Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2014, Vol. 9 Issue (3) : 265-269    https://doi.org/10.1007/s11465-014-0311-0
RESEARCH ARTICLE
The formation mechanism and the influence factor of residual stress in machining
Zhaoxu QI,Bin LI,Liangshan XIONG()
Department of Mechanical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
 Download: PDF(298 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.

Keywords residual stress      analytical model      strain      plastic      cutting parameter     
Corresponding Author(s): Liangshan XIONG   
Online First Date: 27 August 2014    Issue Date: 10 October 2014
 Cite this article:   
Zhaoxu QI,Bin LI,Liangshan XIONG. The formation mechanism and the influence factor of residual stress in machining[J]. Front. Mech. Eng., 2014, 9(3): 265-269.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0311-0
https://academic.hep.com.cn/fme/EN/Y2014/V9/I3/265
Fig.1  Schematic of force load in orthogonal cutting
Fig.2  Stress field distribution near the tool tip. (a) XX stress; (b) ZZ stress
Fig.3  Schematic of stress states near the tool tip
A/MPaB/MPanCmTm/°C
553.1600.80.2340.013411460
Tab.1  Constants of Johnson-Cook flow stress model for AISI 1045 steel [16]
ρ/(kg?m-3)E/GPaνλ/(W?m-1?K-1)S/(J?kg-1?K-1)α/K
553.12060.2340.013411460
Tab.2  Material parameters for AISI 1045 steel
Casev/(m·min-1)f /(mm·r-1)Re/μmN
1100, 125, 150, 1750.15252
21500.1, 0.15, 0.2, 0.25252
31500.20, 25, 50, 752
41500.2251, 2, 3, 4
Tab.3  Cutting parameters for different cases
Fig.4  Influences curves of different cutting conditions on residual stresses. (a) The influence of cutting speed; (b) the influence of cutting depth; (c) the influence of edge radius; (d) the influence of cutting time
1 Capello E. Residual stresses in turning: Part I: Influence of process parameters. Journal of Materials Processing Technology, 2005, 160(2): 221–228
https://doi.org/10.1016/j.jmatprotec.2004.06.012
2 S?i W B, Salah N B, Lebrun J L. Influence of machining by finishing milling on surface characteristics. International Journal of Machine Tools & Manufacture, 2001, 41(3): 443–450
https://doi.org/10.1016/S0890-6955(00)00069-9
3 Sridhar B R, Devananda G, Ramachandra K, Bhat R. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 2003, 139(1–3): 628–634
https://doi.org/10.1016/S0924-0136(03)00612-5
4 El-Axir M H. A method of modelling residual stress distribution in turning for different materials. International Journal of Machine Tools & Manufacture, 2002, 42(9): 1055–1063
https://doi.org/10.1016/S0890-6955(02)00031-7
5 Rech J, Moisan A. Surface integrity in finish hard turning of case-hardened steels. International Journal of Machine Tools & Manufacture, 2003, 43(5): 543–550
6 Mantle A L, Aspinwall D K. Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology, 2001, 118(1–3): 143–150
https://doi.org/10.1016/S0924-0136(01)00914-1
7 Genzel C, Klaus M, Denks I, Wulz H G. Residual stress fields in surfacetreated silicon carbide for space industry—comparison of biaxial and triaxial analysis using different X-ray methods. Materials Science and Engineering A, 2005, 390(1–2): 376–384
https://doi.org/10.1016/j.msea.2004.08.018
8 Quan Y, Ye B. The effect of machining on the surface properties of SiC/Al composites. Journal of Materials Processing Technology, 2003, 138(1–3): 464–467
https://doi.org/10.1016/S0924-0136(03)00119-5
9 Su J C. Residual stress modeling in machining processes. Dissertation for the Doctoral Degree. Atlanta: Georgia Institute of Technology, 2006
10 McDowell D L. An approximate algorithm for elastoplastic two-dimensional rolling/sliding contact. Wear, 1997, 211(2): 237–246
https://doi.org/10.1016/S0043-1648(97)00117-8
11 Merwin J E, Johnson K L. An analysis of plastic deformation in rolling contact. Proceedings of the Institution of Mechanical Engineers, 1963, 177(1): 676–690
https://doi.org/10.1243/PIME_PROC_1963_177_052_02
12 Jiang Y, Sehitoglu H. An analytical approach to elastic–plastic stress analysis of rolling contact. Journal of Tribology, 1994, 116(3): 577–587
https://doi.org/10.1115/1.2928885
13 Ulutan D, Erdem Alaca B, Lazoglu I. Analytical modelling of residual stresses in machining. Journal of Materials Processing Technology, 2007, 183(1): 77–87
https://doi.org/10.1016/j.jmatprotec.2006.09.032
14 Lazoglu I, Ulutan D, Alaca B E, An enhanced analytical model for residual stress prediction in machining. CIRP Annals-Manufacturing Technology, 2008, 57(1): 81–84
https://doi.org/10.1016/j.cirp.2008.03.060
15 Komanduri R, Hou Z B. Thermal modeling of the metal cutting process: Part I—Temperature rise distribution due to shear plane heat source. International Journal of Mechanical Sciences, 2000, 42(9): 1715–1752
https://doi.org/10.1016/S0020-7403(99)00070-3
16 Jaspers S P F C, Dautzenberg J H. Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. Journal of Materials Processing Technology, 2002, 122(2–3): 322–330
https://doi.org/10.1016/S0924-0136(01)01228-6
[1] Haixiao LIU, Li LI, Zhikang OUYANG, Wei SUN. Soft curvature sensors for measuring the rotational angles of mechanical fingers[J]. Front. Mech. Eng., 2020, 15(4): 610-621.
[2] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[3] Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN. Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections[J]. Front. Mech. Eng., 2020, 15(3): 374-389.
[4] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[5] Xuemin SUN, Yan-An YAO, Ruiming LI. Novel method of constructing generalized Hoberman sphere mechanisms based on deployment axes[J]. Front. Mech. Eng., 2020, 15(1): 89-99.
[6] A. GESUALDO, A. IANNUZZO, F. PENTA, M. MONACO. Nonlinear dynamics of a wind turbine tower[J]. Front. Mech. Eng., 2019, 14(3): 342-350.
[7] Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI. Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural analyses[J]. Front. Mech. Eng., 2018, 13(4): 563-570.
[8] Jidong KANG, James A. GIANETTO, William R. TYSON. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines[J]. Front. Mech. Eng., 2018, 13(4): 546-553.
[9] Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO. Analysis on annealing-induced stress of blind-via TSV using FEM[J]. Front. Mech. Eng., 2018, 13(3): 401-410.
[10] Xiangyu WANG, Chuanzhen HUANG, Bin ZOU, Guoliang LIU, Hongtao ZHU, Jun WANG. Experimental study of surface integrity and fatigue life in the face milling of Inconel 718[J]. Front. Mech. Eng., 2018, 13(2): 243-250.
[11] Jianyong YAO. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives[J]. Front. Mech. Eng., 2018, 13(2): 179-210.
[12] Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties[J]. Front. Mech. Eng., 2018, 13(1): 96-106.
[13] Yingjun WANG,David J. BENSON. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements[J]. Front. Mech. Eng., 2016, 11(4): 328-343.
[14] Ruiming LI,Yan-An YAO. Eversible duoprism mechanism[J]. Front. Mech. Eng., 2016, 11(2): 159-169.
[15] Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR. FEM-based strain analysis study for multilayer sheet forming process[J]. Front. Mech. Eng., 2015, 10(4): 373-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed