Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (2) : 143-148    https://doi.org/10.1007/s11465-010-0006-0
Research articles
Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate
Tiebing CHEN,Yuwen ZHANG,
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA;
 Download: PDF(169 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Selective laser sintering (SLS) of a two-component metal powder layer on the top of multiple sintered layers by a moving Gaussian laser beam is modeled. The loose metal powder layer is composed of a powder mixture with significantly different melting points. The physical model that accounts the shrinkage induced by melting is described by using a temperature-transforming model. The effects of the porosity and the thickness of the atop loose powder layer with different numbers of the existing sintered metal powder layers below on the sintering process are numerically investigated. The present work will provide a better understanding to simulate much more complicated three-dimensional SLS process.
Keywords laser      sintering      melting      solidification      heat transfer      
Issue Date: 05 June 2010
 Cite this article:   
Tiebing CHEN,Yuwen ZHANG. Two-dimensional modeling of sintering of a powder layer on top of nonporous substrate[J]. Front. Mech. Eng., 2010, 5(2): 143-148.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0006-0
https://academic.hep.com.cn/fme/EN/Y2010/V5/I2/143
Conley J, Marcus H. Rapid prototypingand solid freeform fabrication. ASME Journalof Manufacturing Science and Engineering, 1997, 119(4): 811―816

doi: 10.1115/1.2836828
Karapatics N, Egger G, Gygax P E, Glardon R. Optimization of power layer density in selective laser sintering. In: Proceedings of Solid Freeform Fabrication Symposium,Austin, TX, 1999, 255―263
Manzur T, DeMaria T, Chen W, Roychoudhuri C. Potential role of high powder laser diode in manufacturing. In: SPIE Photonics West Conference, San Jose, CA, 1996
Bunnell D. Fundamentals of selective laser sintering of metals.Dissertation for the Doctoral Degree. Universityof Texas at Austin, 1995
Storch S, Nellessen D, Schaefer G, Reiter R. Selective laser sintering: qualifying analysis of metalbased powder systems for automotive application. Rapid Prototyping Journal, 2003, 9(4): 240―251

doi: 10.1108/13552540310489622
Viskanta R. Phase Change Heat Transfer. In: Lane G A ed. Solar Heat Storage: LatentHeat Materials. Boca Raton, FL: CRC Press, 1983
Yao L, Prusa J. Melting andFreezing, Advances in Heat Transfer. San Diego, CA: Academic Press, 1989, 25: 1―96
Zhang Y, Faghri A. Meltingof a subcooled mixed powder bed with constant heat flux heating. International Journal of Heat and Mass Transfer, 1999, 42(5): 775―788

doi: 10.1016/S0017-9310(98)00231-2
Chen T, Zhang Y. Analysis ofmelting in a subcooled two-component metal powder layer with constantheat flux.?Applied Thermal Engineering,??2006, 26(7): 751―765

doi: 10.1016/j.applthermaleng.2005.07.034
Basu B, Srinivasan J. Numerical study of steady-state laser melting problem. Heat Mass Transfer, 1988, 31(11): 2331―2338

doi: 10.1016/0017-9310(88)90164-0
Chan C, Mazumder J, Chen M. A two dimensional transientmodel for convection in laser melted pool. Metallurgical and Materials Transactions, 1984, 15A(12): 2175―2184
Zhang Y, Faghri A. Melting andresolidification of a subcooled mixed powder bed with moving Gaussianheat source. ASME Journal of Heat Transfer, 1998, 120(4): 883―891

doi: 10.1115/1.2825907
Zhang Y, Faghri A, Buckley C W, Bergman T L. Three-dimensional sintering of two-component metal powderswith stationary and moving laser beams. ASME Journal of Heat Transfer, 2000, 122(1): 150―158

doi: 10.1115/1.521445
Taylor C M, Hauser C. Morphologyof direct SLS-processed stainless steel layers. In: Proceedings of Solid Freeform Fabrication Symposium, Austin, TX, 2002, 530―537
Chen T, Zhang, Y. Numericalsimulation of two-dimensional melting and resolidification of a two-componentmetal powder layer in selective laser sintering process.?Numerical Heat Transfer,?Part A,??2004, 46(7): 633―649

doi: 10.1080/104077890504177
Cao Y, Faghri A. Anumerical analysis of phase change problems including natural convection. ASME Journal of Heat Transfer, 1990, 112(3): 812―816

doi: 10.1115/1.2910466
Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980
[1] Juan Carlos HERNANDEZ-CASTANEDA, Boon Keng LOK, Hongyu ZHENG. Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions[J]. Front. Mech. Eng., 2020, 15(2): 303-318.
[2] Zhongde SHAN, Fuzhen SUN, Yang LIU. Hybrid forming mechanism of patternless casting and laser cladding[J]. Front. Mech. Eng., 2019, 14(4): 393-401.
[3] Arun KRISHNAN, Fengzhou FANG. Review on mechanism and process of surface polishing using lasers[J]. Front. Mech. Eng., 2019, 14(3): 299-319.
[4] Xiaodong NIU, Surinder SINGH, Akhil GARG, Harpreet SINGH, Biranchi PANDA, Xiongbin PENG, Qiujuan ZHANG. Review of materials used in laser-aided additive manufacturing processes to produce metallic products[J]. Front. Mech. Eng., 2019, 14(3): 282-298.
[5] Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite[J]. Front. Mech. Eng., 2018, 13(4): 520-527.
[6] Lianzhong ZHANG, Dichen LI, Shenping YAN, Ruidong XIE, Hongliang QU. Influence of the field humiture environment on the mechanical properties of 316L stainless steel repaired with Fe314[J]. Front. Mech. Eng., 2018, 13(4): 513-519.
[7] Lei WANG, Zi-Han WANG, Yan-Hao YU, Hong-Bo SUN. Laser interference fabrication of large-area functional periodic structure surface[J]. Front. Mech. Eng., 2018, 13(4): 493-503.
[8] Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review[J]. Front. Mech. Eng., 2018, 13(4): 461-481.
[9] M. WU, M. AHMADEIN, A. LUDWIG. Premature melt solidification during mold filling and its influence on the as-cast structure[J]. Front. Mech. Eng., 2018, 13(1): 53-65.
[10] Wenming JIANG, Zitian FAN. Novel technologies for the lost foam casting process[J]. Front. Mech. Eng., 2018, 13(1): 37-47.
[11] Dexin MA. Novel casting processes for single-crystal turbine blades of superalloys[J]. Front. Mech. Eng., 2018, 13(1): 3-16.
[12] Shang GAO, Han HUANG. Recent advances in micro- and nano-machining technologies[J]. Front. Mech. Eng., 2017, 12(1): 18-32.
[13] Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method[J]. Front. Mech. Eng., 2016, 11(3): 242-249.
[14] Bo SONG,Xiao ZHAO,Shuai LI,Changjun HAN,Qingsong WEI,Shifeng WEN,Jie LIU,Yusheng SHI. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review[J]. Front. Mech. Eng., 2015, 10(2): 111-125.
[15] M. R. AKBARI,D. D. GANJI,M. NIMAFAR,A. R. AHMADI. Significant progress in solution of nonlinear equations at displacement of structure and heat transfer extended surface by new AGM approach[J]. Front. Mech. Eng., 2014, 9(4): 390-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed