Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (5) : 763-777    https://doi.org/10.1007/s11684-024-1090-6
Intracellular checkpoints for NK cell cancer immunotherapy
Yingying Huang1,2,3,4,5,6, Zhigang Tian1,7,8,9, Jiacheng Bi1()
. CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
. Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
. Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
. Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
. Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning 530021, China
. Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning 530021, China
. The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
. Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
. Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
 Download: PDF(7763 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Natural killer (NK) cells are key innate immune lymphocytes, which play important roles against tumors. However, tumor-infiltrating NK cells are always hypofunctional/exhaustive. On the one hand, this state is contributed by context-dependent interactions between inhibitory NK cell checkpoint receptors and their ligands, which usually vary in different tumor types and stages during tumor development. On the other hand, the inhibitory functions of intracellular checkpoint molecules of NK cells are more similar across different tumor types, representing common mechanisms limiting the potential of NK cell therapy. In this review, representative NK cell intracellular checkpoint molecules in different aspects of NK cell biology were reviewed, and therapeutic potentials were discussed by targeting these molecules to promote antitumor NK cell therapy.

Keywords genomic editing      NK cell exhaustion      immune checkpoint      inhibitory molecules      immune tolerance     
Corresponding Author(s): Jiacheng Bi   
Just Accepted Date: 30 August 2024   Online First Date: 29 September 2024    Issue Date: 29 October 2024
 Cite this article:   
Jiacheng Bi,Zhigang Tian,Yingying Huang. Intracellular checkpoints for NK cell cancer immunotherapy[J]. Front. Med., 2024, 18(5): 763-777.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1090-6
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I5/763
Fig.1  Intracellular checkpoint molecules from different aspects of NK cell biology. Representative molecules are as follows: FBP-1 related to metabolism, EZH2 related to epigenetics, CIS and TIPE2 as negative IL-15 signaling regulators, HIF-1α associated with hypoxia, Cbl-b associated with protein ubiquitination, and BIM related to apoptosis. These intracellular checkpoints contributed to NK cell exhaustion by different aspects.
Fig.2  Several known intracellular checkpoints of NK cells described in this article (e.g., BIM, FBP1, Cbl-b, EZH2, CIS, TIPE2, and HIF-1α) mediate the depletion state of NK cells (upper part of the figure), which is manifested by an overall decline in the activation function, glycolysis, cytotoxicity, survival, and proliferation of NK cells. The level of apoptosis increased, and the amount of IFN-γ produced decreased sharply and finally lost the antitumor ability. By knocking out one or more intracellular checkpoints in NK cells by CRISPR Cas9 technology (bottom half of the figure), the depletion state of NK cells can be reversed, and the cytotoxic effect of NK cells to produce high levels of IFN-γ can be restored. Consequently, NK cells can regain antitumor ability.
Fig.3  Tumor-infiltrating NK cells are immunosuppressed by various factors and are often in a state of immune exhaustion. Various cells in the tumor microenvironment (such as Treg, MDSC, and tumor cells) secrete the immunosuppressive factor TGF-β. TGF-β transmits inhibitory signals downward by acting on the corresponding receptors on the surface of NK cells. Simultaneously, the level of the intracellular checkpoint molecule FBP1 increases. By blocking this process with inhibitors of FBP1, the depletion state of NK cells can be reversed, and the secretion of cytotoxic cytokines (such as IFN-γ, perforin, and granzymes) by NK cells can be increased to promote the antitumor effect of NK cells.
Regulatory effects Molecules References
Cytotoxicity (?) CIS, TIPE2, Cbl-b, EZH2 [28,30,64,158162]
Survival (?) CIS, EZH2 [30,158,159,161]
Proliferation (?) CIS, EZH2,TIPE2 [30,86,158,161]
Metabolism (?) FBP1, HIF-1α [29,155]
Apoptosis (+) BIM [31,57]
Mechanisms of action Molecules References
Signaling transduction CIS, TIPE2 [30,159,161,162]
Transcription HIF-1α [155]
Epigenetics EZH2 [158]
Post-translational modifications Cbl-b [64]
Pro-apoptotic protein BIM [31,57]
Tab.1  Intracellular checkpoint molecules involved in NK cells
Fig.4  NK cells of different origin are used in the immunotherapy of tumors. At present, three known methods can be used to obtain modified NK cells: (1) induced pluripotent stem cell (iPSC)-derived NK cells (iPSC NK) are genetically edited at the iPSC stage and are monoclonal, and such cells are differentiated into NK cells; (2) peripheral blood-derived NK cells (PBNK) are directly edited on NK cells; (3) the human NK cell line NK92 was edited and monoclonal on NK92.
Fig.5  Timeline of the intracellular checkpoints of NK cells. In recent years, with the gradual deepening of the research on NK cells, an increasing number of new intracellular checkpoints have been discovered. Intracellular checkpoints inhibit the growth, survival, proliferation, differentiation, cytotoxicity, and antitumor effects of NK cells, leading to the exhaustion of tumor-infiltrating NK cells.
1 B Cózar, M Greppi, S Carpentier, E Narni-Mancinelli, L Chiossone, E Vivier. Tumor-infiltrating natural killer cells. Cancer Discov 2021; 11(1): 34–44
https://doi.org/10.1158/2159-8290.CD-20-0655
2 MA Caligiuri. Human natural killer cells. Blood 2008; 112(3): 461–469
https://doi.org/10.1182/blood-2007-09-077438
3 E Vivier, E Tomasello, M Baratin, T Walzer, S Ugolini. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
https://doi.org/10.1038/ni1582
4 S Coca, J Perez-Piqueras, D Martinez, A Colmenarejo, MA Saez, C Vallejo, JA Martos, M Moreno. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997; 79(12): 2320–2328
https://doi.org/10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P
5 LS Peng, JY Zhang, YS Teng, YL Zhao, TT Wang, FY Mao, YP Lv, P Cheng, WH Li, N Chen, M Duan, W Chen, G Guo, QM Zou, Y Zhuang. Tumor-associated monocytes/macrophages impair NK-cell function via TGFβ1 in human gastric cancer. Cancer Immunol Res 2017; 5(3): 248–256
https://doi.org/10.1158/2326-6066.CIR-16-0152
6 S Ishigami, S Natsugoe, K Tokuda, A Nakajo, C Xiangming, H Iwashige, K Aridome, S Hokita, T Aikou. Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer. Cancer Lett 2000; 159(1): 103–108
https://doi.org/10.1016/S0304-3835(00)00542-5
7 S Jin, Y Deng, JW Hao, Y Li, B Liu, Y Yu, FD Shi, QH Zhou. NK cell phenotypic modulation in lung cancer environment. PLoS One 2014; 9(10): e109976
https://doi.org/10.1371/journal.pone.0109976
8 FR Villegas, S Coca, VG Villarrubia, R Jimenez, MJ Chillon, J Jareno, M Zuil, L Callol. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 2002; 35(1): 23–28
https://doi.org/10.1016/S0169-5002(01)00292-6
9 E Mamessier, A Sylvain, ML Thibult, G Houvenaeghel, J Jacquemier, R Castellano, A Goncalves, P Andre, F Romagne, G Thibault, P Viens, D Birnbaum, F Bertucci, A Moretta, D Olive. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 2011; 121(9): 3609–3622
https://doi.org/10.1172/JCI45816
10 J Bi, Z Tian. NK cell exhaustion. Front Immunol 2017; 8: 760
https://doi.org/10.3389/fimmu.2017.00760
11 J Bi, Z Tian. NK cell dysfunction and checkpoint immunotherapy. Front Immunol 2019; 10: 1999
https://doi.org/10.3389/fimmu.2019.01999
12 LP Andrews, H Yano, DAA Vignali. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol 2019; 20(11): 1425–1434
https://doi.org/10.1038/s41590-019-0512-0
13 JV Ravetch, LL Lanier. Immune inhibitory receptors. Science 2000; 290(5489): 84–89
https://doi.org/10.1126/science.290.5489.84
14 J Debska-Zielkowska, G Moszkowska, M Zielinski, H Zielinska, A Dukat-Mazurek, P Trzonkowski, K Stefanska. KIR receptors as key regulators of NK cells activity in health and disease. Cells 2021; 10(7): 1777
https://doi.org/10.3390/cells10071777
15 LL Lanier. Activating and inhibitory NK cell receptors. Adv Exp Med Biol 1998; 452: 13–18
https://doi.org/10.1007/978-1-4615-5355-7_2
16 LL Lanier. NK cell receptors. Annu Rev Immunol 1998; 16(1): 359–393
https://doi.org/10.1146/annurev.immunol.16.1.359
17 LL Lanier. Follow the leader: NK cell receptors for classical and nonclassical MHC class I. Cell 1998; 92(6): 705–707
https://doi.org/10.1016/S0092-8674(00)81398-7
18 PJ Bjorkman, MA Saper, B Samraoui, WS Bennett, JL Strominger, DC Wiley. Structure of the human class I histocompatibility antigen, HLA-A2. J Immunol 2005; 174: 6–19
19 PJ Bjorkman, MA Saper, B Samraoui, WS Bennett, JL Strominger, DC Wiley. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329(6139): 506–512
https://doi.org/10.1038/329506a0
20 EO Long. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 2008; 224(1): 70–84
https://doi.org/10.1111/j.1600-065X.2008.00660.x
21 F Takei, KL McQueen, M Maeda, BT Wilhelm, S Lohwasser, RH Lian, DL Mager. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 2001; 181(1): 90–103
https://doi.org/10.1034/j.1600-065X.2001.1810107.x
22 DH Raulet, RE Vance, CW McMahon. Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001; 19(1): 291–330
https://doi.org/10.1146/annurev.immunol.19.1.291
23 WM Yokoyama, WE Seaman. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 1993; 11(1): 613–635
https://doi.org/10.1146/annurev.iy.11.040193.003145
24 AG Brooks, PE Posch, CJ Scorzelli, F Borrego, JE Coligan. NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor. J Exp Med 1997; 185(4): 795–800
https://doi.org/10.1084/jem.185.4.795
25 A Beldi-Ferchiou, M Lambert, S Dogniaux, F Vely, E Vivier, D Olive, S Dupuy, F Levasseur, D Zucman, C Lebbe, D Sene, C Hivroz, S Caillat-Zucman. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 2016; 7(45): 72961–72977
https://doi.org/10.18632/oncotarget.12150
26 N Stanietsky, H Simic, J Arapovic, A Toporik, O Levy, A Novik, Z Levine, M Beiman, L Dassa, H Achdout, N Stern-Ginossar, P Tsukerman, S Jonjic, O Mandelboim. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 2009; 106(42): 17858–17863
https://doi.org/10.1073/pnas.0903474106
27 LC Ndhlovu, S Lopez-Verges, JD Barbour, RB Jones, AR Jha, BR Long, EC Schoeffler, T Fujita, DF Nixon, LL Lanier. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012; 119(16): 3734–3743
https://doi.org/10.1182/blood-2011-11-392951
28 J Bi, X Jin, C Zheng, C Huang, C Zhong, X Zheng, Z Tian, H Sun. Checkpoint TIPE2 limits the helper functions of NK cells in supporting antitumor CD8+ T cells. Adv Sci (Weinh) 2023; 10(12): 2207499
https://doi.org/10.1002/advs.202207499
29 J Cong, X Wang, X Zheng, D Wang, B Fu, R Sun, Z Tian, H Wei. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab 2018; 28(2): 243–255.e5
https://doi.org/10.1016/j.cmet.2018.06.021
30 RB Delconte, TB Kolesnik, LF Dagley, J Rautela, W Shi, EM Putz, K Stannard, JG Zhang, C Teh, M Firth, T Ushiki, CE Andoniou, MA Degli-Esposti, PP Sharp, CE Sanvitale, G Infusini, NP Liau, EM Linossi, CJ Burns, S Carotta, DH Gray, C Seillet, DS Hutchinson, GT Belz, AI Webb, WS Alexander, SS Li, AN Bullock, JJ Babon, MJ Smyth, SE Nicholson, ND Huntington. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol 2016; 17(7): 816–824
https://doi.org/10.1038/ni.3470
31 ND Huntington, H Puthalakath, P Gunn, E Naik, EM Michalak, MJ Smyth, H Tabarias, MA Degli-Esposti, G Dewson, SN Willis, N Motoyama, DC Huang, SL Nutt, DM Tarlinton, A Strasser. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007; 8(8): 856–863
https://doi.org/10.1038/ni1487
32 SC Oh, SE Kim, IH Jang, SM Kim, SY Lee, S Lee, IS Chu, SR Yoon, H Jung, I Choi, J Doh, TD Kim. NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse. Nat Immunol 2023; 24(3): 463–473
https://doi.org/10.1038/s41590-022-01394-w
33 MM Berrien-Elliott, MT Jacobs, TA Fehniger. Allogeneic natural killer cell therapy. Blood 2023; 141(8): 856–868
https://doi.org/10.1182/blood.2022016200
34 Y Zhou, L Cheng, L Liu, X Li. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol Cancer 2023; 22(1): 34
https://doi.org/10.1186/s12943-023-01737-7
35 HJ Morgan, E Rees, S Lanfredini, KA Powell, J Gore, A Gibbs, C Lovatt, GE Davies, C Olivero, BY Shorning, G Tornillo, A Tonks, R Darley, EC Wang, GK Patel. CD200 ectodomain shedding into the tumor microenvironment leads to NK cell dysfunction and apoptosis. J Clin Invest 2022; 132(21): e150750
https://doi.org/10.1172/JCI150750
36 S Qian, Z Wei, W Yang, J Huang, Y Yang, J Wang. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12: 985363
https://doi.org/10.3389/fonc.2022.985363
37 V Potluri, SK Noothi, SD Vallabhapurapu, SO Yoon, JJ Driscoll, CH Lawrie, S Vallabhapurapu. Transcriptional repression of Bim by a novel YY1-RelA complex is essential for the survival and growth of multiple myeloma. PLoS One 2013; 8(7): e66121
https://doi.org/10.1371/journal.pone.0066121
38 M Salmanidis, G Brumatti, N Narayan, BD Green, JA van den Bergen, JJ Sandow, AG Bert, N Silke, R Sladic, H Puthalakath, L Rohrbeck, T Okamoto, P Bouillet, MJ Herold, GJ Goodall, AM Jabbour, PG Ekert. Hoxb8 regulates expression of microRNAs to control cell death and differentiation. Cell Death Differ 2013; 20(10): 1370–1380
https://doi.org/10.1038/cdd.2013.92
39 M Ridinger-Saison, E Evanno, I Gallais, P Rimmele, D Selimoglu-Buet, E Sapharikas, F Moreau-Gachelin, C Guillouf. Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia. Cell Death Differ 2013; 20(9): 1268–1278
https://doi.org/10.1038/cdd.2013.88
40 K Liu, F Liu, N Zhang, S Liu, Y Jiang. Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703. Int J Mol Sci 2012; 13(5): 5818–5831
https://doi.org/10.3390/ijms13055818
41 K Chen, Y Tu, Y Zhang, HC Blair, L Zhang, C Wu. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J Biol Chem 2008; 283(5): 2508–2517
https://doi.org/10.1074/jbc.M707307200
42 Z Zhao, J Zheng, Y Ye, K Zhao, R Wang, R Wang. MicroRNA-25-3p regulates human nucleus pulposus cell proliferation and apoptosis in intervertebral disc degeneration by targeting Bim. Mol Med Rep 2020; 22: 3621–3628
https://doi.org/10.3892/mmr.2020.11483
43 Z Chen, LY Chen, HY Dai, P Wang, S Gao, K Wang. miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J Cell Biochem 2012; 113(10): 3229–3235
https://doi.org/10.1002/jcb.24200
44 H Zhang, Z Zuo, X Lu, L Wang, H Wang, Z Zhu. miR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep 2012; 27: 594–598
45 D Dávila, EM Jimenez-Mateos, CM Mooney, G Velasco, DC Henshall, JH Prehn. Hsp27 binding to the 3′UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism. Mol Biol Cell 2014; 25(21): 3413–3423
https://doi.org/10.1091/mbc.e13-08-0495
46 H Puthalakath, DC Huang, LA O’Reilly, SM King, A Strasser. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999; 3(3): 287–296
https://doi.org/10.1016/S1097-2765(00)80456-6
47 EH Cheng, MC Wei, S Weiler, RA Flavell, TW Mak, T Lindsten, SJ Korsmeyer. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8(3): 705–711
https://doi.org/10.1016/S1097-2765(01)00320-3
48 P Bouillet, D Metcalf, DC Huang, DM Tarlinton, TW Kay, F Kontgen, JM Adams, A Strasser. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286(5445): 1735–1738
https://doi.org/10.1126/science.286.5445.1735
49 M Erlacher, V Labi, C Manzl, G Bock, A Tzankov, G Hacker, E Michalak, A Strasser, A Villunger. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 2006; 203(13): 2939–2951
https://doi.org/10.1084/jem.20061552
50 AL Snow, JB Oliveira, L Zheng, JK Dale, TA Fleisher, MJ Lenardo. Critical role for BIM in T cell receptor restimulation-induced death. Biol Direct 2008; 3(1): 34
https://doi.org/10.1186/1745-6150-3-34
51 S Kurtulus, A Sholl, J Toe, P Tripathi, J Raynor, KP Li, M Pellegrini, DA Hildeman. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins. Cell Death Differ 2015; 22(1): 174–184
https://doi.org/10.1038/cdd.2014.118
52 JM Grayson, AE Weant, BC Holbrook, D Hildeman. Role of Bim in regulating CD8+ T-cell responses during chronic viral infection. J Virol 2006; 80(17): 8627–8638
https://doi.org/10.1128/JVI.00855-06
53 H Tsukamoto, GE Huston, J Dibble, DK Duso, SL Swain. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J Immunol 2010; 185(8): 4535–4544
https://doi.org/10.4049/jimmunol.1001668
54 R Liu, A King, P Bouillet, DM Tarlinton, A Strasser, J Heierhorst. Proapoptotic BIM impacts B lymphoid homeostasis by limiting the survival of mature B cells in a cell-autonomous manner. Front Immunol 2018; 9: 592
https://doi.org/10.3389/fimmu.2018.00592
55 SF Fischer, P Bouillet, K O’Donnell, A Light, DM Tarlinton, A Strasser. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 2007; 110(12): 3978–3984
https://doi.org/10.1182/blood-2007-05-091306
56 A Sugimoto-Ishige, M Harada, M Tanaka, T Terooatea, Y Adachi, Y Takahashi, T Tanaka, PD Burrows, M Hikida, T Takemori. Bim establishes the B-cell repertoire from early to late in the immune response. Int Immunol 2021; 33(2): 79–90
https://doi.org/10.1093/intimm/dxaa060
57 G Min-Oo, NA Bezman, S Madera, JC Sun, LL Lanier. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J Exp Med 2014; 211(7): 1289–1296
https://doi.org/10.1084/jem.20132459
58 R Tang, WY Langdon, J Zhang. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2019; 340: 103878
https://doi.org/10.1016/j.cellimm.2018.11.002
59 D Fang, HY Wang, N Fang, Y Altman, C Elly, YC Liu. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 2001; 276(7): 4872–4878
https://doi.org/10.1074/jbc.M008901200
60 Y Zhao, H Guo, G Qiao, M Zucker, WY Langdon, J Zhang. E3 ubiquitin ligase Cbl-b regulates thymic-derived CD4+CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol 2015; 194(4): 1639–1645
https://doi.org/10.4049/jimmunol.1402434
61 LL Zhu, TM Luo, X Xu, YH Guo, XQ Zhao, TT Wang, B Tang, YY Jiang, JF Xu, X Lin, XM Jia. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med 2016; 213(8): 1555–1570
https://doi.org/10.1084/jem.20151932
62 G Wirnsberger, F Zwolanek, T Asaoka, I Kozieradzki, L Tortola, RA Wimmer, A Kavirayani, F Fresser, G Baier, WY Langdon, F Ikeda, K Kuchler, JM Penninger. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med 2016; 22(8): 915–923
https://doi.org/10.1038/nm.4134
63 Y Xiao, J Tang, H Guo, Y Zhao, R Tang, S Ouyang, Q Zeng, CA Rappleye, MV Rajaram, LS Schlesinger, L Tao, GD Brown, WY Langdon, BT Li, J Zhang. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med 2016; 22(8): 906–914
https://doi.org/10.1038/nm.4141
64 M Paolino, A Choidas, S Wallner, B Pranjic, I Uribesalgo, S Loeser, AM Jamieson, WY Langdon, F Ikeda, JP Fededa, SJ Cronin, R Nitsch, C Schultz-Fademrecht, J Eickhoff, S Menninger, A Unger, R Torka, T Gruber, R Hinterleitner, G Baier, D Wolf, A Ullrich, BM Klebl, JM Penninger. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 2014; 507(7493): 508–512
https://doi.org/10.1038/nature12998
65 MA Cooper, JE Bush, TA Fehniger, JB VanDeusen, RE Waite, Y Liu, HL Aguila, MA Caligiuri. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100(10): 3633–3638
https://doi.org/10.1182/blood-2001-12-0293
66 MK Kennedy, M Glaccum, SN Brown, EA Butz, JL Viney, M Embers, N Matsuki, K Charrier, L Sedger, CR Willis, K Brasel, PJ Morrissey, K Stocking, JC Schuh, S Joyce, JJ Peschon. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191(5): 771–780
https://doi.org/10.1084/jem.191.5.771
67 PR Burkett, R Koka, M Chien, S Chai, DL Boone, A Ma. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 2004; 200(7): 825–834
https://doi.org/10.1084/jem.20041389
68 KS Schluns, EC Nowak, A Cabrera-Hernandez, L Puddington, L Lefrancois, HL Aguila. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor alpha expression. Proc Natl Acad Sci USA 2004; 101(15): 5616–5621
https://doi.org/10.1073/pnas.0307442101
69 E Mortier, T Woo, R Advincula, S Gozalo, A Ma. IL-15Rα chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J Exp Med 2008; 205(5): 1213–1225
https://doi.org/10.1084/jem.20071913
70 C Bergamaschi, J Bear, M Rosati, RK Beach, C Alicea, R Sowder, E Chertova, SA Rosenberg, BK Felber, GN Pavlakis. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood 2012; 120(1): e1–e8
https://doi.org/10.1182/blood-2011-10-384362
71 K Imada, WJ Leonard. The Jak-STAT pathway. Mol Immunol 2000; 37(1-2): 1–11
https://doi.org/10.1016/S0161-5890(00)00018-3
72 P Sathe, RB Delconte, F Souza-Fonseca-Guimaraes, C Seillet, M Chopin, CJ Vandenberg, LC Rankin, LA Mielke, I Vikstrom, TB Kolesnik, SE Nicholson, E Vivier, MJ Smyth, SL Nutt, SP Glaser, A Strasser, GT Belz, S Carotta, ND Huntington. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 2014; 5(1): 4539
https://doi.org/10.1038/ncomms5539
73 A Marçais, J Cherfils-Vicini, C Viant, S Degouve, S Viel, A Fenis, J Rabilloud, K Mayol, A Tavares, J Bienvenu, YG Gangloff, E Gilson, E Vivier, T Walzer. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 2014; 15(8): 749–757
https://doi.org/10.1038/ni.2936
74 DL Krebs, DJ Hilton. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001; 19(5): 378–387
https://doi.org/10.1634/stemcells.19-5-378
75 DC Palmer, NP Restifo. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 2009; 30(12): 592–602
https://doi.org/10.1016/j.it.2009.09.009
76 EM Linossi, JJ Babon, DJ Hilton, SE Nicholson. Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev 2013; 24(3): 241–248
https://doi.org/10.1016/j.cytogfr.2013.03.005
77 DC Palmer, GC Guittard, Z Franco, JG Crompton, RL Eil, SJ Patel, Y Ji, N Van Panhuys, CA Klebanoff, M Sukumar, D Clever, A Chichura, R Roychoudhuri, R Varma, E Wang, L Gattinoni, FM Marincola, L Balagopalan, LE Samelson, NP Restifo. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J Exp Med 2015; 212(12): 2095–2113
https://doi.org/10.1084/jem.20150304
78 J Lv, L Qin, R Zhao, D Wu, Z Wu, D Zheng, S Li, M Luo, Q Wu, Y Long, Z Tang, YL Tang, X Luo, Y Yao, LH Yang, P Li. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2023; 28: 46–58
https://doi.org/10.1016/j.omto.2022.12.003
79 MA Miah, CH Yoon, J Kim, J Jang, YR Seong, YS Bae. CISH is induced during DC development and regulates DC-mediated CTL activation. Eur J Immunol 2012; 42(1): 58–68
https://doi.org/10.1002/eji.201141846
80 KE Shoger, N Cheemalavagu, YM Cao, BA Michalides, VK Chaudhri, JA Cohen, H Singh, RA Gottschalk. CISH attenuates homeostatic cytokine signaling to promote lung-specific macrophage programming and function. Sci Signal 2021; 14(698): eabe5137
https://doi.org/10.1126/scisignal.abe5137
81 RB Delconte, TB Kolesnik, LF Dagley, J Rautela, W Shi, EM Putz, K Stannard, JG Zhang, C Teh, M Firth, T Ushiki, CE Andoniou, MA Degli-Esposti, PP Sharp, CE Sanvitale, G Infusini, NPD Liau, EM Linossi, CJ Burns, S Carotta, DHD Gray, C Seillet, DS Hutchinson, GT Belz, AI Webb, WS Alexander, SS Li, AN Bullock, JJ Babon, MJ Smyth, SE Nicholson, ND Huntington. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol 2016; 17(7): 816–824
https://doi.org/10.1038/ni.3470
82 F Souza-Fonseca-Guimaraes, GR Rossi, LF Dagley, M Foroutan, TR McCulloch, J Yousef, HY Park, JH Gunter, PA Beavis, CY Lin, S Hediyeh-Zadeh, T Camilleri, MJ Davis, ND Huntington. TGFβ and CIS inhibition overcomes NK-cell suppression to restore antitumor immunity. Cancer Immunol Res 2022; 10(9): 1047–1054
https://doi.org/10.1158/2326-6066.CIR-21-1052
83 H Zhu, RH Blum, D Bernareggi, EH Ask, Z Wu, HJ Hoel, Z Meng, C Wu, KL Guan, KJ Malmberg, DS Kaufman. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 2020; 27(2): 224–237.e6
https://doi.org/10.1016/j.stem.2020.05.008
84 M Daher, R Basar, E Gokdemir, N Baran, N Uprety, AK Nunez Cortes, M Mendt, LN Kerbauy, PP Banerjee, MH Sanabria, N Imahashi, L Li, FL Wei Inng Lim, M Fathi, A Rezvan, V Mohanty, Y Shen, H Shaim, J Lu, G Ozcan, E Ensley, M Kaplan, V Nandivada, M Bdaiwi, S Acharya, Y Xi, X Wan, D Mak, E Liu, S Ang, L Muniz-Feliciano, Y Li, J Wang, S Kordasti, N Petrov, N Varadarajan, D Marin, L Brunetti, RJ Skinner, S Lyu, L Silva, R Turk, MS Schubert, GR Rettig, MS McNeill, G Kurgan, MA Behlke, H Li, NW Fowlkes, K Chen, M Konopleva, R Champlin, EJ Shpall, K Rezvani. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 2021; 137(5): 624–636
https://doi.org/10.1182/blood.2020007748
85 T Nakazawa, T Morimoto, R Maeoka, R Matsuda, M Nakamura, F Nishimura, N Ouji, S Yamada, I Nakagawa, YS Park, T Ito, H Nakase, T Tsujimura. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma. J Exp Clin Cancer Res 2023; 42(1): 205
https://doi.org/10.1186/s13046-023-02770-6
86 J Bi, C Huang, X Jin, C Zheng, Y Huang, X Zheng, Z Tian, H Sun. TIPE2 deletion improves the therapeutic potential of adoptively transferred NK cells. J Immunother Cancer 2023; 11(2): e006002
https://doi.org/10.1136/jitc-2022-006002
87 R Duan, W Du, W Guo. EZH2: a novel target for cancer treatment. J Hematol Oncol 2020; 13(1): 104
https://doi.org/10.1186/s13045-020-00937-8
88 V Parreno, AM Martinez, G Cavalli. Mechanisms of polycomb group protein function in cancer. Cell Res 2022; 32(3): 231–253
https://doi.org/10.1038/s41422-021-00606-6
89 Z Han, X Xing, M Hu, Y Zhang, P Liu, J Chai. Structural basis of EZH2 recognition by EED. Structure 2007; 15(10): 1306–1315
https://doi.org/10.1016/j.str.2007.08.007
90 MR Pan, MC Hsu, LT Chen, WC Hung. Orchestration of H3K27 methylation: mechanisms and therapeutic implication. Cell Mol Life Sci 2018; 75(2): 209–223
https://doi.org/10.1007/s00018-017-2596-8
91 A Kuzmichev, K Nishioka, H Erdjument-Bromage, P Tempst, D Reinberg. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 2002; 16(22): 2893–2905
https://doi.org/10.1101/gad.1035902
92 R Margueron, N Justin, K Ohno, ML Sharpe, J Son, WJ 3rd Drury, P Voigt, SR Martin, WR Taylor, Marco V De, V Pirrotta, D Reinberg, SJ Gamblin. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009; 461(7265): 762–767
https://doi.org/10.1038/nature08398
93 R Cao, Y Zhang. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15(1): 57–67
https://doi.org/10.1016/j.molcel.2004.06.020
94 S He, Y Liu, L Meng, H Sun, Y Wang, Y Ji, J Purushe, P Chen, C Li, J Madzo, JP Issa, J Soboloff, R Reshef, B Moore, L Gattinoni, Y Zhang. Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity. Nat Commun 2017; 8(1): 2125
https://doi.org/10.1038/s41467-017-02187-8
95 B Kakaradov, J Arsenio, CE Widjaja, Z He, S Aigner, PJ Metz, B Yu, EJ Wehrens, J Lopez, SH Kim, EI Zuniga, AW Goldrath, JT Chang, GW Yeo. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat Immunol 2017; 18(4): 422–432
https://doi.org/10.1038/ni.3688
96 S Goswami, I Apostolou, J Zhang, J Skepner, S Anandhan, X Zhang, L Xiong, P Trojer, A Aparicio, SK Subudhi, JP Allison, H Zhao, P Sharma. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest 2018; 128(9): 3813–3818
https://doi.org/10.1172/JCI99760
97 D Wang, J Quiros, K Mahuron, CC Pai, V Ranzani, A Young, S Silveria, T Harwin, A Abnousian, M Pagani, MD Rosenblum, F Van Gool, L Fong, JA Bluestone, M DuPage. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 2018; 23(11): 3262–3274
https://doi.org/10.1016/j.celrep.2018.05.050
98 X Chen, G Cao, J Wu, X Wang, Z Pan, J Gao, Q Tian, L Xu, Z Li, Y Hao, Q Huang, P Wang, M Xiao, L Xie, S Tang, Z Liu, L Hu, J Tang, R He, L Wang, X Zhou, Y Wu, M Chen, B Sun, B Zhu, J Huang, L Ye. The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell Mol Immunol 2020; 17(3): 247–260
https://doi.org/10.1038/s41423-019-0219-z
99 F Li, Z Zeng, S Xing, JA Gullicksrud, Q Shan, J Choi, VP Badovinac, S Crotty, W Peng, HH Xue. Ezh2 programs T(FH) differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun 2018; 9(1): 5452
https://doi.org/10.1038/s41467-018-07853-z
100 X Zhang, Y Wang, J Yuan, N Li, S Pei, J Xu, X Luo, C Mao, J Liu, T Yu, S Gan, Q Zheng, Y Liang, W Guo, J Qiu, G Constantin, J Jin, J Qin, Y Xiao. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med 2018; 215(5): 1365–1382
https://doi.org/10.1084/jem.20171417
101 L Herviou, M Jourdan, AM Martinez, G Cavalli, J Moreaux. EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia 2019; 33(8): 2047–2060
https://doi.org/10.1038/s41375-019-0392-1
102 CD Scharer, BG Barwick, M Guo, APR Bally, JM Boss. Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat Commun 2018; 9(1): 1698
https://doi.org/10.1038/s41467-018-04125-8
103 M Guo, MJ Price, DG Patterson, BG Barwick, RR Haines, AK Kania, JE Bradley, TD Randall, JM Boss, CD Scharer. EZH2 represses the B cell transcriptional program and regulates antibody-secreting cell metabolism and antibody production. J Immunol 2018; 200(3): 1039–1052
https://doi.org/10.4049/jimmunol.1701470
104 M Caganova, C Carrisi, G Varano, F Mainoldi, F Zanardi, PL Germain, L George, F Alberghini, L Ferrarini, AK Talukder, M Ponzoni, G Testa, T Nojima, C Doglioni, D Kitamura, KM Toellner, IH Su, S Casola. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123(12): 5009–5022
https://doi.org/10.1172/JCI70626
105 W Béguelin, R Popovic, M Teater, Y Jiang, KL Bunting, M Rosen, H Shen, SN Yang, L Wang, T Ezponda, E Martinez-Garcia, H Zhang, Y Zheng, SK Verma, MT McCabe, HM Ott, Aller GS Van, RG Kruger, Y Liu, CF McHugh, DW Scott, YR Chung, N Kelleher, R Shaknovich, CL Creasy, RD Gascoyne, KK Wong, L Cerchietti, RL Levine, O Abdel-Wahab, JD Licht, O Elemento, AM Melnick. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23(5): 677–692
https://doi.org/10.1016/j.ccr.2013.04.011
106 DJ Tumes, A Onodera, A Suzuki, K Shinoda, Y Endo, C Iwamura, H Hosokawa, H Koseki, K Tokoyoda, Y Suzuki, S Motohashi, T Nakayama. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 2013; 39(5): 819–832
https://doi.org/10.1016/j.immuni.2013.09.012
107 S Huang, Z Wang, J Zhou, J Huang, L Zhou, J Luo, YY Wan, H Long, B Zhu. EZH2 inhibitor GSK126 suppresses antitumor immunity by driving production of myeloid-derived suppressor cells. Cancer Res 2019; 79(8): 2009–2020
https://doi.org/10.1158/0008-5472.CAN-18-2395
108 J Yin, JW Leavenworth, Y Li, Q Luo, H Xie, X Liu, S Huang, H Yan, Z Fu, LY Zhang, L Zhang, J Hao, X Wu, X Deng, CWM Roberts, SH Orkin, H Cantor, X Wang. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc Natl Acad Sci USA 2015; 112(52): 15988–15993
https://doi.org/10.1073/pnas.1521740112
109 X Bian, H Jiang, Y Meng, YP Li, J Fang, Z Lu. Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends Cell Biol 2022; 32(9): 786–799
https://doi.org/10.1016/j.tcb.2022.02.003
110 JY Choe, BW Poland, HJ Fromm, RB Honzatko. Role of a dynamic loop in cation activation and allosteric regulation of recombinant porcine fructose-1,6-bisphosphatase. Biochemistry 1998; 37(33): 11441–11450
https://doi.org/10.1021/bi981112u
111 M Gidh-Jain, Y Zhang, PD van Poelje, JY Liang, S Huang, J Kim, JT Elliott, MD Erion, SJ Pilkis, M Raafat el-Maghrabi. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure. J Biol Chem 1994; 269(44): 27732–27738
https://doi.org/10.1016/S0021-9258(18)47047-0
112 H Ke, CM Thorpe, BA Seaton, F Marcus, WN Lipscomb. Molecular structure of fructose-1,6-bisphosphatase at 2.8-Å resolution. Proc Natl Acad Sci USA 1989; 86(5): 1475–1479
https://doi.org/10.1073/pnas.86.5.1475
113 AG Sharma, SK Kanwal, V Chhapola, V Kumar. Novel fructose bisphosphatase 1 gene mutation presenting as recurrent episodes of vomiting in an Indian child. J Postgrad Med 2018; 64(3): 180–182
https://doi.org/10.4103/jpgm.JPGM_216_17
114 B Li, B Qiu, DS Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TP Gade, B Keith, I Nissim, MC Simon. Fructose-1, 6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
https://doi.org/10.1038/nature13557
115 C Dong, T Yuan, Y Wu, Y Wang, TW Fan, S Miriyala, Y Lin, J Yao, J Shi, T Kang, P Lorkiewicz, D St Clair, MC Hung, BM Evers, BP Zhou. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013; 23(3): 316–331
https://doi.org/10.1016/j.ccr.2013.01.022
116 JR Goldsmith, YH Chen. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol 2017; 14(6): 482–487
https://doi.org/10.1038/cmi.2017.4
117 L Xu, F Pan, Z Guo. TIPE2: a candidate for targeting antitumor immunotherapy. J Immunol 2024; 212(5): 755–763
https://doi.org/10.4049/jimmunol.2300433
118 J Gao, H Zhang, F Zhang. Research progress of TIPE2 in immune-related diseases. Int Immunopharmacol 2023; 121: 110514
https://doi.org/10.1016/j.intimp.2023.110514
119 SA Fayngerts, J Wu, CL Oxley, X Liu, A Vourekas, T Cathopoulis, Z Wang, J Cui, S Liu, H Sun, MA Lemmon, L Zhang, Y Shi, YH Chen. TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell 2014; 26(4): 465–478
https://doi.org/10.1016/j.ccr.2014.07.025
120 M Yang, Q Zhao, X Wang, T Liu, G Yao, C Lou, Y Zhang. TNFAIP8 overexpression is associated with lymph node metastasis and poor prognosis in intestinal-type gastric adenocarcinoma. Histopathology 2014; 65(4): 517–526
https://doi.org/10.1111/his.12413
121 L Wang, Y Song, X Men. Variance of TNFAIP8 expression between tumor tissues and tumor-infiltrating CD4+ and CD8+ T cells in non-small cell lung cancer. Tumour Biol 2014; 35(3): 2319–2325
https://doi.org/10.1007/s13277-013-1307-9
122 Y Ma, X Liu, Z Wei, X Wang, Z Wang, W Zhong, Y Li, F Zhu, C Guo, L Zhang, X Wang. The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scand J Immunol 2013; 78(6): 523–528
https://doi.org/10.1111/sji.12110
123 C Zhang, BV Kallakury, JS Ross, RR Mewani, CE Sheehan, I Sakabe, G Luta, D Kumar, S Yadavalli, J Starr, TL Sreenath, S Srivastava, HB Pollard, O Eidelman, M Srivastava, UN Kasid. The significance of TNFAIP8 in prostate cancer response to radiation and docetaxel and disease recurrence. Int J Cancer 2013; 133(1): 31–42
https://doi.org/10.1002/ijc.27996
124 W Xi, Y Hu, Y Liu, J Zhang, L Wang, Y Lou, Z Qu, J Cui, G Zhang, X Liang, C Ma, C Gao, Y Chen, S Liu. Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Mol Immunol 2011; 48(9-10): 1203–1208
https://doi.org/10.1016/j.molimm.2011.03.002
125 H Sun, S Gong, RJ Carmody, A Hilliard, L Li, J Sun, L Kong, L Xu, B Hilliard, S Hu, H Shen, X Yang, YH Chen. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 2008; 133(3): 415–426
https://doi.org/10.1016/j.cell.2008.03.026
126 D Yan, J Wang, H Sun, A Zamani, H Zhang, W Chen, A Tang, Q Ruan, X Yang, YH Chen, X Wan. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med 2020; 217(2): e20182005
https://doi.org/10.1084/jem.20182005
127 X Zhang, J Wang, C Fan, H Li, H Sun, S Gong, YH Chen, Y Shi. Crystal structure of TIPE2 provides insights into immune homeostasis. Nat Struct Mol Biol 2009; 16(1): 89–90
https://doi.org/10.1038/nsmb.1522
128 Y Gus-Brautbar, D Johnson, L Zhang, H Sun, P Wang, S Zhang, L Zhang, YH Chen. The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell 2012; 45(5): 610–618
https://doi.org/10.1016/j.molcel.2012.01.006
129 X Cao, L Zhang, Y Shi, Y Sun, S Dai, C Guo, F Zhu, Q Wang, J Wang, X Wang, YH Chen, L Zhang. Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1. Mol Cancer 2013; 12(1): 149
https://doi.org/10.1186/1476-4598-12-149
130 H Sun, G Zhuang, L Chai, Z Wang, D Johnson, Y Ma, YH Chen. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol 2012; 189(6): 2768–2773
https://doi.org/10.4049/jimmunol.1103477
131 Z Wang, S Fayngerts, P Wang, H Sun, DS Johnson, Q Ruan, W Guo, YH Chen. TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proc Natl Acad Sci USA 2012; 109(38): 15413–15418
https://doi.org/10.1073/pnas.1204525109
132 Y Zhang, S Mei, Y Zhou, D Yang, T Pan, Z Chen, Q Wang. TIPE2 negatively regulates mycoplasma pneumonia-triggered immune response via MAPK signaling pathway. Sci Rep 2017; 7(1): 13319
https://doi.org/10.1038/s41598-017-13825-y
133 M Falasca, R Liu, T Fan, W Geng, YH Chen, Q Ruan, C Zhang. Negative immune regulator TIPE2 promotes M2 macrophage differentiation through the activation of PI3K-AKT signaling pathway. PLoS One 2017; 12(1): e0170666
https://doi.org/10.1371/journal.pone.0170666
134 Y Luan, Y Yao, L Zhang, N Dong, Q Zhang, Y Yu, Z Sheng. Expression of tumor necrosis factor-α induced protein 8 like-2 contributes to the immunosuppressive property of CD4+CD25+ regulatory T cells in mice. Mol Immunol 2011; 49(1–2): 219–226
https://doi.org/10.1016/j.molimm.2011.08.016
135 J Bi, C Cheng, C Zheng, C Huang, X Zheng, X Wan, YH Chen, Z Tian, S Haoyu. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. Sci Adv 2021; 7(38): eabi6515
https://doi.org/10.1126/sciadv.abi6515
136 J Bi, X Jin, C Zheng, C Huang, C Zhong, X Zheng, Z Tian, H Sun. Checkpoint TIPE2 limits the helper functions of NK cells in supporting antitumor CD8+ T cells. Adv Sci (Weinh) 2023; 10(12): 2207499
https://doi.org/10.1002/advs.202207499
137 AF McGettrick, LAJ O’Neill. The role of HIF in immunity and inflammation. Cell Metab 2020; 32(4): 524–536
https://doi.org/10.1016/j.cmet.2020.08.002
138 GL Wang, BH Jiang, EA Rue, GL Semenza. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92(12): 5510–5514
https://doi.org/10.1073/pnas.92.12.5510
139 Q Wu, L You, E Nepovimova, Z Heger, W Wu, K Kuca, V Adam. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15(1): 77
https://doi.org/10.1186/s13045-022-01292-6
140 T Cramer, Y Yamanishi, BE Clausen, I Forster, R Pawlinski, N Mackman, VH Haase, R Jaenisch, M Corr, V Nizet, GS Firestein, HP Gerber, N Ferrara, RS Johnson. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 2003; 112(5): 645–657
https://doi.org/10.1016/S0092-8674(03)00154-5
141 C Peyssonnaux, P Cejudo-Martin, A Doedens, AS Zinkernagel, RS Johnson, V Nizet. Cutting edge: essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J Immunol 2007; 178(12): 7516–7519
https://doi.org/10.4049/jimmunol.178.12.7516
142 T Wang, H Liu, G Lian, SY Zhang, X Wang, C Jiang. HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm 2017; 2017: 9029327
https://doi.org/10.1155/2017/9029327
143 J Liu, X Zhang, K Chen, Y Cheng, S Liu, M Xia, Y Chen, H Zhu, Z Li, X Cao. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 2019; 50(3): 600–615.e15
https://doi.org/10.1016/j.immuni.2019.01.021
144 T Köhler, B Reizis, RS Johnson, H Weighardt, I Forster. Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 2012; 42(5): 1226–1236
https://doi.org/10.1002/eji.201142053
145 G Burczyk, I Cichon, E Kolaczkowska. Itaconate suppresses formation of neutrophil extracellular traps (NETs): involvement of hypoxia-inducible factor 1α (Hif-1α) and heme oxygenase (HO-1). Front Immunol 2022; 13: 864638
https://doi.org/10.3389/fimmu.2022.864638
146 SR Walmsley, C Print, N Farahi, C Peyssonnaux, RS Johnson, T Cramer, A Sobolewski, AM Condliffe, AS Cowburn, N Johnson, ER Chilvers. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J Exp Med 2005; 201(1): 105–115
https://doi.org/10.1084/jem.20040624
147 KI Mecklenburgh, SR Walmsley, AS Cowburn, M Wiesener, BJ Reed, PD Upton, J Deighton, AP Greening, ER Chilvers. Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood 2002; 100(8): 3008–3016
https://doi.org/10.1182/blood-2002-02-0454
148 EV Dang, J Barbi, HY Yang, D Jinasena, H Yu, Y Zheng, Z Bordman, J Fu, Y Kim, HR Yen, W Luo, K Zeller, L Shimoda, SL Topalian, GL Semenza, CV Dang, DM Pardoll, F Pan. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011; 146(5): 772–784
https://doi.org/10.1016/j.cell.2011.07.033
149 LZ Shi, R Wang, G Huang, P Vogel, G Neale, DR Green, H Chi. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208(7): 1367–1376
https://doi.org/10.1084/jem.20110278
150 M Thiel, CC Caldwell, S Kreth, S Kuboki, P Chen, P Smith, A Ohta, AB Lentsch, D Lukashev, MV Sitkovsky. Targeted deletion of HIF-1α gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2007; 2(9): e853
https://doi.org/10.1371/journal.pone.0000853
151 T Qian, J Hong, L Wang, Z Wang, Z Lu, Y Li, R Liu, Y Chu. Regulation of CD11b by HIF-1α and the STAT3 signaling pathway contributes to the immunosuppressive function of B cells in inflammatory bowel disease. Mol Immunol 2019; 111: 162–171
https://doi.org/10.1016/j.molimm.2019.04.005
152 X Meng, B Grotsch, Y Luo, KX Knaup, MS Wiesener, XX Chen, J Jantsch, S Fillatreau, G Schett, A Bozec. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun 2018; 9(1): 251
