Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (4) : 442-448    https://doi.org/10.1007/s11465-011-0242-y
RESEARCH ARTICLE
Gray-box modeling and QFT control for precision servo transmission systems
Xiulan BAO(), Xuedong CHEN, Xin LUO, Haocheng ZUO
State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precision servo transmission systems have widely been applied in industrial equipment to achieve high accuracy and high speed motion. However, due to the presence of friction and uncertainty, the characteristics of precision servo transmission systems are variant depends on the working conditions, leading to oscillation and instability in the system performances. In this paper, a grey-box model of the system is established, the model structure derived from the theoretical modeling and the model parameters are obtained by experiments using set membership identification method. This paper proposes two-degrees of freedom (2-DOF) robust position controller for a precision servo transmission system, based on the quantitative feedback theory (QFT), to achieve high accuracy and consistent tracking performance even in presence of considerable system uncertainties and friction disturbances. The results of simulate and experiment validate the effectiveness of the proposed controller.

Keywords precision servo transmission system      modeling      set membership identification      quantitative feedback theory (QFT)      robustness     
Corresponding Author(s): BAO Xiulan,Email:stupidm@gmail.com   
Issue Date: 05 December 2011
 Cite this article:   
Xuedong CHEN,Xin LUO,Haocheng ZUO, et al. Gray-box modeling and QFT control for precision servo transmission systems[J]. Front Mech Eng, 2011, 6(4): 442-448.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0242-y
https://academic.hep.com.cn/fme/EN/Y2011/V6/I4/442
Fig.1  Schematic of the precision servo transmission system
Fig.2  Experimental schematic of the precision servo transmission system
Fig.3  Identification results of two different conditions. (a) Overdamped; (b) underdamped
Fig.4  Control structure of QFT
Fig.5  Intersection bounds in QFT design
Fig.6  The simulation analysis results of track performance
Fig.7  The experiment results of precision servo transmission system
Fig.8  The experiment results of precision servo transmission system
1 Sohlberg B. Grey box modelling for model predictive control of a heating process. Journal of Process Control , 2003, 13(3): 225-238
doi: 10.1016/S0959-1524(02)00030-6
2 Oliver J A, Prieto R, Cobos J A, Garacia O, Alou P. Hybrid wiener-hammerstein structure for grey-box modeling of DC-DC converters. Applied Power Electronics Conference and Exhibit , 2009, 280-285
3 Platanitis G, Shkarayev S. Integration of an autopilot for a micro air vehicle. AIAA Infotech Aerospace 2005 Conference and Exhibit , 2005, 1-19
4 Lee T H, Tan K K, Huang S. Adaptive friction compensation with a dynamical friction model. IEEE/ASME Transactions on Mechatronics , 2011, 16(1): 133-140
5 Lotfi M, Mouloud D, Yoichi H.Robust tracking controller design with uncertain friction compensation based on local modeling apporach. IEEE/ASME Transactions on Mechatronics , 2010, 15(5): 746-756
6 Selmic R R, Lewis F L. Backlash compensation in nonlinear systems using dynamic inversion by neural networks. Asian Journal of Control , 2000, 2(2): 76-87
doi: 10.1111/j.1934-6093.2000.tb00147.x
7 Meenakshi M, Seetharama Bhat M. Robust fixed-order H2 controller for micro air vehicle-design and validation. Optimal Control Applications and Methods , 2006, 27(4): 183-210
doi: 10.1002/oca.774
8 Chen X D, Watanabe K, Kiguchi K. An ART-based fuzzy controller for the adaptive navigation of a quadruped robot. IEEE/ASME Transactions Mechatronics , 2002, 8: 318-328
9 Horowitz I. Fundamental theory of automatic linear feedback control systems. Institute of Radio Engineers Trans. Automatic Control , 1959, 4(3): 5-19
doi: 10.1109/TAC.1959.1104893
10 Bailey F N, Hui C N. Loop gain-phase shaping for single-input-single-output robust controllers. IEEE Control Systems Magazine , 1991, 11(1): 93-101
doi: 10.1109/37.103363
11 Wu S F, Grimble M J, Wei W. QFT-based robust/fault-tolerant flight control design for a remote pilotless vehicle. IEEE Transactions on Control Systems Technology , 2000, 8(6): 1010-1016
doi: 10.1109/87.880607
12 Song Y, Deng H, Zhang Z L. Application of QFT to design of lateral flight control system. Fire Control and Command Control , 2007, 32: 72-75
13 Zhang F X, Zhu R, Xiong W. Augmented-stability controller for micro air vehicle based on quantitative feedback theory. Journal of Tsinghua University (Sci & Tech) , 2010, 50(2): 219-223
14 Liu X M. Design of a tracking control system for antenna stabilized platform based on quantitative feedback theory. Electronics Optics & Control , 2009, 16: 83-86
[1] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[2] Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO. Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages[J]. Front. Mech. Eng., 2019, 14(3): 255-272.
[3] Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU. Modeling process-structure-property relationships for additive manufacturing[J]. Front. Mech. Eng., 2018, 13(4): 482-492.
[4] Zheng-Dong MA. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods[J]. Front. Mech. Eng., 2018, 13(3): 442-459.
[5] Keqiang LI, Feng GAO, Shengbo Eben LI, Yang ZHENG, Hongbo GAO. Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics[J]. Front. Mech. Eng., 2018, 13(3): 354-367.
[6] Le YANG, Shuo WANG, Jianghua FENG. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems[J]. Front. Mech. Eng., 2018, 13(3): 329-353.
[7] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[8] M. WU, M. AHMADEIN, A. LUDWIG. Premature melt solidification during mold filling and its influence on the as-cast structure[J]. Front. Mech. Eng., 2018, 13(1): 53-65.
[9] A. DAVOUDINEJAD, P. PARENTI, M. ANNONI. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6[J]. Front. Mech. Eng., 2017, 12(2): 203-214.
[10] Liangchi ZHANG,Weidong LIU. Precision glass molding: Toward an optimal fabrication of optical lenses[J]. Front. Mech. Eng., 2017, 12(1): 3-17.
[11] Rupalika DASH,Kalipada MAITY. Simulation of abrasive flow machining process for 2D and 3D mixture models[J]. Front. Mech. Eng., 2015, 10(4): 424-432.
[12] Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI. Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads[J]. Front. Mech. Eng., 2015, 10(3): 255-262.
[13] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[14] S. SHANKAR GANESH,A. B. KOTESWARA RAO. Error analysis and optimization of a 3-degree of freedom translational Parallel Kinematic Machine[J]. Front. Mech. Eng., 2014, 9(2): 120-129.
[15] Reza TEIMOURI, Hamed SOHRABPOOR. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process[J]. Front Mech Eng, 2013, 8(4): 429-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed