469
|
85 |
P Breining, JB Jensen, EI Sundelin, LC Gormsen, S Jakobsen, M Busk, L Rolighed, P Bross, P Fernandez-Guerra, LK Markussen, NE Rasmussen, JB Hansen, SB Pedersen, B Richelsen, N Jessen. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes Metab 2018; 20(9): 2264–2273
https://doi.org/10.1111/dom.13362
pmid: 29752759
|
86 |
KA Virtanen, K Hällsten, R Parkkola, T Janatuinen, F Lönnqvist, T Viljanen, T Rönnemaa, J Knuuti, R Huupponen, P Lönnroth, P Nuutila. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 2003; 52(2): 283–290
https://doi.org/10.2337/diabetes.52.2.283
pmid: 12540598
|
87 |
I Karise, TC Bargut, M Del Sol, MB Aguila, CA Mandarim-de-Lacerda. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019; 111: 1156–1165
https://doi.org/10.1016/j.biopha.2019.01.021
pmid: 30841429
|
88 |
I Çakır, CK Hadley, PL Pan, RA Bagchi, M Ghamari-Langroudi, DT Porter, Q Wang, MJ Litt, S Jana, S Hagen, P Lee, A White, JD Lin, TA McKinsey, RD Cone. Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nat Metab 2022; 4(1): 44–59
https://doi.org/10.1038/s42255-021-00515-3
pmid: 35039672
|
89 |
I Tokubuchi, Y Tajiri, S Iwata, K Hara, N Wada, T Hashinaga, H Nakayama, H Mifune, K Yamada. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One 2017; 12(2): e0171293
https://doi.org/10.1371/journal.pone.0171293
pmid: 28158227
|
90 |
Y Hu, AJ Young, EA Ehli, D Nowotny, PS Davies, EA Droke, TJ Soundy, GE Davies. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One 2014; 9(3): e93310
https://doi.org/10.1371/journal.pone.0093310
pmid: 24667776
|
91 |
T Qi, Y Chen, H Li, Y Pei, SL Woo, X Guo, J Zhao, X Qian, J Awika, Y Huo, C Wu. A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. J Mol Endocrinol 2017; 59(1): 49–59
https://doi.org/10.1530/JME-17-0066
pmid: 28559290
|
92 |
Y Jing, F Wu, D Li, L Yang, Q Li, R Li. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018; 461: 256–264
https://doi.org/10.1016/j.mce.2017.09.025
pmid: 28935544
|
93 |
G Marcelin, EL Gautier, K Clément. Adipose tissue fibrosis in obesity: etiology and challenges. Annu Rev Physiol 2022; 84(1): 135–155
https://doi.org/10.1146/annurev-physiol-060721-092930
pmid: 34752708
|
94 |
T Luo, A Nocon, J Fry, A Sherban, X Rui, B Jiang, XJ Xu, J Han, Y Yan, Q Yang, Q Li, M Zang. AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes 2016; 65(8): 2295–2310
https://doi.org/10.2337/db15-1122
pmid: 27207538
|
95 |
H Waki, P Tontonoz. Endocrine functions of adipose tissue. Annu Rev Pathol 2007; 2(1): 31–56
https://doi.org/10.1146/annurev.pathol.2.010506.091859
pmid: 18039092
|
96 |
Y Naghiaee, R Didehdar, F Pourrajab, M Rahmanian, N Heiranizadeh, A Mohiti, J Mohiti-Ardakani. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine 2020; 70(3): 498–508
https://doi.org/10.1007/s12020-020-02459-2
pmid: 32970287
|
97 |
S Cruciani, G Garroni, F Balzano, R Pala, E Bellu, ML Cossu, GC Ginesu, C Ventura, M Maioli. Tuning adipogenic differentiation in ADSCs by metformin and vitamin D: involvement of miRNAs. Int J Mol Sci 2020; 21(17): 6181
https://doi.org/10.3390/ijms21176181
pmid: 32867201
|
98 |
G Zhou, R Myers, Y Li, Y Chen, X Shen, J Fenyk-Melody, M Wu, J Ventre, T Doebber, N Fujii, N Musi, MF Hirshman, LJ Goodyear, DE Moller. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167–1174
https://doi.org/10.1172/JCI13505
pmid: 11602624
|
99 |
RJ Shaw, KA Lamia, D Vasquez, SH Koo, N Bardeesy, RA Depinho, M Montminy, LC Cantley. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310(5754): 1642–1646
https://doi.org/10.1126/science.1120781
pmid: 16308421
|
100 |
MD Fullerton, S Galic, K Marcinko, S Sikkema, T Pulinilkunnil, ZP Chen, HM O’Neill, RJ Ford, R Palanivel, M O’Brien, DG Hardie, SL Macaulay, JD Schertzer, JR Dyck, Denderen BJ van, BE Kemp, GR Steinberg. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19(12): 1649–1654
https://doi.org/10.1038/nm.3372
pmid: 24185692
|
101 |
E Bonora, M Cigolini, O Bosello, C Zancanaro, L Capretti, I Zavaroni, C Coscelli, U Butturini. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr Med Res Opin 1984; 9(1): 47–51
https://doi.org/10.1185/03007998409109558
pmid: 6373159
|
102 |
JB Buse, RA DeFronzo, J Rosenstock, T Kim, C Burns, S Skare, A Baron, M Fineman. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 2016; 39(2): 198–205
https://doi.org/10.2337/dc15-0488
pmid: 26285584
|
103 |
H Lee, G Ko. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 2014; 80(19): 5935–5943
https://doi.org/10.1128/AEM.01357-14
pmid: 25038099
|
104 |
NR Shin, JC Lee, HY Lee, MS Kim, TW Whon, MS Lee, JW Bae. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727–735
https://doi.org/10.1136/gutjnl-2012-303839
pmid: 23804561
|
105 |
X Fu, X Wang, Z Duan, C Zhang, X Fu, J Yang, X Liu, J He. Histone H3k9 and H3k27 acetylation regulates IL-4/STAT6-mediated Igε transcription in B lymphocytes. Anat Rec (Hoboken) 2015; 298(8): 1431–1439
https://doi.org/10.1002/ar.23172
pmid: 25952120
|
106 |
FH Karlsson, V Tremaroli, I Nookaew, G Bergström, CJ Behre, B Fagerberg, J Nielsen, F Bäckhed. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99–103
https://doi.org/10.1038/nature12198
pmid: 23719380
|
107 |
K Forslund, F Hildebrand, T Nielsen, G Falony, Chatelier E Le, S Sunagawa, E Prifti, S Vieira-Silva, V Gudmundsdottir, HK Pedersen, M Arumugam, K Kristiansen, AY Voigt, H Vestergaard, R Hercog, PI Costea, JR Kultima, J Li, T Jørgensen, F Levenez, J; MetaHIT consortium; Nielsen HB Dore, S Brunak, J Raes, T Hansen, J Wang, SD Ehrlich, P Bork, O Pedersen. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528(7581): 262–266
https://doi.org/10.1038/nature15766
pmid: 26633628
|
108 |
NT Mueller, MK Differding, M Zhang, NM Maruthur, SP Juraschek, ER 3rd Miller, LJ Appel, HC Yeh. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care 2021; 44(7): 1462–1471
https://doi.org/10.2337/dc20-2257
pmid: 34006565
|
109 |
F Cabreiro, C Au, KY Leung, N Vergara-Irigaray, HM Cochemé, T Noori, D Weinkove, E Schuster, ND Greene, D Gems. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153(1): 228–239
https://doi.org/10.1016/j.cell.2013.02.035
pmid: 23540700
|
110 |
PV Bauer, FA Duca, TMZ Waise, BA Rasmussen, MA Abraham, HJ Dranse, A Puri, CA O’Brien, TKT Lam. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab 2018; 27(1): 101–117.e5
https://doi.org/10.1016/j.cmet.2017.09.019
pmid: 29056513
|
111 |
R Pryor, P Norvaisas, G Marinos, L Best, LB Thingholm, LM Quintaneiro, Haes W De, D Esser, S Waschina, C Lujan, RL Smith, TA Scott, D Martinez-Martinez, O Woodward, K Bryson, M Laudes, W Lieb, RH Houtkooper, A Franke, L Temmerman, I Bjedov, HM Cochemé, C Kaleta, F Cabreiro. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 2019; 178(6): 1299–1312.e29
https://doi.org/10.1016/j.cell.2019.08.003
pmid: 31474368
|
112 |
AE Kitabchi, M Temprosa, WC Knowler, SE Kahn, SE Fowler, SM Haffner, R Andres, C Saudek, SL Edelstein, R Arakaki, MB Murphy, H; Diabetes Prevention Program Research Group Shamoon. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 2005; 54(8): 2404–2414
https://doi.org/10.2337/diabetes.54.8.2404
pmid: 16046308
|
113 |
M Hashemitabar, S Bahramzadeh, S Saremy, F Nejaddehbashi. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed Rep 2015; 3(5): 721–725
https://doi.org/10.3892/br.2015.476
pmid: 26405552
|
114 |
R Lupi, S Del Guerra, C Tellini, R Giannarelli, A Coppelli, M Lorenzetti, M Carmellini, F Mosca, R Navalesi, P Marchetti. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol 1999; 364(2–3): 205–209
https://doi.org/10.1016/S0014-2999(98)00807-3
pmid: 9932725
|
115 |
G Patanè, S Piro, AM Rabuazzo, M Anello, R Vigneri, F Purrello. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 2000; 49(5): 735–740
https://doi.org/10.2337/diabetes.49.5.735
pmid: 10905481
|
116 |
J Cen, E Sargsyan, A Forslund, P Bergsten. Mechanisms of beneficial effects of metformin on fatty acid-treated human islets. J Mol Endocrinol 2018; 61(3): 91–99
https://doi.org/10.1530/JME-17-0304
pmid: 30307162
|
117 |
JS Moon, U Karunakaran, S Elumalai, IK Lee, HW Lee, YW Kim, KC Won. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells. J Diabetes Complications 2017; 31(1): 21–30
https://doi.org/10.1016/j.jdiacomp.2016.09.001
pmid: 27662780
|
118 |
SN LiuQ LiuSJ SunSC HouY WangZF Shen. Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 2014; 49(11): 1554–1562 (in Chinese)
pmid: 25757281
|
119 |
Y Jiang, W Huang, J Wang, Z Xu, J He, X Lin, Z Zhou, J Zhang. Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci 2014; 10(3): 268–277
https://doi.org/10.7150/ijbs.7929
pmid: 24644425
|
120 |
S Lablanche, C Cottet-Rousselle, F Lamarche, PY Benhamou, S Halimi, X Leverve, E Fontaine. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis 2011; 2(3): e134
https://doi.org/10.1038/cddis.2011.15
pmid: 21430707
|
121 |
TW Jung, MW Lee, YJ Lee, SM Kim. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem Biophys Res Commun 2012; 417(1): 147–152
https://doi.org/10.1016/j.bbrc.2011.11.073
pmid: 22138650
|
122 |
A Lee, JE Morley. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998; 6(1): 47–53
https://doi.org/10.1002/j.1550-8528.1998.tb00314.x
pmid: 9526970
|
123 |
G Paolisso, L Amato, R Eccellente, A Gambardella, MR Tagliamonte, G Varricchio, C Carella, D Giugliano, F D’Onofrio. Effect of metformin on food intake in obese subjects. Eur J Clin Invest 1998; 28(6): 441–446
https://doi.org/10.1046/j.1365-2362.1998.00304.x
pmid: 9693934
|
124 |
CJ Glueck, RN Fontaine, P Wang, MT Subbiah, K Weber, E Illig, P Streicher, L Sieve-Smith, TM Tracy, JE Lang, P McCullough. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism 2001; 50(7): 856–861
https://doi.org/10.1053/meta.2001.24192
pmid: 11436194
|
125 |
C Chau-Van, M Gamba, R Salvi, RC Gaillard, FP Pralong. Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 2007; 148(2): 507–511
https://doi.org/10.1210/en.2006-1237
pmid: 17095593
|
126 |
D Stevanovic, K Janjetovic, M Misirkic, L Vucicevic, M Sumarac-Dumanovic, D Micic, V Starcevic, V Trajkovic. Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake. Neuroendocrinology 2012; 96(1): 24–31
https://doi.org/10.1159/000333963
pmid: 22343549
|
127 |
YW Kim, JY Kim, YH Park, SY Park, KC Won, KH Choi, JY Huh, KH Moon. Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 2006; 55(3): 716–724
https://doi.org/10.2337/diabetes.55.03.06.db05-0917
pmid: 16505235
|
128 |
G Aubert, V Mansuy, MJ Voirol, L Pellerin, FP Pralong. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism 2011; 60(3): 327–334
https://doi.org/10.1016/j.metabol.2010.02.007
pmid: 20303124
|
129 |
SE Mullican, X Lin-Schmidt, CN Chin, JA Chavez, JL Furman, AA Armstrong, SC Beck, VJ South, TQ Dinh, TD Cash-Mason, CR Cavanaugh, S Nelson, C Huang, MJ Hunter, SM Rangwala. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 2017; 23(10): 1150–1157
https://doi.org/10.1038/nm.4392
pmid: 28846097
|
130 |
PJ Emmerson, F Wang, Y Du, Q Liu, RT Pickard, MD Gonciarz, T Coskun, MJ Hamang, DK Sindelar, KK Ballman, LA Foltz, A Muppidi, J Alsina-Fernandez, GC Barnard, JX Tang, X Liu, X Mao, R Siegel, JH Sloan, PJ Mitchell, BB Zhang, RE Gimeno, B Shan, X Wu. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 2017; 23(10): 1215–1219
https://doi.org/10.1038/nm.4393
pmid: 28846098
|
131 |
T Borner, ED Shaulson, MY Ghidewon, AB Barnett, CC Horn, RP Doyle, HJ Grill, MR Hayes, BC De Jonghe. GDF15 induces anorexia through nausea and emesis. Cell Metab 2020; 31(2): 351–362.e5
https://doi.org/10.1016/j.cmet.2019.12.004
pmid: 31928886
|
132 |
AP Coll, M Chen, P Taskar, D Rimmington, S Patel, JA Tadross, I Cimino, M Yang, P Welsh, S Virtue, DA Goldspink, EL Miedzybrodzka, AR Konopka, RR Esponda, JT Huang, YCL Tung, S Rodriguez-Cuenca, RA Tomaz, HP Harding, A Melvin, GSH Yeo, D Preiss, A Vidal-Puig, L Vallier, KS Nair, NJ Wareham, D Ron, FM Gribble, F Reimann, N Sattar, DB Savage, BB Allan, S O’Rahilly. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020; 578(7795): 444–448
https://doi.org/10.1038/s41586-019-1911-y
pmid: 31875646
|
133 |
AB Klein, TS Nicolaisen, K Johann, AM Fritzen, CV Mathiesen, C Gil, NS Pilmark, K Karstoft, MB Blond, JS Quist, RJ Seeley, K Færch, J Lund, M Kleinert, C Clemmensen. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep 2022; 40(8): 111258
https://doi.org/10.1016/j.celrep.2022.111258
pmid: 36001956
|
134 |
EA Day, RJ Ford, BK Smith, P Mohammadi-Shemirani, MR Morrow, RM Gutgesell, R Lu, AR Raphenya, M Kabiri, AG McArthur, N McInnes, S Hess, G Paré, HC Gerstein, GR Steinberg. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019; 1(12): 1202–1208
https://doi.org/10.1038/s42255-019-0146-4
pmid: 32694673
|
135 |
Diabetes Association Professional Practice Committee American. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45(Suppl 1): S125–S143
https://doi.org/10.2337/dc22-S009
pmid: 34964831
|
136 |
M Stumvoll, HU Häring, S Matthaei. Metformin. Endocr Res 2007; 32(1–2): 39–57
https://doi.org/10.1080/07435800701743828
pmid: 18271504
|
137 |
C Wang, F Liu, Y Yuan, J Wu, H Wang, L Zhang, P Hu, Z Li, Q Li, J Ye. Metformin suppresses lipid accumulation in skeletal muscle by promoting fatty acid oxidation. Clin Lab 2014; 60(6): 887–896
https://doi.org/10.7754/Clin.Lab.2013.130531
pmid: 25016691
|
138 |
P Zabielski, M Chacinska, K Charkiewicz, M Baranowski, J Gorski, AU Blachnio-Zabielska. Effect of metformin on bioactive lipid metabolism in insulin-resistant muscle. J Endocrinol 2017; 233(3): 329–340
https://doi.org/10.1530/JOE-16-0381
pmid: 28522731
|
139 |
K Pavlovic, N Krako Jakovljevic, AM Isakovic, T Ivanovic, I Markovic, NM Lalic. Therapeutic vs. suprapharmacological metformin concentrations: different effects on energy metabolism and mitochondrial function in skeletal muscle cells in vitro. Front Pharmacol 2022; 13: 930308
https://doi.org/10.3389/fphar.2022.930308
pmid: 35873556
|
140 |
SK Malin, NR Stewart. Metformin may contribute to inter-individual variability for glycemic responses to exercise. Front Endocrinol (Lausanne) 2020; 11: 519
https://doi.org/10.3389/fendo.2020.00519
pmid: 32849302
|
141 |
A Natali, E Ferrannini. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006; 49(3): 434–441
https://doi.org/10.1007/s00125-006-0141-7
pmid: 16477438
|
142 |
Z Zhou, Y Tang, X Jin, C Chen, Y Lu, L Liu, C Shen. Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. J Diabetes Res 2016; 2016: 4847812
https://doi.org/10.1155/2016/4847812
pmid: 27761470
|
143 |
L He, A Sabet, S Djedjos, R Miller, X Sun, MA Hussain, S Radovick, FE Wondisford. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137(4): 635–646
https://doi.org/10.1016/j.cell.2009.03.016
pmid: 19450513
|
144 |
JM Lee, WY Seo, KH Song, D Chanda, YD Kim, DK Kim, MW Lee, D Ryu, YH Kim, JR Noh, CH Lee, JY Chiang, SH Koo, HS Choi. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB. CRTC2 complex by orphan nuclear receptor small heterodimer partner. J Biol Chem 2010; 285(42): 32182–32191
https://doi.org/10.1074/jbc.M110.134890
pmid: 20688914
|
145 |
PW Caton, NK Nayuni, J Kieswich, NQ Khan, MM Yaqoob, R Corder. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205(1): 97–106
https://doi.org/10.1677/JOE-09-0345
pmid: 20093281
|
146 |
AK Madiraju, DM Erion, Y Rahimi, XM Zhang, DT Braddock, RA Albright, BJ Prigaro, JL Wood, S Bhanot, MJ MacDonald, MJ Jurczak, JP Camporez, HY Lee, GW Cline, VT Samuel, RG Kibbey, GI Shulman. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506): 542–546
https://doi.org/10.1038/nature13270
pmid: 24847880
|
147 |
HZ Lin, SQ Yang, C Chuckaree, F Kuhajda, G Ronnet, AM Diehl. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 6(9): 998–1003
https://doi.org/10.1038/79697
pmid: 10973319
|
148 |
SL Woo, H Xu, H Li, Y Zhao, X Hu, J Zhao, X Guo, T Guo, R Botchlett, T Qi, Y Pei, J Zheng, Y Xu, X An, L Chen, L Chen, Q Li, X Xiao, Y Huo, C Wu. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS One 2014; 9(3): e91111
https://doi.org/10.1371/journal.pone.0091111
pmid: 24638078
|
149 |
MY El-Mir, V Nogueira, E Fontaine, N Avéret, M Rigoulet, X Leverve. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275(1): 223–228
https://doi.org/10.1074/jbc.275.1.223
pmid: 10617608
|
150 |
MR Owen, E Doran, AP Halestrap. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(3): 607–614
https://doi.org/10.1042/bj3480607
pmid: 10839993
|
151 |
X Stephenne, M Foretz, N Taleux, GC van der Zon, E Sokal, L Hue, B Viollet, B Guigas. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011; 54(12): 3101–3110
https://doi.org/10.1007/s00125-011-2311-5
pmid: 21947382
|
152 |
C Batandier, B Guigas, D Detaille, MY El-Mir, E Fontaine, M Rigoulet, XM Leverve. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 2006; 38(1): 33–42
https://doi.org/10.1007/s10863-006-9003-8
pmid: 16732470
|
153 |
E Fontaine. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front Endocrinol (Lausanne) 2018; 9: 753
https://doi.org/10.3389/fendo.2018.00753
pmid: 30619086
|
154 |
I Pernicova, M Korbonits. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014; 10(3): 143–156
https://doi.org/10.1038/nrendo.2013.256
pmid: 24393785
|
155 |
A Vancura, P Bu, M Bhagwat, J Zeng, I Vancurova. Metformin as an anticancer agent. Trends Pharmacol Sci 2018; 39(10): 867–878
https://doi.org/10.1016/j.tips.2018.07.006
pmid: 30150001
|
156 |
JM Evans, LA Donnelly, AM Emslie-Smith, DR Alessi, AD Morris. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330(7503): 1304–1305
https://doi.org/10.1136/bmj.38415.708634.F7
pmid: 15849206
|
157 |
M Monami, C Colombi, D Balzi, I Dicembrini, S Giannini, C Melani, V Vitale, D Romano, A Barchielli, N Marchionni, CM Rotella, E Mannucci. Metformin and cancer occurrence in insulin-treated type 2 diabetic patients. Diabetes Care 2011; 34(1): 129–131
https://doi.org/10.2337/dc10-1287
pmid: 20980415
|
158 |
J Kasznicki, A Sliwinska, J Drzewoski. Metformin in cancer prevention and therapy. Ann Transl Med 2014; 2(6): 57
pmid: 25333032
|
159 |
M Peng, KO Darko, T Tao, Y Huang, Q Su, C He, T Yin, Z Liu, X Yang. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017; 54: 24–33
https://doi.org/10.1016/j.ctrv.2017.01.005
pmid: 28161619
|
160 |
KC Wen, PL Sung, ATH Wu, PC Chou, JH Lin, CF Huang, SJ Yeung, MH Lee. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J Ovarian Res 2020; 13(1): 95
https://doi.org/10.1186/s13048-020-00703-x
pmid: 32825834
|
161 |
HH Zhang, XL Guo. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 2016; 78(1): 13–26
https://doi.org/10.1007/s00280-016-3037-3
pmid: 27118574
|
162 |
R Mallik, TA Chowdhury. Metformin in cancer. Diabetes Res Clin Pract 2018; 143: 409–419
https://doi.org/10.1016/j.diabres.2018.05.023
pmid: 29807101
|
163 |
SJ Skuli, S Alomari, H Gaitsch, A Bakayoko, N Skuli, BM Tyler. Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals (Basel) 2022; 15(5): 626
https://doi.org/10.3390/ph15050626
pmid: 35631452
|
164 |
BM Heckman-Stoddard, A DeCensi, VV Sahasrabuddhe, LG Ford. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 2017; 60(9): 1639–1647
https://doi.org/10.1007/s00125-017-4372-6
pmid: 28776080
|
165 |
YC Long, JR Zierath. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7): 1776–1783
https://doi.org/10.1172/JCI29044
pmid: 16823475
|
166 |
X Huang, S Wullschleger, N Shpiro, VA McGuire, K Sakamoto, YL Woods, W McBurnie, S Fleming, DR Alessi. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412(2): 211–221
https://doi.org/10.1042/BJ20080557
pmid: 18387000
|
167 |
M Zakikhani, R Dowling, IG Fantus, N Sonenberg, M Pollak. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66(21): 10269–10273
https://doi.org/10.1158/0008-5472.CAN-06-1500
pmid: 17062558
|
168 |
C Gao, L Fang, H Zhang, WS Zhang, XO Li, SY Du. Metformin induces autophagy via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma cells. Cancer Manag Res 2020; 12: 5803–5811
https://doi.org/10.2147/CMAR.S257966
pmid: 32765083
|
169 |
RJ Dowling, M Zakikhani, IG Fantus, M Pollak, N Sonenberg. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67(22): 10804–10812
https://doi.org/10.1158/0008-5472.CAN-07-2310
pmid: 18006825
|
170 |
P Shen, LC Reineke, E Knutsen, M Chen, M Pichler, H Ling, GA Calin. Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling. Mol Oncol 2018; 12(11): 1856–1870
https://doi.org/10.1002/1878-0261.12384
pmid: 30221473
|
171 |
Y Wang, W Xu, Z Yan, W Zhao, J Mi, J Li, H Yan. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res 2018; 37(1): 63
https://doi.org/10.1186/s13046-018-0731-5
pmid: 29554968
|
172 |
CC Lu, JH Chiang, FJ Tsai, YM Hsu, YN Juan, JS Yang, HY Chiu. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol 2019; 54(4): 1271–1281
https://doi.org/10.3892/ijo.2019.4704
pmid: 30720062
|
173 |
YH Chen, SF Yang, CK Yang, HD Tsai, TH Chen, MC Chou, YH Hsiao. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep 2021; 23(1): 88
pmid: 33236135
|
174 |
Y Sun, C Tao, X Huang, H He, H Shi, Q Zhang, H Wu. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther 2016; 9: 2845–2853
pmid: 27274280
|
175 |
HG Kim, TT Hien, EH Han, YP Hwang, JH Choi, KW Kang, KI Kwon, BH Kim, SK Kim, GY Song, TC Jeong, HG Jeong. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011; 162(5): 1096–1108
https://doi.org/10.1111/j.1476-5381.2010.01101.x
pmid: 21054339
|
176 |
L Zheng, W Yang, F Wu, C Wang, L Yu, L Tang, B Qiu, Y Li, L Guo, M Wu, G Feng, D Zou, H Wang. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res 2013; 19(19): 5372–5380
https://doi.org/10.1158/1078-0432.CCR-13-0203
pmid: 23942093
|
177 |
Z Zheng, Y Bian, Y Zhang, G Ren, G Li. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 2020; 19(10): 1089–1104
https://doi.org/10.1080/15384101.2020.1743911
pmid: 32286137
|
178 |
Y Dong, H Hu, X Zhang, Y Zhang, X Sun, H Wang, W Kan, MJ Tan, H Shi, Y Zang, J Li. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct Target Ther 2023; 8(1): 95
https://doi.org/10.1038/s41392-022-01302-6
pmid: 36872368
|
179 |
TJ Lynch, DW Bell, R Sordella, S Gurubhagavatula, RA Okimoto, BW Brannigan, PL Harris, SM Haserlat, JG Supko, FG Haluska, DN Louis, DC Christiani, J Settleman, DA Haber. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129–2139
https://doi.org/10.1056/NEJMoa040938
pmid: 15118073
|
180 |
K Isoda, JL Young, A Zirlik, LA MacFarlane, N Tsuboi, N Gerdes, U Schönbeck, P Libby. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 2006; 26(3): 611–617
https://doi.org/10.1161/01.ATV.0000201938.78044.75
pmid: 16385087
|
181 |
Y Hattori, K Suzuki, S Hattori, K Kasai. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 2006; 47(6): 1183–1188
https://doi.org/10.1161/01.HYP.0000221429.94591.72
pmid: 16636195
|
182 |
Q Guo, Z Liu, L Jiang, M Liu, J Ma, C Yang, L Han, K Nan, X Liang. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep 2016; 13(3): 2590–2596
https://doi.org/10.3892/mmr.2016.4830
pmid: 26847819
|
183 |
B Faubert, G Boily, S Izreig, T Griss, B Samborska, Z Dong, F Dupuy, C Chambers, BJ Fuerth, B Viollet, OA Mamer, D Avizonis, RJ DeBerardinis, PM Siegel, RG Jones. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17(1): 113–124
https://doi.org/10.1016/j.cmet.2012.12.001
pmid: 23274086
|
184 |
C Algire, L Amrein, M Zakikhani, L Panasci, M Pollak. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 2010; 17(2): 351–360
https://doi.org/10.1677/ERC-09-0252
pmid: 20228137
|
185 |
M Buzzai, RG Jones, RK Amaravadi, JJ Lum, RJ DeBerardinis, F Zhao, B Viollet, CB Thompson. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67(14): 6745–6752
https://doi.org/10.1158/0008-5472.CAN-06-4447
pmid: 17638885
|
186 |
Y Xie, JL Wang, M Ji, ZF Yuan, Z Peng, Y Zhang, JG Wen, HR Shi. Regulation of insulin-like growth factor signaling by metformin in endometrial cancer cells. Oncol Lett 2014; 8(5): 1993–1999
https://doi.org/10.3892/ol.2014.2466
pmid: 25289085
|
187 |
J Lee, EM Hong, JH Kim, JH Jung, SW Park, DH Koh, MH Choi, HJ Jang, SH Kae. Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth factor 1 receptor pathways in the bile duct cancer cells. J Cancer 2019; 10(7): 1734–1744
https://doi.org/10.7150/jca.26380
pmid: 31205529
|
188 |
E Karnevi, K Said, R Andersson, AH Rosendahl. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer 2013; 13(1): 235
https://doi.org/10.1186/1471-2407-13-235
pmid: 23663483
|
189 |
V Birzniece, T Lam, M McLean, N Reddy, H Shahidipour, A Hayden, H Gurney, G Stone, R Hjortebjerg, J Frystyk. Insulin-like growth factor role in determining the anti-cancer effect of metformin: RCT in prostate cancer patients. Endocr Connect 2022; 11(4): e210375
https://doi.org/10.1530/EC-21-0375
pmid: 35324467
|
190 |
M Zakikhani, MJ Blouin, E Piura, MN Pollak. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123(1): 271–279
https://doi.org/10.1007/s10549-010-0763-9
pmid: 20135346
|
191 |
SC Chaudhary, D Kurundkar, CA Elmets, L Kopelovich, M Athar. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol 2012; 88(5): 1149–1156
https://doi.org/10.1111/j.1751-1097.2012.01165.x
pmid: 22540890
|
192 |
R Würth, A Pattarozzi, M Gatti, A Bajetto, A Corsaro, A Parodi, R Sirito, M Massollo, C Marini, G Zona, D Fenoglio, G Sambuceti, G Filaci, A Daga, F Barbieri, T Florio. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 2013; 12(1): 145–156
https://doi.org/10.4161/cc.23050
pmid: 23255107
|
193 |
I Ben Sahra, C Regazzetti, G Robert, K Laurent, Y Le Marchand-Brustel, P Auberger, JF Tanti, S Giorgetti-Peraldi, F Bost. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011; 71(13): 4366–4372
https://doi.org/10.1158/0008-5472.CAN-10-1769
pmid: 21540236
|
194 |
SK Jang, SE Hong, DH Lee, JY Kim, JY Kim, SK Ye, J Hong, IC Park, HO Jin. Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by metformin. BMC Cancer 2021; 21(1): 803
https://doi.org/10.1186/s12885-021-08346-x
pmid: 34253170
|
195 |
MA Pierotti, F Berrino, M Gariboldi, C Melani, A Mogavero, T Negri, P Pasanisi, S Pilotti. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 2013; 32(12): 1475–1487
https://doi.org/10.1038/onc.2012.181
pmid: 22665053
|
196 |
G Yenmis, E Yaprak Sarac, N Besli, T Soydas, C Tastan, D Dilek Kancagi, M Yilanci, K Senol, OO Karagulle, CG Ekmekci, E Ovali, M Tuncdemir, T Ulutin, G Kanigur Sultuybek. Anti-cancer effect of metformin on the metastasis and invasion of primary breast cancer cells through mediating NF-kB activity. Acta Histochem 2021; 123(4): 151709
https://doi.org/10.1016/j.acthis.2021.151709
pmid: 33711726
|
197 |
WW Wheaton, SE Weinberg, RB Hamanaka, S Soberanes, LB Sullivan, E Anso, A Glasauer, E Dufour, GM Mutlu, GS Budigner, NS Chandel. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3: e02242
https://doi.org/10.7554/eLife.02242
pmid: 24843020
|
198 |
D Soranna, L Scotti, A Zambon, C Bosetti, G Grassi, A Catapano, C La Vecchia, G Mancia, G Corrao. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012; 17(6): 813–822
https://doi.org/10.1634/theoncologist.2011-0462
pmid: 22643536
|
199 |
X Sui, Y Xu, J Yang, Y Fang, H Lou, W Han, M Zhang, W Chen, K Wang, D Li, W Jin, F Lou, Y Zheng, H Hu, L Gong, X Zhou, Q Pan, H Pan, X Wang, C He. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One 2014; 9(5): e97781
https://doi.org/10.1371/journal.pone.0097781
pmid: 24849329
|
200 |
L Guo, J Cui, H Wang, R Medina, S Zhang, X Zhang, Z Zhuang, Y Lin. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. Mol Ther Oncolytics 2021; 20: 119–131
https://doi.org/10.1016/j.omto.2020.11.004
pmid: 33575476
|
201 |
J Deng, M Peng, Z Wang, S Zhou, D Xiao, J Deng, X Yang, J Peng, X Yang. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci 2019; 110(1): 23–30
https://doi.org/10.1111/cas.13849
pmid: 30358009
|
202 |
C Saengboonmee, T Sanlung, S Wongkham. Repurposing metformin for cancer treatment: a great challenge of a promising drug. Anticancer Res 2021; 41(12): 5913–5918
https://doi.org/10.21873/anticanres.15410
pmid: 34848445
|
203 |
MG Morale, RE Tamura, IGS Rubio. Metformin and cancer hallmarks: molecular mechanisms in thyroid, prostate and head and neck cancer models. Biomolecules 2022; 12(3): 357
https://doi.org/10.3390/biom12030357
pmid: 35327549
|
204 |
D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
pmid: 21376230
|
205 |
A Luengo, DY Gui, MG Vander Heiden. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161–1180
https://doi.org/10.1016/j.chembiol.2017.08.028
pmid: 28938091
|
206 |
P Ranganathan, HL McLeod. Methotrexate pharmacogenetics: the first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum 2006; 54(5): 1366–1377
https://doi.org/10.1002/art.21762
pmid: 16645965
|
207 |
EM Pålsson-McDermott, LAJ O’Neill. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30(4): 300–314
https://doi.org/10.1038/s41422-020-0291-z
pmid: 32132672
|
208 |
L Di Martino, V Tosello, E Peroni, E Piovan. Insights on metabolic reprogramming and its therapeutic potential in acute leukemia. Int J Mol Sci 2021; 22(16): 8738
https://doi.org/10.3390/ijms22168738
pmid: 34445444
|
209 |
M Ogawa, T Matsuda, A Ogata, T Hamasaki, A Kumanogoh, T Toyofuku, T Tanaka. DNA damage in rheumatoid arthritis: an age-dependent increase in the lipid peroxidation-derived DNA adduct, heptanone-etheno-2′-deoxycytidine. Autoimmune Dis 2013; 2013: 183487
https://doi.org/10.1155/2013/183487
pmid: 24222845
|
210 |
AA El-Sheikh, MA Morsy, AM Abdalla, AH Hamouda, IA Alhaider. Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015; 2015: 859383
https://doi.org/10.1155/2015/859383
pmid: 26089605
|
211 |
FH Rizk, AAE Saadany, L Dawood, HH Elkaliny, NI Sarhan, R Badawi, S Abd-Elsalam. Metformin ameliorated methotrexate-induced hepatorenal toxicity in rats in addition to its antitumor activity: two birds with one stone. J Inflamm Res 2018; 11: 421–429
https://doi.org/10.2147/JIR.S178767
pmid: 30519070
|
212 |
SE Owumi, IJ Ajijola, OM Agbeti. Hepatorenal protective effects of protocatechuic acid in rats administered with anticancer drug methotrexate. Hum Exp Toxicol 2019; 38(11): 1254–1265
https://doi.org/10.1177/0960327119871095
pmid: 31431087
|
213 |
Y Wang, H Lu, L Sun, X Chen, H Wei, C Suo, J Feng, M Yuan, S Shen, W Jia, Y Wang, H Zhang, Z Li, X Zhong, P Gao. Metformin sensitises hepatocarcinoma cells to methotrexate by targeting dihydrofolate reductase. Cell Death Dis 2021; 12(10): 902
https://doi.org/10.1038/s41419-021-04199-1
pmid: 34601503
|
214 |
KL Poulsen, J Olivero-Verbel, KM Beggs, PE Ganey, RA Roth. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014; 350(1): 164–170
https://doi.org/10.1124/jpet.114.214189
pmid: 24817034
|
215 |
K Harada, T Ferdous, T Harada, Y Ueyama. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma. Int J Oncol 2016; 49(1): 276–284
https://doi.org/10.3892/ijo.2016.3523
pmid: 27210058
|
216 |
S Honjo, JA Ajani, AW Scott, Q Chen, HD Skinner, J Stroehlein, RL Johnson, S Song. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 2014; 45(2): 567–574
https://doi.org/10.3892/ijo.2014.2450
pmid: 24859412
|
217 |
Y Tian, B Tang, C Wang, D Sun, R Zhang, N Luo, Z Han, R Liang, Z Gao, L Wang. Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP. Oncotarget 2016; 7(29): 46230–46241
https://doi.org/10.18632/oncotarget.10079
pmid: 27323827
|
218 |
VC Miranda, MI Braghiroli, LD Faria, G Bariani, A Alex, JE Bezerra Neto, FC Capareli, J Sabbaga, JF Lobo Dos Santos, PM Hoff, RP Riechelmann. Phase 2 trial of metformin combined with 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin Colorectal Cancer 2016; 15(4): 321–328.e1
https://doi.org/10.1016/j.clcc.2016.04.011
pmid: 27262895
|
219 |
R You, B Wang, P Chen, X Zheng, D Hou, X Wang, B Zhang, L Chen, D Li, X Lin, H Huang. Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells. Cancer Lett 2022; 532: 215582
https://doi.org/10.1016/j.canlet.2022.215582
pmid: 35122876
|
220 |
Y Zhang, A Paikari, P Sumazin, CC Ginter Summarell, JR Crosby, E Boerwinkle, MJ Weiss, VA Sheehan. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018; 132(3): 321–333
https://doi.org/10.1182/blood-2017-11-814335
pmid: 29884740
|
221 |
K Taba, Y Kuramitsu, S Ryozawa, K Yoshida, T Tanaka, S Maehara, Y Maehara, I Sakaida, K Nakamura. Heat-shock protein 27 is phosphorylated in gemcitabine-resistant pancreatic cancer cells. Anticancer Res 2010; 30(7): 2539–2543
pmid: 20682980
|
222 |
B Baron, Y Wang, S Maehara, Y Maehara, Y Kuramitsu, K Nakamura. Resistance to gemcitabine in the pancreatic cancer cell line KLM1-R reversed by metformin action. Anticancer Res 2015; 35(4): 1941–1949
pmid: 25862846
|
223 |
X Chai, H Chu, X Yang, Y Meng, P Shi, S Gou. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling. Sci Rep 2015; 5(1): 14404
https://doi.org/10.1038/srep14404
pmid: 26391180
|
224 |
Y Yi, L Gao, M Wu, J Ao, C Zhang, X Wang, M Lin, J Bergholz, Y Zhang, ZJ Xiao. Metformin sensitizes leukemia cells to vincristine via activation of AMP-activated protein kinase. J Cancer 2017; 8(13): 2636–2642
https://doi.org/10.7150/jca.19873
pmid: 28900501
|
225 |
M Trucco, JC Barredo, J Goldberg, GM Leclerc, GA Hale, J Gill, B Setty, T Smith, R Lush, JK Lee, DR Reed. A phase I window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: Metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin. Pediatr Blood Cancer 2018; 65(9): e27224
https://doi.org/10.1002/pbc.27224
pmid: 29856514
|
226 |
X Fan, HJ Zhong, BB Zhao, BS Ou Yang, Y Zhao, J Ye, YM Lu, CF Wang, H Xiong, SJ Chen, A Janin, L Wang, WL Zhao. Metformin prolonged the survival of diffuse large B-cell lymphoma and grade 3b follicular lymphoma patients responding to first-line treatment with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone: a prospective phase II clinical trial. Transl Cancer Res 2018; 7(4): 1044–1053
https://doi.org/10.21037/tcr.2018.07.20
|
227 |
RK Hanna, C Zhou, KM Malloy, L Sun, Y Zhong, PA Gehrig, VL Bae-Jump. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol 2012; 125(2): 458–469
https://doi.org/10.1016/j.ygyno.2012.01.009
pmid: 22252099
|
228 |
GZ Rocha, MM Dias, ER Ropelle, F Osório-Costa, FA Rossato, AE Vercesi, MJ Saad, JB Carvalheira. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 2011; 17(12): 3993–4005
https://doi.org/10.1158/1078-0432.CCR-10-2243
pmid: 21543517
|
229 |
Y Zhao, X Zeng, H Tang, D Ye, J Liu. Combination of metformin and paclitaxel suppresses proliferation and induces apoptosis of human prostate cancer cells via oxidative stress and targeting the mitochondria-dependent pathway. Oncol Lett 2019; 17(5): 4277–4284
https://doi.org/10.3892/ol.2019.10119
pmid: 30944622
|
230 |
SC Tseng, YC Huang, HJ Chen, HC Chiu, YJ Huang, TY Wo, SH Weng, YW Lin. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol 2013; 85(4): 583–594
https://doi.org/10.1016/j.bcp.2012.12.001
pmid: 23228696
|
231 |
E Lengyel, LM Litchfield, AK Mitra, KM Nieman, A Mukherjee, Y Zhang, A Johnson, M Bradaric, W Lee, IL Romero. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am J Obstet Gynecol. 2015; 212(4): 479.e1–479.e10
https://doi.org/10.1016/j.ajog.2014.10.026
pmid: 25446664
|
232 |
MJ Mayer, LH Klotz, V Venkateswaran. The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer. J Urol 2017; 197(4): 1068–1075
https://doi.org/10.1016/j.juro.2016.10.069
pmid: 27984108
|
233 |
MJ Mayer, LH Klotz, V Venkateswaran. Evaluating metformin as a potential chemosensitizing agent when combined with docetaxel chemotherapy in castration-resistant prostate cancer cells. Anticancer Res 2017; 37(12): 6601–6607
pmid: 29187435
|
234 |
MA Babcook, S Shukla, P Fu, EJ Vazquez, MA Puchowicz, JP Molter, CZ Oak, GT MacLennan, CA Flask, DJ Lindner, Y Parker, F Daneshgari, S Gupta. Synergistic simvastatin and metformin combination chemotherapy for osseous metastatic castration-resistant prostate cancer. Mol Cancer Ther 2014; 13(10): 2288–2302
https://doi.org/10.1158/1535-7163.MCT-14-0451
pmid: 25122066
|
235 |
AM Fontebasso, J Schwartzentruber, DA Khuong-Quang, XY Liu, D Sturm, A Korshunov, DT Jones, H Witt, M Kool, S Albrecht, A Fleming, D Hadjadj, S Busche, P Lepage, A Montpetit, A Staffa, N Gerges, M Zakrzewska, K Zakrzewski, PP Liberski, P Hauser, M Garami, A Klekner, L Bognar, G Zadeh, D Faury, SM Pfister, N Jabado, J Majewski. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125(5): 659–669
https://doi.org/10.1007/s00401-013-1095-8
pmid: 23417712
|
236 |
Y Li, J Luo, MT Lin, P Zhi, WW Guo, M Han, J You, JQ Gao. Co-delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment. Mol Pharm 2019; 16(7): 2966–2979
https://doi.org/10.1021/acs.molpharmaceut.9b00199
pmid: 31095914
|
237 |
AE Ashour, MM Sayed-Ahmed, AR Abd-Allah, HM Korashy, ZH Maayah, H Alkhalidi, M Mubarak, A Alhaider. Metformin rescues the myocardium from doxorubicin-induced energy starvation and mitochondrial damage in rats. Oxid Med Cell Longev 2012; 2012: 434195
https://doi.org/10.1155/2012/434195
pmid: 22666520
|
238 |
AH Ajzashokouhi, HB Bostan, V Jomezadeh, AW Hayes, G Karimi. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 2020; 39(3): 237–248
https://doi.org/10.1177/0960327119888277
pmid: 31735071
|
239 |
LC Kobashigawa, YC Xu, JF Padbury, YT Tseng, N Yano. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS One 2014; 9(8): e104888
https://doi.org/10.1371/journal.pone.0104888
pmid: 25127116
|
240 |
V Shafiei-Irannejad, N Samadi, B Yousefi, R Salehi, K Velaei, N Zarghami. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des 2018; 91(1): 269–276
https://doi.org/10.1111/cbdd.13078
pmid: 28782285
|
241 |
G Chen, S Xu, K Renko, M Derwahl. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 2012; 97(4): E510–E520
https://doi.org/10.1210/jc.2011-1754
pmid: 22278418
|
242 |
HA Hirsch, D Iliopoulos, K Struhl. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 2013; 110(3): 972–977
https://doi.org/10.1073/pnas.1221055110
pmid: 23277563
|
243 |
D Iliopoulos, HA Hirsch, K Struhl. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71(9): 3196–3201
https://doi.org/10.1158/0008-5472.CAN-10-3471
pmid: 21415163
|
244 |
JO Lee, MJ Kang, WS Byun, SA Kim, IH Seo, JA Han, JW Moon, JH Kim, SJ Kim, EJ Lee, S In Park, SH Park, HS Kim. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res 2019; 21(1): 115
https://doi.org/10.1186/s13058-019-1204-2
pmid: 31640742
|
245 |
CC Lin, HH Yeh, WL Huang, JJ Yan, WW Lai, WP Su, HH Chen, WC Su. Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol 2013; 49(2): 241–250
https://doi.org/10.1165/rcmb.2012-0244OC
pmid: 23526220
|
246 |
TC Jr Tortelli, RE Tamura, Souza Junqueira M de, Silva Mororó J da, SO Bustos, RJM Natalino, S Russell, L Désaubry, BE Strauss, R Chammas. Metformin-induced chemosensitization to cisplatin depends on P53 status and is inhibited by Jarid1b overexpression in non-small cell lung cancer cells. Aging (Albany NY) 2021; 13(18): 21914–21940
https://doi.org/10.18632/aging.203528
pmid: 34528900
|
247 |
L Shi, Y Mei, X Duan, B Wang. Effects of cisplatin combined with metformin on proliferation and apoptosis of nasopharyngeal carcinoma cells. Comput Math Methods Med 2022; 2022: 2056247
https://doi.org/10.1155/2022/2056247
pmid: 35422875
|
248 |
A Yasmeen, MC Beauchamp, E Piura, E Segal, M Pollak, WH Gotlieb. Induction of apoptosis by metformin in epithelial ovarian cancer: involvement of the Bcl-2 family proteins. Gynecol Oncol 2011; 121(3): 492–498
https://doi.org/10.1016/j.ygyno.2011.02.021
pmid: 21388661
|
249 |
K He, Z Li, K Ye, Y Zhou, M Yan, H Qi, H Hu, Y Dai, Y Tang. Novel sequential therapy with metformin enhances the effects of cisplatin in testicular germ cell tumours via YAP1 signalling. Cancer Cell Int 2022; 22(1): 113
https://doi.org/10.1186/s12935-022-02534-w
pmid: 35264157
|
250 |
Z Liang, T Zhang, T Zhan, G Cheng, W Zhang, H Jia, H Yang. Metformin alleviates cisplatin-induced ototoxicity by autophagy induction possibly via the AMPK/FOXO3a pathway. J Neurophysiol 2021; 125(4): 1202–1212
https://doi.org/10.1152/jn.00417.2020
pmid: 33625942
|
251 |
W Zhou, A Kavelaars, CJ Heijnen. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One 2016; 11(3): e0151890
https://doi.org/10.1371/journal.pone.0151890
pmid: 27018597
|
252 |
CS Haas, CJ Creighton, X Pi, I Maine, AE Koch, GK Haines, S Ling, AM Chinnaiyan, J Holoshitz. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins. Arthritis Rheum 2006; 54(7): 2047–2060
https://doi.org/10.1002/art.21953
pmid: 16804865
|
253 |
AF Tohamy, S Hussein, IM Moussa, H Rizk, S Daghash, RA Alsubki, AS Mubarak, HO Alshammari, KS Al-Maary, HA Hemeg. Lucrative antioxidant effect of metformin against cyclophosphamide induced nephrotoxicity. Saudi J Biol Sci 2021; 28(5): 2755–2761
https://doi.org/10.1016/j.sjbs.2021.03.039
pmid: 34025161
|
254 |
S Ling, Q Shan, P Liu, T Feng, X Zhang, P Xiang, K Chen, H Xie, P Song, L Zhou, J Liu, S Zheng, X Xu. Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I. Cell Death Dis 2017; 8(11): e3159
https://doi.org/10.1038/cddis.2017.482
pmid: 29095437
|
255 |
X Yang, D Sun, Y Tian, S Ling, L Wang. Metformin sensitizes hepatocellular carcinoma to arsenic trioxide-induced apoptosis by downregulating Bcl2 expression. Tumour Biol 2015; 36(4): 2957–2964
https://doi.org/10.1007/s13277-014-2926-5
pmid: 25492486
|
256 |
S Ling, H Xie, F Yang, Q Shan, H Dai, J Zhuo, X Wei, P Song, L Zhou, X Xu, S Zheng. Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: roles of p38 MAPK, ERK3, and mTORC1. J Hematol Oncol 2017; 10(1): 59
https://doi.org/10.1186/s13045-017-0424-0
pmid: 28241849
|
257 |
DL Wheeler, EF Dunn, PM Harari. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7(9): 493–507
https://doi.org/10.1038/nrclinonc.2010.97
pmid: 20551942
|
258 |
H Chen, Y Wang, C Lin, C Lu, R Han, L Jiao, L Li, Y He. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction. Oncotarget 2017; 8(55): 93825–93838
https://doi.org/10.18632/oncotarget.21225
pmid: 29212192
|
259 |
L Li, R Han, H Xiao, C Lin, Y Wang, H Liu, K Li, H Chen, F Sun, Z Yang, J Jiang, Y He. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res 2014; 20(10): 2714–2726
https://doi.org/10.1158/1078-0432.CCR-13-2613
pmid: 24644001
|
260 |
YH Pan, L Jiao, CY Lin, CH Lu, L Li, HY Chen, YB Wang, Y He. Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics 2018; 12: 75–86
pmid: 30154647
|
261 |
MW Saif. Pancreatic neoplasm in 2011: an update. JOP 2011; 12(4): 316–321
pmid: 21737886
|
262 |
G Ariaans, M Jalving, EG Vries, S Jong. Anti-tumor effects of everolimus and metformin are complementary and glucose-dependent in breast cancer cells. BMC Cancer 2017; 17(1): 232
https://doi.org/10.1186/s12885-017-3230-8
pmid: 28356082
|
263 |
E Fuentes-Mattei, G Velazquez-Torres, L Phan, F Zhang, PC Chou, JH Shin, HH Choi, JS Chen, R Zhao, J Chen, C Gully, C Carlock, Y Qi, Y Zhang, Y Wu, FJ Esteva, Y Luo, WL McKeehan, J Ensor, GN Hortobagyi, L Pusztai, W Fraser Symmans, MH Lee, SC Yeung. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst 2014; 106(7): dju158
https://doi.org/10.1093/jnci/dju158
pmid: 24957076
|
264 |
S Pusceddu, C Vernieri, Maio M Di, R Marconcini, F Spada, S Massironi, T Ibrahim, MP Brizzi, D Campana, A Faggiano, D Giuffrida, M Rinzivillo, S Cingarlini, F Aroldi, L Antonuzzo, R Berardi, L Catena, Divitiis C De, P Ermacora, V Perfetti, A Fontana, P Razzore, C Carnaghi, MV Davì, C Cauchi, M Duro, S Ricci, N Fazio, F Cavalcoli, A Bongiovanni, Salvia A La, N Brighi, A Colao, I Puliafito, F Panzuto, S Ortolani, A Zaniboni, Costanzo F Di, M Torniai, E Bajetta, S Tafuto, SK Garattini, D Femia, N Prinzi, L Concas, Russo G Lo, M Milione, L Giacomelli, R Buzzoni, Fave G Delle, V Mazzaferro, Braud F de. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology 2018; 155(2): 479–489.e7
https://doi.org/10.1053/j.gastro.2018.04.010
pmid: 29655834
|
265 |
HP Gerber, N Ferrara. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005; 65(3): 671–680
https://doi.org/10.1158/0008-5472.671.65.3
pmid: 15705858
|
266 |
N Ferrara, KJ Hillan, HP Gerber, W Novotny. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3(5): 391–400
https://doi.org/10.1038/nrd1381
pmid: 15136787
|
267 |
S Indraccolo, G Randon, E Zulato, M Nardin, C Aliberti, F Pomerri, A Casarin, MO Nicoletto. Metformin: a modulator of bevacizumab activity in cancer? A case report. Cancer Biol Ther 2015; 16(2): 210–214
https://doi.org/10.1080/15384047.2014.1002366
pmid: 25607951
|
268 |
A Markowska, S Sajdak, J Markowska, A Huczyński. Angiogenesis and cancer stem cells: new perspectives on therapy of ovarian cancer. Eur J Med Chem 2017; 142: 87–94
https://doi.org/10.1016/j.ejmech.2017.06.030
pmid: 28651817
|
269 |
LN Klapper, H Waterman, M Sela, Y Yarden. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 2000; 60(13): 3384–3388
pmid: 10910043
|
270 |
M Zeglinski, A Ludke, DS Jassal, PK Singal. Trastuzumab-induced cardiac dysfunction: a ‘dual-hit’. Exp Clin Cardiol 2011; 16(3): 70–74
pmid: 22065936
|
271 |
HA Hirsch, D Iliopoulos, PN Tsichlis, K Struhl. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69(19): 7507–7511
https://doi.org/10.1158/0008-5472.CAN-09-2994
pmid: 19752085
|
272 |
B Liu, Z Fan, SM Edgerton, X Yang, SE Lind, AD Thor. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 2011; 10(17): 2959–2966
https://doi.org/10.4161/cc.10.17.16359
pmid: 21862872
|
273 |
FH Groenendijk, WW Mellema, E van der Burg, E Schut, M Hauptmann, HM Horlings, SM Willems, MM van den Heuvel, J Jonkers, EF Smit, R Bernards. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation. Int J Cancer 2015; 136(6): 1434–1444
https://doi.org/10.1002/ijc.29113
pmid: 25080865
|
274 |
G Chen, D Nicula, K Renko, M Derwahl. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep 2015; 33(4): 1994–2000
https://doi.org/10.3892/or.2015.3805
pmid: 25683253
|
275 |
SC Hsieh, JP Tsai, SF Yang, MJ Tang, YH Hsieh. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids 2014; 46(12): 2809–2822
https://doi.org/10.1007/s00726-014-1838-4
pmid: 25245054
|
276 |
HY Lai, HH Tsai, CJ Yen, LY Hung, CC Yang, CH Ho, HY Liang, FW Chen, CF Li, JM Wang. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front Cell Dev Biol 2021; 8: 596655
https://doi.org/10.3389/fcell.2020.596655
pmid: 33681180
|
277 |
R Mitchell, LEM Hopcroft, P Baquero, EK Allan, K Hewit, D James, G Hamilton, A Mukhopadhyay, J O’Prey, A Hair, JV Melo, E Chan, KM Ryan, V Maguer-Satta, BJ Druker, RE Clark, S Mitra, P Herzyk, FE Nicolini, P Salomoni, E Shanks, B Calabretta, TL Holyoake, GV Helgason. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. J Natl Cancer Inst 2018; 110(5): 467–478
https://doi.org/10.1093/jnci/djx236
pmid: 29165716
|
278 |
E Vakana, JK Altman, H Glaser, NJ Donato, LC Platanias. Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood 2011; 118(24): 6399–6402
https://doi.org/10.1182/blood-2011-01-332783
pmid: 22021366
|
279 |
S Bagchi, R Yuan, EG Engleman. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 2021; 16(1): 223–249
https://doi.org/10.1146/annurev-pathol-042020-042741
pmid: 33197221
|
280 |
JH Cha, WH Yang, W Xia, Y Wei, LC Chan, SO Lim, CW Li, T Kim, SS Chang, HH Lee, JL Hsu, HL Wang, CW Kuo, WC Chang, S Hadad, CA Purdie, AM McCoy, S Cai, Y Tu, JK Litton, EA Mittendorf, SL Moulder, WF Symmans, AM Thompson, H Piwnica-Worms, CH Chen, KH Khoo, MC Hung. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 2018; 71(4): 606–620.e7
https://doi.org/10.1016/j.molcel.2018.07.030
pmid: 30118680
|
281 |
P Darvin, SM Toor, V Sasidharan Nair, E Elkord. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018; 50(12): 1–11
https://doi.org/10.1038/s12276-018-0191-1
pmid: 30546008
|
282 |
M Philip, A Schietinger. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22(4): 209–223
https://doi.org/10.1038/s41577-021-00574-3
pmid: 34253904
|
283 |
JS Yi, MA Cox, AJ Zajac. T-cell exhaustion: characteristics, causes and conversion. Immunology 2010; 129(4): 474–481
https://doi.org/10.1111/j.1365-2567.2010.03255.x
pmid: 20201977
|
284 |
S Eikawa, M Nishida, S Mizukami, C Yamazaki, E Nakayama, H Udono. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA 2015; 112(6): 1809–1814
https://doi.org/10.1073/pnas.1417636112
pmid: 25624476
|
285 |
Z Zhang, F Li, Y Tian, L Cao, Q Gao, C Zhang, K Zhang, C Shen, Y Ping, NR Maimela, L Wang, B Zhang, Y Zhang. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK-miR-107-Eomes-PD-1 Pathway. J Immunol 2020; 204(9): 2575–2588
https://doi.org/10.4049/jimmunol.1901213
pmid: 32221038
|
286 |
MZ Afzal, RR Mercado, K Shirai. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer 2018; 6(1): 64
https://doi.org/10.1186/s40425-018-0375-1
pmid: 29966520
|
287 |
YM Chung, PP Khan, H Wang, WB Tsai, Y Qiao, B Yu, JW Larrick, MC Hu. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer 2021; 9(12): e002772
https://doi.org/10.1136/jitc-2021-002772
pmid: 34887262
|
288 |
LE Munoz, L Huang, R Bommireddy, R Sharma, L Monterroza, RN Guin, SG Samaranayake, CD Pack, S Ramachandiran, SJC Reddy, M Shanmugam, P Selvaraj. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J Immunother Cancer 2021; 9(11): e002614
https://doi.org/10.1136/jitc-2021-002614
pmid: 34815353
|
289 |
NE Scharping, AV Menk, RD Whetstone, X Zeng, GM Delgoffe. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9–16
https://doi.org/10.1158/2326-6066.CIR-16-0103
pmid: 27941003
|
290 |
SY Wu, T Fu, YZ Jiang, ZM Shao. Natural killer cells in cancer biology and therapy. Mol Cancer 2020; 19(1): 120
https://doi.org/10.1186/s12943-020-01238-x
pmid: 32762681
|
291 |
C Xia, C Liu, Z He, Y Cai, J Chen. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J Exp Clin Cancer Res 2020; 39(1): 127
https://doi.org/10.1186/s13046-020-01627-6
pmid: 32631421
|
292 |
W Xia, X Qi, M Li, Y Wu, L Sun, X Fan, Y Yuan, J Li. Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. OncoImmunology 2021; 10(1): 1995999
https://doi.org/10.1080/2162402X.2021.1995999
pmid: 34745769
|
293 |
RJ Tesi. MDSC; the most important cell you have never heard of. Trends Pharmacol Sci 2019; 40(1): 4–7
https://doi.org/10.1016/j.tips.2018.10.008
pmid: 30527590
|
294 |
P Xu, K Yin, X Tang, J Tian, Y Zhang, J Ma, H Xu, Q Xu, S Wang. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed Pharmacother 2019; 120: 109458
https://doi.org/10.1016/j.biopha.2019.109458
pmid: 31550676
|
295 |
G Qin, J Lian, L Huang, Q Zhao, S Liu, Z Zhang, X Chen, D Yue, L Li, F Li, L Wang, V Umansky, B Zhang, S Yang, Y Zhang. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. OncoImmunology 2018; 7(7): e1442167
https://doi.org/10.1080/2162402X.2018.1442167
pmid: 29900050
|
296 |
L Li, L Wang, J Li, Z Fan, L Yang, Z Zhang, C Zhang, D Yue, G Qin, T Zhang, F Li, X Chen, Y Ping, D Wang, Q Gao, Q He, L Huang, H Li, J Huang, X Zhao, W Xue, Z Sun, J Lu, JJ Yu, J Zhao, B Zhang, Y Zhang. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res 2018; 78(7): 1779–1791
https://doi.org/10.1158/0008-5472.CAN-17-2460
pmid: 29374065
|
297 |
L Ding, G Liang, Z Yao, J Zhang, R Liu, H Chen, Y Zhou, H Wu, B Yang, Q He. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget 2015; 6(34): 36441–36455
https://doi.org/10.18632/oncotarget.5541
pmid: 26497364
|
298 |
CF Chiang, TT Chao, YF Su, CC Hsu, CY Chien, KC Chiu, SG Shiah, CH Lee, SY Liu, YS Shieh. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 2017; 8(13): 20706–20718
https://doi.org/10.18632/oncotarget.14982
pmid: 28157701
|
299 |
JC Wang, X Sun, Q Ma, GF Fu, LL Cong, H Zhang, DF Fan, J Feng, SY Lu, JL Liu, GY Li, PJ Liu. Metformin’s antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med 2018; 22(8): 3825–3836
https://doi.org/10.1111/jcmm.13655
pmid: 29726618
|
300 |
S Wang, Y Lin, X Xiong, L Wang, Y Guo, Y Chen, S Chen, G Wang, P Lin, H Chen, SJ Yeung, E Bremer, H Zhang. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin Cancer Res 2020; 26(18): 4921–4932
https://doi.org/10.1158/1078-0432.CCR-20-0113
pmid: 32646922
|
301 |
A Saito, J Kitayama, H Horie, K Koinuma, H Ohzawa, H Yamaguchi, H Kawahira, T Mimura, AK Lefor, N Sata. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci 2020; 111(11): 4012–4020
https://doi.org/10.1111/cas.14615
pmid: 32794612
|
302 |
Y Kunisada, S Eikawa, N Tomonobu, S Domae, T Uehara, S Hori, Y Furusawa, K Hase, A Sasaki, H Udono. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine 2017; 25: 154–164
https://doi.org/10.1016/j.ebiom.2017.10.009
pmid: 29066174
|
303 |
R Veeramachaneni, W Yu, JM Newton, JO Kemnade, HD Skinner, AG Sikora, VC Sandulache. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J Immunother Cancer 2021; 9(7): e002773
https://doi.org/10.1136/jitc-2021-002773
pmid: 34230113
|
304 |
JP da Costa, R Vitorino, GM Silva, C Vogel, AC Duarte, T Rocha-Santos. A synopsis on aging—theories, mechanisms and future prospects. Ageing Res Rev 2016; 29: 90–112
https://doi.org/10.1016/j.arr.2016.06.005
pmid: 27353257
|
305 |
BG Childs, M Durik, DJ Baker, JM van Deursen. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2015; 21(12): 1424–1435
https://doi.org/10.1038/nm.4000
pmid: 26646499
|
306 |
E Rudnicka, P Napierała, A Podfigurna, B Męczekalski, R Smolarczyk, M Grymowicz. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2020; 139: 6–11
https://doi.org/10.1016/j.maturitas.2020.05.018
pmid: 32747042
|
307 |
CA Bannister, SE Holden, S Jenkins-Jones, CL Morgan, JP Halcox, G Schernthaner, J Mukherjee, CJ Currie. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 2014; 16(11): 1165–1173
https://doi.org/10.1111/dom.12354
pmid: 25041462
|
308 |
J Chen, Y Ou, Y Li, S Hu, LW Shao, Y Liu. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017; 6: e31268
https://doi.org/10.7554/eLife.31268
pmid: 29027899
|
309 |
A Martin-Montalvo, EM Mercken, SJ Mitchell, HH Palacios, PL Mote, M Scheibye-Knudsen, AP Gomes, TM Ward, RK Minor, MJ Blouin, M Schwab, M Pollak, Y Zhang, Y Yu, KG Becker, VA Bohr, DK Ingram, DA Sinclair, NS Wolf, SR Spindler, M Bernier, R de Cabo. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4(1): 2192
https://doi.org/10.1038/ncomms3192
pmid: 23900241
|
310 |
AS Kulkarni, EF Brutsaert, V Anghel, K Zhang, N Bloomgarden, M Pollak, JC Mar, M Hawkins, JP Crandall, N Barzilai. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 2018; 17(2): e12723
https://doi.org/10.1111/acel.12723
pmid: 29383869
|
311 |
JN Justice, L Niedernhofer, PD Robbins, VR Aroda, MA Espeland, SB Kritchevsky, GA Kuchel, N Barzilai. Development of clinical trials to extend healthy lifespan. Cardiovasc Endocrinol Metab 2018; 7(4): 80–83
https://doi.org/10.1097/XCE.0000000000000159
pmid: 30906924
|
312 |
N Barzilai, JP Crandall, SB Kritchevsky, MA Espeland. Metformin as a tool to target aging. Cell Metab 2016; 23(6): 1060–1065
https://doi.org/10.1016/j.cmet.2016.05.011
pmid: 27304507
|
313 |
AL Blitzer, SA Ham, KA Colby, D Skondra. Association of metformin use with age-related macular degeneration: a case-control study. JAMA Ophthalmol 2021; 139(3): 302–309
https://doi.org/10.1001/jamaophthalmol.2020.6331
pmid: 33475696
|
314 |
RB Goldberg, VR Aroda, DA Bluemke, E Barrett-Connor, M Budoff, JP Crandall, D Dabelea, ES Horton, KJ Mather, TJ Orchard, D Schade, K Watson, M; Diabetes Prevention Program Research Group Temprosa. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation 2017; 136(1): 52–64
https://doi.org/10.1161/CIRCULATIONAHA.116.025483
pmid: 28476766
|
315 |
AV Zilov, SI Abdelaziz, A AlShammary, A Al Zahrani, A Amir, SH Assaad Khalil, K Brand, N Elkafrawy, AAK Hassoun, A Jahed, N Jarrah, S Mrabeti, I Paruk. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev 2019; 35(7): e3173
https://doi.org/10.1002/dmrr.3173
pmid: 31021474
|
316 |
Y Han, H Xie, Y Liu, P Gao, X Yang, Z Shen. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol 2019; 18(1): 96
https://doi.org/10.1186/s12933-019-0900-7
pmid: 31362743
|
317 |
A Havas, S Yin, PD Adams. The role of aging in cancer. Mol Oncol 2022; 16(18): 3213–3219
https://doi.org/10.1002/1878-0261.13302
pmid: 36128609
|
318 |
DR Morales, AD Morris. Metformin in cancer treatment and prevention. Annu Rev Med 2015; 66(1): 17–29
https://doi.org/10.1146/annurev-med-062613-093128
pmid: 25386929
|
319 |
C Coyle, FH Cafferty, C Vale, RE Langley. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 2016; 27(12): 2184–2195
https://doi.org/10.1093/annonc/mdw410
pmid: 27681864
|
320 |
SA Farr, E Roesler, ML Niehoff, DA Roby, A McKee, JE Morley. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimers Dis 2019; 68(4): 1699–1710
https://doi.org/10.3233/JAD-181240
pmid: 30958364
|
321 |
K Samaras, S Makkar, JD Crawford, NA Kochan, W Wen, B Draper, JN Trollor, H Brodaty, PS Sachdev. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care 2020; 43(11): 2691–2701
https://doi.org/10.2337/dc20-0892
pmid: 32967921
|
322 |
JB Zhou, X Tang, M Han, J Yang, R Simó. Impact of antidiabetic agents on dementia risk: a Bayesian network meta-analysis. Metabolism 2020; 109: 154265
https://doi.org/10.1016/j.metabol.2020.154265
pmid: 32446679
|
323 |
L Bettedi, LC Foukas. Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology 2017; 18(6): 913–929
https://doi.org/10.1007/s10522-017-9724-6
pmid: 28795262
|
324 |
TD Admasu, K Chaithanya Batchu, D Barardo, LF Ng, VYM Lam, L Xiao, A Cazenave-Gassiot, MR Wenk, NS Tolwinski, J Gruber. Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev Cell 2018; 47(1): 67–79.e5
https://doi.org/10.1016/j.devcel.2018.09.001
pmid: 30269951
|
325 |
VN Anisimov, LM Berstein, PA Egormin, TS Piskunova, IG Popovich, MA Zabezhinski, ML Tyndyk, MV Yurova, IG Kovalenko, TE Poroshina, AV Semenchenko. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7(17): 2769–2773
https://doi.org/10.4161/cc.7.17.6625
pmid: 18728386
|
326 |
AP Sunjaya, AF Sunjaya. Targeting ageing and preventing organ degeneration with metformin. Diabetes Metab 2021; 47(1): 101203
https://doi.org/10.1016/j.diabet.2020.09.009
pmid: 33148437
|
327 |
N Kubben, T Misteli. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 2017; 18(10): 595–609
https://doi.org/10.1038/nrm.2017.68
pmid: 28792007
|
328 |
MXR Foo, PF Ong, O Dreesen. Premature aging syndromes: from patients to mechanism. J Dermatol Sci 2019; 96(2): 58–65
https://doi.org/10.1016/j.jdermsci.2019.10.003
pmid: 31727429
|
329 |
TES Kauppila, A Bratic, MB Jensen, F Baggio, L Partridge, H Jasper, S Grönke, NG Larsson. Mutations of mitochondrial DNA are not major contributors to aging of fruit flies. Proc Natl Acad Sci USA 2018; 115(41): E9620–E9629
https://doi.org/10.1073/pnas.1721683115
pmid: 30249665
|
330 |
AS Kulkarni, S Gubbi, N Barzilai. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab 2020; 32(1): 15–30
https://doi.org/10.1016/j.cmet.2020.04.001
pmid: 32333835
|
331 |
Y Jiang, Y Dong, Y Luo, S Jiang, FL Meng, M Tan, J Li, Y Zang. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep 2021; 34(7): 108713
https://doi.org/10.1016/j.celrep.2021.108713
pmid: 33596428
|
332 |
K Kudabayeva, R Kosmuratova, Y Bazargaliyev, A Sartayeva, N Kereyeva. Effects of metformin on lymphocyte DNA damage in obese individuals among Kazakh population. Diabetes Metab Syndr 2022; 16(8): 102569
https://doi.org/10.1016/j.dsx.2022.102569
pmid: 35853300
|
333 |
B Chukwunonso Obi, T Chinwuba Okoye, VE Okpashi, C Nonye Igwe, E Olisah Alumanah. Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. J Diabetes Res 2016; 2016: 1635361
https://doi.org/10.1155/2016/1635361
pmid: 26824037
|
334 |
JS Allard, EJ Perez, K Fukui, P Carpenter, DK Ingram, R de Cabo. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice. Behav Brain Res 2016; 301: 1–9
https://doi.org/10.1016/j.bbr.2015.12.012
pmid: 26698400
|
335 |
VN Anisimov, LM Berstein, IG Popovich, MA Zabezhinski, PA Egormin, TS Piskunova, AV Semenchenko, ML Tyndyk, MN Yurova, IG Kovalenko, TE Poroshina. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3(2): 148–157
https://doi.org/10.18632/aging.100273
pmid: 21386129
|
336 |
J Fang, J Yang, X Wu, G Zhang, T Li, X Wang, H Zhang, CC Wang, GH Liu, L Wang. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018; 17(4): e12765
https://doi.org/10.1111/acel.12765
pmid: 29659168
|
337 |
O Moiseeva, X Deschênes-Simard, E St-Germain, S Igelmann, G Huot, AE Cadar, V Bourdeau, MN Pollak, G Ferbeyre. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013; 12(3): 489–498
https://doi.org/10.1111/acel.12075
pmid: 23521863
|
338 |
N Noren Hooten, A Martin-Montalvo, DF Dluzen, Y Zhang, M Bernier, AB Zonderman, KG Becker, M Gorospe, R de Cabo, MK Evans. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 2016; 15(3): 572–581
https://doi.org/10.1111/acel.12469
pmid: 26990999
|
339 |
A Bektas, SH Schurman, R Sen, L Ferrucci. Aging, inflammation and the environment. Exp Gerontol 2018; 105: 10–18
https://doi.org/10.1016/j.exger.2017.12.015
pmid: 29275161
|
340 |
D Piber, R Olmstead, JH Cho, T Witarama, C Perez, N Dietz, TE Seeman, EC Breen, SW Cole, MR Irwin. Inflammaging: age and systemic, cellular, and nuclear inflammatory biology in older adults. J Gerontol A Biol Sci Med Sci 2019; 74(11): 1716–1724
https://doi.org/10.1093/gerona/glz130
pmid: 31107949
|
341 |
IM Rea, DS Gibson, V McGilligan, SE McNerlan, HD Alexander, OA Ross. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586
https://doi.org/10.3389/fimmu.2018.00586
pmid: 29686666
|
342 |
C Franceschi, J Campisi. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(Suppl 1): S4–S9
https://doi.org/10.1093/gerona/glu057
pmid: 24833586
|
343 |
AM Tizazu, MSZ Nyunt, O Cexus, K Suku, E Mok, CH Xian, J Chong, C Tan, W How, S Hubert, E Combet, T Fulop, TP Ng, A Larbi. Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality. Front Physiol 2019; 10: 572
https://doi.org/10.3389/fphys.2019.00572
pmid: 31178745
|
344 |
W Chen, X Liu, S Ye. Effects of metformin on blood and urine pro-inflammatory mediators in patients with type 2 diabetes. J Inflamm (Lond) 2016; 13(1): 34
https://doi.org/10.1186/s12950-016-0142-3
pmid: 27904436
|
345 |
X Xu, S Lin, Y Chen, X Li, S Ma, Y Fu, C Wei, C Wang, W Xu. The effect of metformin on the expression of GPR109A, NF-κB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes mellitus. Ann Clin Lab Sci 2017; 47(5): 556–562
pmid: 29066482
|
346 |
W Xu, YY Deng, L Yang, S Zhao, J Liu, Z Zhao, L Wang, P Maharjan, S Gao, Y Tian, X Zhuo, Y Zhao, J Zhou, Z Yuan, Y Wu. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res 2015; 166(5): 451–458
https://doi.org/10.1016/j.trsl.2015.06.002
pmid: 26141671
|
347 |
Y Saisho. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 2015; 15(3): 196–205
https://doi.org/10.2174/1871530315666150316124019
pmid: 25772174
|
348 |
R Kristófi, JW Eriksson. Metformin as an anti-inflammatory agent: a short review. J Endocrinol 2021; 251(2): R11–R22
https://doi.org/10.1530/JOE-21-0194
pmid: 34463292
|
349 |
L Gou, G Liu, R Ma, A Regmi, T Zeng, J Zheng, X Zhong, L Chen. High fat-induced inflammation in vascular endothelium can be improved by Abelmoschus esculentus and metformin via increasing the expressions of miR-146a and miR-155. Nutr Metab (Lond) 2020; 17(1): 35
https://doi.org/10.1186/s12986-020-00459-7
pmid: 32467714
|
350 |
X Luo, R Hu, Y Zheng, S Liu, Z Zhou. Metformin shows anti-inflammatory effects in murine macrophages through Dicer/microribonucleic acid-34a-5p and microribonucleic acid-125b-5p. J Diabetes Investig 2020; 11(1): 101–109
https://doi.org/10.1111/jdi.13074
pmid: 31102492
|
351 |
MS Hipp, P Kasturi, FU Hartl. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 2019; 20(7): 421–435
https://doi.org/10.1038/s41580-019-0101-y
pmid: 30733602
|
352 |
M Kitada, D Koya. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol 2021; 17(11): 647–661
https://doi.org/10.1038/s41574-021-00551-9
pmid: 34508250
|
353 |
AM Leidal, B Levine, J Debnath. Autophagy and the cell biology of age-related disease. Nat Cell Biol 2018; 20(12): 1338–1348
https://doi.org/10.1038/s41556-018-0235-8
pmid: 30482941
|
354 |
A Meléndez, Z Tallóczy, M Seaman, EL Eskelinen, DH Hall, B Levine. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301(5638): 1387–1391
https://doi.org/10.1126/science.1087782
pmid: 12958363
|
355 |
ÁF Fernández, S Sebti, Y Wei, Z Zou, M Shi, KL McMillan, C He, T Ting, Y Liu, WC Chiang, DK Marciano, GG Schiattarella, G Bhagat, OW Moe, MC Hu, B Levine. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 2018; 558(7708): 136–140
https://doi.org/10.1038/s41586-018-0162-7
pmid: 29849149
|
356 |
S Bhansali, A Bhansali, P Dutta, R Walia, V Dhawan. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med 2020; 24(5): 2832–2846
https://doi.org/10.1111/jcmm.14834
pmid: 31975558
|
357 |
LP Bharath, M Agrawal, G McCambridge, DA Nicholas, H Hasturk, J Liu, K Jiang, R Liu, Z Guo, J Deeney, CM Apovian, J Snyder-Cappione, GS Hawk, RM Fleeman, RMF Pihl, K Thompson, AC Belkina, L Cui, EA Proctor, PA Kern, BS Nikolajczyk. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 2020; 32(1): 44–55.e6
https://doi.org/10.1016/j.cmet.2020.04.015
pmid: 32402267
|
358 |
B Xu, W Dai, L Liu, H Han, J Zhang, X Du, X Pei, X Fu. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69(7): 863–875
https://doi.org/10.1507/endocrj.EJ21-0480
pmid: 35228471
|
359 |
M Li, A Sharma, C Yin, X Tan, Y Xiao. Metformin ameliorates hepatic steatosis and improves the induction of autophagy in HFD-induced obese mice. Mol Med Rep 2017; 16(1): 680–686
https://doi.org/10.3892/mmr.2017.6637
pmid: 28560428
|
360 |
G You, X Long, F Song, J Huang, M Tian, Y Xiao, S Deng, Q Wu. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des Devel Ther 2020; 14: 457–468
https://doi.org/10.2147/DDDT.S233932
pmid: 32099330
|
361 |
M Kodali, S Attaluri, LN Madhu, B Shuai, R Upadhya, JJ Gonzalez, X Rao, AK Shetty. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021; 20(2): e13277
https://doi.org/10.1111/acel.13277
pmid: 33443781
|
362 |
K Whittemore, E Vera, E Martínez-Nevado, C Sanpera, MA Blasco. Telomere shortening rate predicts species life span. Proc Natl Acad Sci USA 2019; 116(30): 15122–15127
https://doi.org/10.1073/pnas.1902452116
pmid: 31285335
|
363 |
J Huang, X Peng, K Dong, J Tao, Y Yang. The association between antidiabetic agents and leukocyte telomere length in the novel classification of type 2 diabetes mellitus. Gerontology 2021; 67(1): 60–68
https://doi.org/10.1159/000511362
pmid: 33321495
|
364 |
J Liu, Y Ge, S Wu, D Ma, W Xu, Y Zhang, Y Yang. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging (Albany NY) 2019; 11(2): 741–755
https://doi.org/10.18632/aging.101781
pmid: 30694216
|
365 |
ECCC Rosa, RRC Dos Santos, LFA Fernandes, FAR Neves, MS Coelho, AA Amato. Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes. Diabetes Res Clin Pract 2018; 135: 30–36
https://doi.org/10.1016/j.diabres.2017.10.020
pmid: 29107760
|
366 |
N Sun, RJ Youle, T Finkel. The mitochondrial basis of aging. Mol Cell 2016; 61(5): 654–666
https://doi.org/10.1016/j.molcel.2016.01.028
pmid: 26942670
|
367 |
AR Konopka, JL Laurin, HM Schoenberg, JJ Reid, WM Castor, CA Wolff, RV Musci, OD Safairad, MA Linden, LM Biela, SM Bailey, KL Hamilton, BF Miller. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 2019; 18(1): e12880
https://doi.org/10.1111/acel.12880
pmid: 30548390
|
368 |
JY Jang, A Blum, J Liu, T Finkel. The role of mitochondria in aging. J Clin Invest 2018; 128(9): 3662–3670
https://doi.org/10.1172/JCI120842
pmid: 30059016
|
369 |
S Starling. Metformin reduces ageing adipose senescence. Nat Rev Endocrinol 2021; 17(12): 708
pmid: 34663933
|
370 |
S Karnewar, PK Neeli, D Panuganti, S Kotagiri, S Mallappa, N Jain, MK Jerald, S Kotamraju. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2018; 186(4 Pt A): 1115–1128
https://doi.org/10.1016/j.bbadis.2018.01.018
pmid: 29366775
|
371 |
G Vial, D Detaille, B Guigas. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol (Lausanne) 2019; 10: 294
https://doi.org/10.3389/fendo.2019.00294
pmid: 31133988
|
372 |
C López-Otín, MA Blasco, L Partridge, M Serrano, G Kroemer. The hallmarks of aging. Cell 2013; 153(6): 1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
pmid: 23746838
|
373 |
B Neumann, R Baror, C Zhao, M Segel, S Dietmann, KS Rawji, S Foerster, CR McClain, K Chalut, P van Wijngaarden, RJM Franklin. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 2019; 25(4): 473–485.e8
https://doi.org/10.1016/j.stem.2019.08.015
pmid: 31585093
|
374 |
HJ Na, JS Park, JH Pyo, HJ Jeon, YS Kim, R Arking, MA Yoo. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Ageing Dev 2015; 149: 8–18
https://doi.org/10.1016/j.mad.2015.05.004
pmid: 25988874
|
375 |
EJ Calabrese, E Agathokleous, R Kapoor, G Dhawan, WJ Kozumbo, V Calabrese. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71: 101418
https://doi.org/10.1016/j.arr.2021.101418
pmid: 34365027
|
376 |
TSB Schmidt, J Raes, P Bork. The human gut microbiome: from association to modulation. Cell 2018; 172(6): 1198–1215
https://doi.org/10.1016/j.cell.2018.02.044
pmid: 29522742
|
377 |
B Antal, LP McMahon, SF Sultan, A Lithen, DJ Wexler, B Dickerson, EM Ratai, LR Mujica-Parodi. Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. eLife 2022; 11: e73138
https://doi.org/10.7554/eLife.73138
pmid: 35608247
|
378 |
DL Jr Smith, CF Jr Elam, JA Mattison, MA Lane, GS Roth, DK Ingram, DB Allison. Metformin supplementation and life span in Fischer-344 rats. J Gerontol A Biol Sci Med Sci 2010; 65(5): 468–474
https://doi.org/10.1093/gerona/glq033
pmid: 20304770
|
379 |
L Espada, A Dakhovnik, P Chaudhari, A Martirosyan, L Miek, T Poliezhaieva, Y Schaub, A Nair, N Döring, N Rahnis, O Werz, A Koeberle, J Kirkpatrick, A Ori, MA Ermolaeva. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2(11): 1316–1331
https://doi.org/10.1038/s42255-020-00307-1
pmid: 33139960
|
380 |
RG Walton, CM Dungan, DE Long, SC Tuggle, K Kosmac, BD Peck, HM Bush, AG Villasante Tezanos, G McGwin, ST Windham, F Ovalle, MM Bamman, PA Kern, CA Peterson. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial. Aging Cell 2019; 18(6): e13039
https://doi.org/10.1111/acel.13039
pmid: 31557380
|
381 |
D Xenos, P Mecocci, V Boccardi. A blast from the past: to tame time with metformin. Mech Ageing Dev 2022; 208: 111743
https://doi.org/10.1016/j.mad.2022.111743
pmid: 36279989
|
382 |
DG Hardie, FA Ross, SA Hawley. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13(4): 251–262
https://doi.org/10.1038/nrm3311
pmid: 22436748
|
383 |
C Cantó, J Auwerx. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 2010; 67(20): 3407–3423
https://doi.org/10.1007/s00018-010-0454-z
pmid: 20640476
|
384 |
JN Feige, J Auwerx. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 2007; 17(6): 292–301
https://doi.org/10.1016/j.tcb.2007.04.001
pmid: 17475497
|
385 |
D Garcia, RJ Shaw. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 2017; 66(6): 789–800
https://doi.org/10.1016/j.molcel.2017.05.032
pmid: 28622524
|
386 |
MM Chung, CJ Nicol, YC Cheng, KH Lin, YL Chen, D Pei, CH Lin, YN Shih, CH Yen, SJ Chen, RN Huang, MC Chiang. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 2017; 352(1): 75–83
https://doi.org/10.1016/j.yexcr.2017.01.017
pmid: 28159472
|
387 |
S Wang, K Kobayashi, Y Kogure, H Yamanaka, S Yamamoto, H Yagi, K Noguchi, Y Dai. Negative regulation of TRPA1 by AMPK in primary sensory neurons as a potential mechanism of painful diabetic neuropathy. Diabetes 2018; 67(1): 98–109
https://doi.org/10.2337/db17-0503
pmid: 29025860
|
388 |
R Yuan, Y Wang, Q Li, F Zhen, X Li, Q Lai, P Hu, X Wang, Y Zhu, H Fan, R Yao. Metformin reduces neuronal damage and promotes neuroblast proliferation and differentiation in a cerebral ischemia/reperfusion rat model. Neuroreport 2019; 30(3): 232–240
https://doi.org/10.1097/WNR.0000000000001190
pmid: 30614910
|
389 |
J Mertens, ACM Paquola, M Ku, E Hatch, L Böhnke, S Ladjevardi, S McGrath, B Campbell, H Lee, JR Herdy, JT Gonçalves, T Toda, Y Kim, J Winkler, J Yao, MW Hetzer, FH Gage. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015; 17(6): 705–718
https://doi.org/10.1016/j.stem.2015.09.001
pmid: 26456686
|
390 |
Y Kim, X Zheng, Z Ansari, MC Bunnell, JR Herdy, L Traxler, H Lee, ACM Paquola, C Blithikioti, M Ku, JCM Schlachetzki, J Winkler, F Edenhofer, CK Glass, AA Paucar, BN Jaeger, S Pham, L Boyer, BC Campbell, T Hunter, J Mertens, FH Gage. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep 2018; 23(9): 2550–2558
https://doi.org/10.1016/j.celrep.2018.04.105
pmid: 29847787
|
391 |
C Rotermund, G Machetanz, JC Fitzgerald. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne) 2018; 9: 400
https://doi.org/10.3389/fendo.2018.00400
pmid: 30072954
|
392 |
S Craft, GS Watson. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004; 3(3): 169–178
https://doi.org/10.1016/S1474-4422(04)00681-7
pmid: 14980532
|
393 |
T Ninomiya. Diabetes mellitus and dementia. Curr Diab Rep 2014; 14(5): 487
https://doi.org/10.1007/s11892-014-0487-z
pmid: 24623199
|
394 |
KF Neumann, L Rojo, LP Navarrete, G Farías, P Reyes, RB Maccioni. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr Alzheimer Res 2008; 5(5): 438–447
https://doi.org/10.2174/156720508785908919
pmid: 18855585
|
395 |
G Verdile, SJ Fuller, RN Martins. The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 2015; 84: 22–38
https://doi.org/10.1016/j.nbd.2015.04.008
pmid: 25926349
|
396 |
Z Arvanitakis, RC Shah, DA Bennett. Diagnosis and management of dementia: review. JAMA 2019; 322(16): 1589–1599
https://doi.org/10.1001/jama.2019.4782
pmid: 31638686
|
397 |
PV Arriagada, JH Growdon, ET Hedley-Whyte, BT Hyman. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3): 631–639
https://doi.org/10.1212/WNL.42.3.631
pmid: 1549228
|
398 |
GV Johnson, WH Stoothoff. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2004; 117(24): 5721–5729
https://doi.org/10.1242/jcs.01558
pmid: 15537830
|
399 |
JL Gu, F Liu. Tau in Alzheimer’s disease: pathological alterations and an attractive therapeutic target. Curr Med Sci 2020; 40(6): 1009–1021
https://doi.org/10.1007/s11596-020-2282-1
pmid: 33428128
|
400 |
X Sun, K Bromley-Brits, W Song. Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 2012; 120(Suppl 1): 62–70
https://doi.org/10.1111/j.1471-4159.2011.07515.x
pmid: 22122349
|
401 |
WH Oliveira, CF Braga, DB Lós, SMR Araújo, MR França, E Duarte-Silva, GB Rodrigues, SWS Rocha, CA Peixoto. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239(9): 2821–2839
https://doi.org/10.1007/s00221-021-06176-8
pmid: 34283253
|
402 |
Y Chen, K Zhou, R Wang, Y Liu, YD Kwak, T Ma, RC Thompson, Y Zhao, L Smith, L Gasparini, Z Luo, H Xu, FF Liao. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci USA 2009; 106(10): 3907–3912
https://doi.org/10.1073/pnas.0807991106
pmid: 19237574
|
403 |
JS Won, YB Im, J Kim, AK Singh, I Singh. Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun 2010; 399(4): 487–491
https://doi.org/10.1016/j.bbrc.2010.07.081
pmid: 20659426
|
404 |
TP Ng, L Feng, KB Yap, TS Lee, CH Tan, B Winblad. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 2014; 41(1): 61–68
https://doi.org/10.3233/JAD-131901
pmid: 24577463
|
405 |
H Yokoyama, M Ogawa, J Honjo, S Okizaki, D Yamada, R Shudo, H Shimizu, H Sone, M Haneda. Risk factors associated with abnormal cognition in Japanese outpatients with diabetes, hypertension or dyslipidemia. Diabetol Int 2015; 6(4): 268–274
https://doi.org/10.1007/s13340-014-0194-7
|
406 |
CC Hsu, ML Wahlqvist, MS Lee, HN Tsai. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 2011; 24(3): 485–493
https://doi.org/10.3233/JAD-2011-101524
pmid: 21297276
|
407 |
C Cheng, CH Lin, YW Tsai, CJ Tsai, PH Chou, TH Lan. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol A Biol Sci Med Sci 2014; 69(10): 1299–1305
https://doi.org/10.1093/gerona/glu073
pmid: 24899525
|
408 |
AR Orkaby, K Cho, J Cormack, DR Gagnon, JA Driver. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology 2017; 89(18): 1877–1885
https://doi.org/10.1212/WNL.0000000000004586
pmid: 28954880
|
409 |
P Imfeld, M Bodmer, SS Jick, CR Meier. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 2012; 60(5): 916–921
https://doi.org/10.1111/j.1532-5415.2012.03916.x
pmid: 22458300
|
410 |
CP Wang, C Lorenzo, SL Habib, B Jo, SE Espinoza. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J Diabetes Complications 2017; 31(4): 679–686
https://doi.org/10.1016/j.jdiacomp.2017.01.013
pmid: 28190681
|
411 |
Z Arvanitakis, M Tatavarthy, DA Bennett. The relation of diabetes to memory function. Curr Neurol Neurosci Rep 2020; 20(12): 64
https://doi.org/10.1007/s11910-020-01085-9
pmid: 33150490
|
412 |
FN Emamzadeh, A Surguchov. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612
https://doi.org/10.3389/fnins.2018.00612
pmid: 30214392
|
413 |
BLB Marino, LR de Souza, KPA Sousa, JV Ferreira, EC Padilha, CHTP da Silva, CA Taft, LIS Hage-Melim. Parkinson’s disease: a review from pathophysiology to treatment. Mini Rev Med Chem 2020; 20(9): 754–767
https://doi.org/10.2174/1389557519666191104110908
pmid: 31686637
|
414 |
P Damier, EC Hirsch, Y Agid, AM Graybiel. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999; 122(8): 1437–1448
https://doi.org/10.1093/brain/122.8.1437
pmid: 10430830
|
415 |
X Zhao, H He, X Xiong, Q Ye, F Feng, S Zhou, W Chen, K Xia, S Qian, Y Yang, C Xie. Lewy body-associated proteins A-synuclein (a-syn) as a plasma-based biomarker for Parkinson’s disease. Front Aging Neurosci 2022; 14: 869797
https://doi.org/10.3389/fnagi.2022.869797
pmid: 35645787
|
416 |
JM Tan, ES Wong, KL Lim. Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 2009; 11(9): 2119–2134
https://doi.org/10.1089/ars.2009.2490
pmid: 19243238
|
417 |
H BraakTredici K DelH BratzkeJ Hamm-ClementD Sandmann-KeilU Rüb. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 2002; 249 Suppl 3: III/1–5 doi: 10.1007/s00415-002-1301-4
pmid: 12528692
|
418 |
TG Beach, CH Adler, L Lue, LI Sue, J Bachalakuri, J Henry-Watson, J Sasse, S Boyer, S Shirohi, R Brooks, J Eschbacher, CL 3rd White, H Akiyama, J Caviness, HA Shill, DJ Connor, MN Sabbagh, DG; Arizona Parkinson’s Disease Consortium Walker. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 2009; 117(6): 613–634
https://doi.org/10.1007/s00401-009-0538-8
pmid: 19399512
|
419 |
I Dolasık, SY Sener, K Celebı, ZM Aydın, U Korkmaz, Z Canturk. The effect of metformin on mean platelet volume in dıabetıc patients. Platelets 2013; 24(2): 118–121
https://doi.org/10.3109/09537104.2012.674165
pmid: 22494325
|
420 |
A Koçer, A Yaman, E Niftaliyev, H Dürüyen, M Eryılmaz, E Koçer. Assessment of platelet indices in patients with neurodegenerative diseases: mean platelet volume was increased in patients with Parkinson’s disease. Curr Gerontol Geriatr Res 2013; 2013: 986254
https://doi.org/10.1155/2013/986254
pmid: 24382959
|
421 |
M Lu, C Su, C Qiao, Y Bian, J Ding, G Hu. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol 2016; 19(9): pyw047
https://doi.org/10.1093/ijnp/pyw047
pmid: 27207919
|
422 |
SP Patil, PD Jain, PJ Ghumatkar, R Tambe, S Sathaye. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 2014; 277: 747–754
https://doi.org/10.1016/j.neuroscience.2014.07.046
pmid: 25108167
|
423 |
JA Bayliss, MB Lemus, VV Santos, M Deo, JS Davies, BE Kemp, JD Elsworth, ZB Andrews. Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons. PLoS One 2016; 11(7): e0159381
https://doi.org/10.1371/journal.pone.0159381
pmid: 27467571
|
424 |
N Katila, S Bhurtel, S Shadfar, S Srivastav, S Neupane, U Ojha, GS Jeong, DY Choi. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 2017; 125: 396–407
https://doi.org/10.1016/j.neuropharm.2017.08.015
pmid: 28807678
|
425 |
AA Ismaiel, AM Espinosa-Oliva, M Santiago, A García-Quintanilla, MJ Oliva-Martín, AJ Herrera, JL Venero, Pablos RM de. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol 2016; 298: 19–30
https://doi.org/10.1016/j.taap.2016.03.004
pmid: 26971375
|
426 |
ML Wahlqvist, MS Lee, CC Hsu, SY Chuang, JT Lee, HN Tsai. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 2012; 18(6): 753–758
https://doi.org/10.1016/j.parkreldis.2012.03.010
pmid: 22498320
|
427 |
P McColgan, SJ Tabrizi. Huntington’s disease: a clinical review. Eur J Neurol 2018; 25(1): 24–34
https://doi.org/10.1111/ene.13413
pmid: 28817209
|
428 |
MT Montojo, M Aganzo, N González. Huntington’s disease and diabetes: chronological sequence of its association. J Huntingtons Dis 2017; 6(3): 179–188
https://doi.org/10.3233/JHD-170253
pmid: 28968242
|
429 |
NM Lalić, J Marić, M Svetel, A Jotić, E Stefanova, K Lalić, N Dragasević, T Milicić, L Lukić, VS Kostić. Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 2008; 65(4): 476–480
https://doi.org/10.1001/archneur.65.4.476
pmid: 18413469
|
430 |
TW Boesgaard, TT Nielsen, K Josefsen, T Hansen, T Jørgensen, O Pedersen, A Nørremølle, JE Nielsen, L Hasholt. Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 2009; 21(9): 770–776
https://doi.org/10.1111/j.1365-2826.2009.01898.x
pmid: 19602103
|
431 |
CV Russo, E Salvatore, F Saccà, T Tucci, C Rinaldi, P Sorrentino, M Massarelli, F Rossi, S Savastano, Maio L Di, A Filla, A Colao, Michele G De. Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. J Huntingtons Dis 2013; 2(4): 501–507
https://doi.org/10.3233/JHD-130078
pmid: 25062734
|
432 |
D Hervás, V Fornés-Ferrer, AP Gómez-Escribano, MD Sequedo, C Peiró, JM Millán, RP Vázquez-Manrique. Metformin intake associates with better cognitive function in patients with Huntington’s disease. PLoS One 2017; 12(6): e0179283
https://doi.org/10.1371/journal.pone.0179283
pmid: 28632780
|
433 |
TC Ju, HM Chen, YC Chen, CP Chang, C Chang, Y Chern. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington’s disease. Biochim Biophys Acta 2014; 1842(9): 1668–1680
https://doi.org/10.1016/j.bbadis.2014.06.012
pmid: 24946181
|
434 |
A Dziedzic, J Saluk-Bijak, E Miller, M Bijak. Metformin as a potential agent in the treatment of multiple sclerosis. Int J Mol Sci 2020; 21(17): 5957
https://doi.org/10.3390/ijms21175957
pmid: 32825027
|
435 |
GR Dos Passos, DK Sato, J Becker, K Fujihara. Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators Inflamm 2016; 2016: 5314541
https://doi.org/10.1155/2016/5314541
pmid: 26941483
|
436 |
S Kalra, C Lowndes, L Durant, RC Strange, A Al-Araji, CP Hawkins, SJ Curnow. Th17 cells increase in RRMS as well as in SPMS, whereas various other phenotypes of Th17 increase in RRMS only. Mult Scler J Exp Transl Clin 2020; 6(1): 2055217319899695
https://doi.org/10.1177/2055217319899695
pmid: 32064115
|
437 |
N Álvarez-Sánchez, I Cruz-Chamorro, M Díaz-Sánchez, PJ Lardone, JM Guerrero, A Carrillo-Vico. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep 2019; 9(1): 2302
https://doi.org/10.1038/s41598-019-38897-w
pmid: 30783191
|
438 |
YF Li, SX Zhang, XW Ma, YL Xue, C Gao, XY Li, AD Xu. The proportion of peripheral regulatory T cells in patients with multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 2019; 28: 75–80
https://doi.org/10.1016/j.msard.2018.12.019
pmid: 30572285
|
439 |
H Hofstetter, R Gold, HP Hartung. Th17 cells in MS and experimental autoimmune encephalomyelitis. Int MS J 2009; 16(1): 12–18
pmid: 19413921
|
440 |
L Wei, A Laurence, KM Elias, JJ O’Shea. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282(48): 34605–34610
https://doi.org/10.1074/jbc.M705100200
pmid: 17884812
|
441 |
H Kebir, K Kreymborg, I Ifergan, A Dodelet-Devillers, R Cayrol, M Bernard, F Giuliani, N Arbour, B Becher, A Prat. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13(10): 1173–1175
https://doi.org/10.1038/nm1651
pmid: 17828272
|
442 |
MM Mehta, NS Chandel. Targeting metabolism for lupus therapy. Sci Transl Med 2015; 7(274): 274fs5
https://doi.org/10.1126/scitranslmed.aaa6731
pmid: 25673759
|
443 |
R Krysiak, B Okopien. Haemostatic effects of metformin in simvastatin-treated volunteers with impaired fasting glucose. Basic Clin Pharmacol Toxicol 2012; 111(6): 380–384
https://doi.org/10.1111/j.1742-7843.2012.00913.x
pmid: 22716204
|
444 |
R Krysiak, A Gdula-Dymek, B Okopień. Effect of metformin on selected parameters of hemostasis in fenofibrate-treated patients with impaired glucose tolerance. Pharmacol Rep 2013; 65(1): 208–213
https://doi.org/10.1016/S1734-1140(13)70980-0
|
445 |
M Serdyńska-Szuster, B Banaszewska, R Spaczyński, L Pawelczyk. Effects of metformin therapy on markers of coagulation disorders in hyperinsulinemic women with polycystic ovary syndrome. Ginekol Pol 2011; 82(4): 259–264
pmid: 21735693
|
446 |
M Markowicz-Piasecka, KM Huttunen, A Sadkowska, J Sikora. Pleiotropic activity of metformin and its sulfonamide derivatives on vascular and platelet haemostasis. Molecules 2019; 25(1): 125
https://doi.org/10.3390/molecules25010125
pmid: 31905674
|
447 |
L Negrotto, MF Farez, J Correale. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 2016; 73(5): 520–528
https://doi.org/10.1001/jamaneurol.2015.4807
pmid: 26953870
|
448 |
S Jang, H Kim, J Jeong, SK Lee, EW Kim, M Park, CH Kim, JE Lee, K Namkoong, E Kim. Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71: 57–65
https://doi.org/10.1016/j.pnpbp.2016.06.011
pmid: 27343360
|
449 |
AO Dulamea. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen Res 2017; 12(12): 1939–1944
https://doi.org/10.4103/1673-5374.221146
pmid: 29323026
|
450 |
Y Qi, H Cheng, Q Lou, X Wang, N Lai, C Gao, S Wu, C Xu, Y Ruan, Z Chen, Y Wang. Paradoxical effects of posterior intralaminar thalamic calretinin neurons on hippocampal seizure via distinct downstream circuits. iScience 2022; 25(5): 104218
https://doi.org/10.1016/j.isci.2022.104218
pmid: 35494226
|
451 |
K Tóth, L Eross, J Vajda, P Halász, TF Freund, Z Maglóczky. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 2010; 133(9): 2763–2777
https://doi.org/10.1093/brain/awq149
pmid: 20576695
|
452 |
BS Meldrum. Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol 1993; 3(4): 405–412
https://doi.org/10.1111/j.1750-3639.1993.tb00768.x
pmid: 8293196
|
453 |
Y Qi, H Cheng, Y Wang, Z Chen. Revealing the precise role of calretinin neurons in epilepsy: we are on the way. Neurosci Bull 2022; 38(2): 209–222
https://doi.org/10.1007/s12264-021-00753-1
pmid: 34324145
|
454 |
AM Hussein, M Eldosoky, M El-Shafey, M El-Mesery, AN Ali, KM Abbas, OA Abulseoud. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol 2019; 97(1): 37–46
https://doi.org/10.1139/cjpp-2018-0266
pmid: 30308130
|
455 |
RR Zhao, XC Xu, F Xu, WL Zhang, WL Zhang, LM Liu, WP Wang. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 2014; 448(4): 414–417
https://doi.org/10.1016/j.bbrc.2014.04.130
pmid: 24802403
|
456 |
Y Yang, B Zhu, F Zheng, Y Li, Y Zhang, Y Hu, X Wang. Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 2017; 484(2): 450–455
https://doi.org/10.1016/j.bbrc.2017.01.157
pmid: 28137587
|
457 |
C Moran, A Sanz-Rodriguez, A Jimenez-Pacheco, J Martinez-Villareal, RC McKiernan, EM Jimenez-Mateos, C Mooney, I Woods, JH Prehn, DC Henshall, T Engel. Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 2013; 4(4): e606
https://doi.org/10.1038/cddis.2013.136
pmid: 23618904
|
458 |
S Mehrabi, N Sanadgol, M Barati, A Shahbazi, G Vahabzadeh, M Barzroudi, M Seifi, M Gholipourmalekabadi, F Golab. Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metab Brain Dis 2018; 33(1): 107–114
https://doi.org/10.1007/s11011-017-0132-z
pmid: 29080083
|
459 |
C Heinrich, S Lähteinen, F Suzuki, L Anne-Marie, S Huber, U Häussler, C Haas, Y Larmet, E Castren, A Depaulis. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol Dis 2011; 42(1): 35–47
https://doi.org/10.1016/j.nbd.2011.01.001
pmid: 21220014
|
460 |
S Amin, AA Mallick, H Edwards, M Cortina-Borja, M Laugharne, M Likeman, FJK O’Callaghan. The metformin in tuberous sclerosis (MiTS) study: a randomised double-blind placebo-controlled trial. EClinicalMedicine 2021; 32: 100715
https://doi.org/10.1016/j.eclinm.2020.100715
pmid: 33681737
|
461 |
F Bisulli, L Muccioli, G d’Orsi, L Canafoglia, E Freri, L Licchetta, B Mostacci, P Riguzzi, F Pondrelli, C Avolio, T Martino, R Michelucci, P Tinuper. Treatment with metformin in twelve patients with Lafora disease. Orphanet J Rare Dis 2019; 14(1): 149
https://doi.org/10.1186/s13023-019-1132-3
pmid: 31227012
|
462 |
YM Zhang, LY Ye, TY Li, F Guo, F Guo, Y Li, YF Li. New monoamine antidepressant, hypidone hydrochloride (YL-0919), enhances the excitability of medial prefrontal cortex in mice via a neural disinhibition mechanism. Acta Pharmacol Sin 2022; 43(7): 1699–1709
https://doi.org/10.1038/s41401-021-00807-0
pmid: 34811511
|
463 |
C Otte, SM Gold, BW Penninx, CM Pariante, A Etkin, M Fava, DC Mohr, AF Schatzberg. Major depressive disorder. Nat Rev Dis Primers 2016; 2(1): 16065
https://doi.org/10.1038/nrdp.2016.65
pmid: 27629598
|
464 |
MV Fogaça, RS Duman. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 2019; 13: 87
https://doi.org/10.3389/fncel.2019.00087
pmid: 30914923
|
465 |
RS Duman, G Sanacora, JH Krystal. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019; 102(1): 75–90
https://doi.org/10.1016/j.neuron.2019.03.013
pmid: 30946828
|
466 |
C Fee, M Banasr, E Sibille. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiatry 2017; 82(8): 549–559
https://doi.org/10.1016/j.biopsych.2017.05.024
pmid: 28697889
|
467 |
S Ghosal, B Hare, RS Duman. Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr Opin Behav Sci 2017; 14: 1–8
https://doi.org/10.1016/j.cobeha.2016.09.012
pmid: 27812532
|
468 |
JH Krystal, G Sanacora, H Blumberg, A Anand, DS Charney, G Marek, CN Epperson, A Goddard, GF Mason. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7(S1 Suppl 1): S71–S80
https://doi.org/10.1038/sj.mp.4001021
pmid: 11986998
|
469 |
B Luscher, Q Shen, N Sahir. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2011; 16(4): 383–406
https://doi.org/10.1038/mp.2010.120
pmid: 21079608
|
470 |
F Vahid-Ansari, PR Albert. Rewiring of the serotonin system in major depression. Front Psychiatry 2021; 12: 802581
https://doi.org/10.3389/fpsyt.2021.802581
pmid: 34975594
|
471 |
WB Chen, J Chen, ZY Liu, B Luo, T Zhou, EK Fei. Metformin enhances excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons. Brain Sci 2020; 10(10): 706
https://doi.org/10.3390/brainsci10100706
pmid: 33020379
|
472 |
J Zemdegs, H Martin, H Pintana, S Bullich, S Manta, MA Marqués, C Moro, S Layé, F Ducrocq, N Chattipakorn, SC Chattipakorn, C Rampon, L Pénicaud, X Fioramonti, BP Guiard. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J Neurosci 2019; 39(30): 5935–5948
https://doi.org/10.1523/JNEUROSCI.2904-18.2019
pmid: 31160539
|
473 |
F Duval, MC Mokrani, P Bailey, H Corrêa, MA Crocq, Diep T Son, JP Macher. Serotonergic and noradrenergic function in depression: clinical correlates. Dialogues Clin Neurosci 2000; 2(3): 299–308
https://doi.org/10.31887/DCNS.2000.2.3/fduval
pmid: 22033550
|
474 |
N Shivavedi, M Kumar, GNVC Tej, PK Nayak. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res 2017; 1674: 1–9
https://doi.org/10.1016/j.brainres.2017.08.019
pmid: 28827076
|
475 |
J Wang, D Gallagher, LM DeVito, GI Cancino, D Tsui, L He, GM Keller, PW Frankland, DR Kaplan, FD Miller. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11(1): 23–35
https://doi.org/10.1016/j.stem.2012.03.016
pmid: 22770240
|
476 |
M Guo, J Mi, QM Jiang, JM Xu, YY Tang, G Tian, B Wang. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol 2014; 41(9): 650–656
https://doi.org/10.1111/1440-1681.12265
pmid: 24862430
|
477 |
T Odaira, O Nakagawasai, K Takahashi, W Nemoto, W Sakuma, JR Lin, K Tan-No. Mechanisms underpinning AMP-activated protein kinase-related effects on behavior and hippocampal neurogenesis in an animal model of depression. Neuropharmacology 2019; 150: 121–133
https://doi.org/10.1016/j.neuropharm.2019.03.026
pmid: 30914305
|
478 |
IK Wium-Andersen, M Osler, MB Jørgensen, J Rungby, MK Wium-Andersen. Diabetes, antidiabetic medications and risk of depression — a population-based cohort and nested case-control study. Psychoneuroendocrinology 2022; 140: 105715
https://doi.org/10.1016/j.psyneuen.2022.105715
pmid: 35338947
|
479 |
T Leech, N Chattipakorn, SC Chattipakorn. The beneficial roles of metformin on the brain with cerebral ischaemia/reperfusion injury. Pharmacol Res 2019; 146: 104261
https://doi.org/10.1016/j.phrs.2019.104261
pmid: 31170502
|
480 |
AS Paintlia, MK Paintlia, S Mohan, AK Singh, I Singh. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 2013; 183(2): 526–541
https://doi.org/10.1016/j.ajpath.2013.04.030
pmid: 23759513
|
481 |
CY Xia, S Zhang, Y Gao, ZZ Wang, NH Chen. Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 2015; 25(2): 377–382
https://doi.org/10.1016/j.intimp.2015.02.019
pmid: 25704852
|
482 |
Q Jin, J Cheng, Y Liu, J Wu, X Wang, S Wei, X Zhou, Z Qin, J Jia, X Zhen. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 2014; 40: 131–142
https://doi.org/10.1016/j.bbi.2014.03.003
pmid: 24632338
|
483 |
J Zhu, K Liu, K Huang, Y Gu, Y Hu, S Pan, Z Ji. Metformin improves neurologic outcome via AMP-activated protein kinase-mediated autophagy activation in a rat model of cardiac arrest and resuscitation. J Am Heart Assoc 2018; 7(12): e008389
https://doi.org/10.1161/JAHA.117.008389
pmid: 29895585
|
484 |
S Demaré, A Kothari, NA Calcutt, P Fernyhough. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2021; 21(1): 45–63
https://doi.org/10.1080/14737175.2021.1847645
pmid: 33161784
|
485 |
YY Cheng, HB Leu, TJ Chen, CL Chen, CH Kuo, SD Lee, CL Kao. Metformin-inclusive therapy reduces the risk of stroke in patients with diabetes: a 4-year follow-up study. J Stroke Cerebrovasc Dis 2014; 23(2): e99–e105
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.09.001
pmid: 24119365
|
486 |
D Kirpichnikov, SI McFarlane, JR Sowers. Metformin: an update. Ann Intern Med 2002; 137(1): 25–33
https://doi.org/10.7326/0003-4819-137-1-200207020-00009
pmid: 12093242
|
487 |
E Badrick, AG Renehan. Diabetes and cancer: 5 years into the recent controversy. Eur J Cancer 2014; 50(12): 2119–2125
https://doi.org/10.1016/j.ejca.2014.04.032
pmid: 24930060
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|