https://doi.org/10.1038/s41467-017-02683-x
153 X Liu, X Jiang, R Liu, L Wang, T Qian, Y Zheng, Y Deng, E Huang, F Xu, JY Wang, Y Chu. B cells expressing CD11b effectively inhibit CD4+ T-cell responses and ameliorate experimental autoimmune hepatitis in mice. Hepatology 2015; 62(5): 1563–1575
https://doi.org/10.1002/hep.28001
154 H Kojima, H Gu, S Nomura, CC Caldwell, T Kobata, P Carmeliet, GL Semenza, MV Sitkovsky. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α-deficient chimeric mice. Proc Natl Acad Sci USA 2002; 99(4): 2170–2174
https://doi.org/10.1073/pnas.052706699
155 J Ni, X Wang, A Stojanovic, Q Zhang, M Wincher, L Buhler, A Arnold, MP Correia, M Winkler, PS Koch, V Sexl, T Hofer, A Cerwenka. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity 2020; 52(6): 1075–1087.e8
https://doi.org/10.1016/j.immuni.2020.05.001
156 P Sharma, S Goswami, D Raychaudhuri, BA Siddiqui, P Singh, A Nagarajan, J Liu, SK Subudhi, C Poon, KL Gant, SM Herbrich, S Anandhan, S Islam, M Amit, G Anandappa, JP Allison. Immune checkpoint therapy—current perspectives and future directions. Cell 2023; 186(8): 1652–1669
https://doi.org/10.1016/j.cell.2023.03.006
157 C Zhang, Y Hu, W Xiao, Z Tian. Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18(9): 2083–2100
https://doi.org/10.1038/s41423-021-00732-6
158 J Yin, JW Leavenworth, Y Li, Q Luo, H Xie, X Liu, S Huang, H Yan, Z Fu, LY Zhang, L Zhang, J Hao, X Wu, X Deng, CW Roberts, SH Orkin, H Cantor, X Wang. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc Natl Acad Sci USA 2015; 112(52): 15988–15993
https://doi.org/10.1073/pnas.1521740112
159 PL Bernard, R Delconte, S Pastor, V Laletin, C Costa Da Silva, A Goubard, E Josselin, R Castellano, A Krug, J Vernerey, R Devillier, D Olive, E Verhoeyen, E Vivier, ND Huntington, J Nunes, G Guittard. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J Immunother Cancer 2022; 10(5): e004244
https://doi.org/10.1136/jitc-2021-004244
160 T Nakazawa, T Morimoto, R Maeoka, R Matsuda, M Nakamura, F Nishimura, N Ouji, S Yamada, I Nakagawa, YS Park, T Ito, H Nakase, T Tsujimura. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma. J Exp Clin Cancer Res 2023; 42(1): 205
https://doi.org/10.1186/s13046-023-02770-6
161 H Zhu, RH Blum, D Bernareggi, EH Ask, Z Wu, HJ Hoel, Z Meng, C Wu, KL Guan, KJ Malmberg, DS Kaufman. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 2020; 27(2): 224–237.e6
https://doi.org/10.1016/j.stem.2020.05.008
162 J Bi, C Cheng, C Zheng, C Huang, X Zheng, X Wan, YH Chen, Z Tian, H Sun. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. Sci Adv 2021; 7(38): eabi6515
https://doi.org/10.1126/sciadv.abi6515
163 LO Afolabi, AO Adeshakin, MM Sani, J Bi, X Wan. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology 2019; 158(2): 63–69
https://doi.org/10.1111/imm.13094
164 RS Huang, MC Lai, HA Shih, S Lin. A robust platform for expansion and genome editing of primary human natural killer cells. J Exp Med 2021; 218(3): e20201529
https://doi.org/10.1084/jem.20201529
165 J Rautela, E Surgenor, ND Huntington. Drug target validation in primary human natural killer cells using CRISPR RNP. J Leukoc Biol 2020; 108(4): 1397–1408
https://doi.org/10.1002/JLB.2MA0620-074R
[1] Shiyuan Zhang, Xiaoxi Zhou, Shangkun Zhang, Na Wang, Tongcun Zhang, Donghua Zhang, Qilin Ao, Yang Cao, Liang Huang. EBV-associated lymphoproliferative disease post-CAR-T cell therapy[J]. Front. Med., 2024, 18(2): 394-398.
[2] Elias A. T. Koch, Anne Petzold, Anja Wessely, Edgar Dippel, Markus Eckstein, Anja Gesierich, Ralf Gutzmer, Jessica C. Hassel, Harald Knorr, Nicole Kreuzberg, Ulrike Leiter, Carmen Loquai, Friedegund Meier, Markus Meissner, Peter Mohr, Claudia Pföhler, Farnaz Rahimi, Dirk Schadendorf, Max Schlaak, Kai-Martin Thoms, Selma Ugurel, Jochen Utikal, Michael Weichenthal, Beatrice Schuler-Thurner, Carola Berking, Markus V. Heppt. Liver-directed treatment is associated with improved survival and increased response to immune checkpoint blockade in metastatic uveal melanoma: results from a retrospective multicenter trial[J]. Front. Med., 2023, 17(5): 878-888.
[3] Liming Liao, Huilin Xu, Yuhan Zhao, Xiaofeng Zheng. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies[J]. Front. Med., 2023, 17(5): 805-822.
[4] Chaoyue Xiao, Wei Xiong, Yiting Xu, Ji’an Zou, Yue Zeng, Junqi Liu, Yurong Peng, Chunhong Hu, Fang Wu. Immunometabolism: a new dimension in immunotherapy resistance[J]. Front. Med., 2023, 17(4): 585-616.
[5] Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors[J]. Front. Med., 2022, 16(5): 773-783.
[6] Chen Zhang, Jiandong Zhang, Fan Liang, Han Guo, Sanhui Gao, Fuying Yang, Hua Guo, Guizhen Wang, Wei Wang, Guangbiao Zhou. Innate immune checkpoint Siglec10 in cancers: mining of comprehensive omics data and validation in patient samples[J]. Front. Med., 2022, 16(4): 596-609.
[7] Yingying Li, Shiyuan Wang, Mengmeng Lin, Chunying Hou, Chunyu Li, Guohui Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy[J]. Front. Med., 2022, 16(3): 307-321.
[8] Yingyan Yu. Multi-target combinatory strategy to overcome tumor immune escape[J]. Front. Med., 2022, 16(2): 208-215.
[9] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[10] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[11] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[12] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[13] Chenfei Zhou, Jun Zhang. Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects[J]. Front. Med., 2019, 13(1): 12-23.
[14] Zhen Xiang, Yingyan Yu. Screening responsive or resistant biomarkers of immune checkpoint inhibitors based on online databases[J]. Front. Med., 2019, 13(1): 24-31.
[15] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed