Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (4) : 44    https://doi.org/10.1007/s11465-022-0700-8
RESEARCH ARTICLE
A novel shape memory alloy actuated soft gripper imitated hand behavior
Jie PAN, Jingjun YU, Xu PEI()
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
 Download: PDF(4963 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

Keywords shape memory alloy (SMA)      pre bent      wire      gripper      grasping mode      lightweight     
Corresponding Author(s): Xu PEI   
Just Accepted Date: 11 May 2022   Issue Date: 23 November 2022
 Cite this article:   
Jie PAN,Jingjun YU,Xu PEI. A novel shape memory alloy actuated soft gripper imitated hand behavior[J]. Front. Mech. Eng., 2022, 17(4): 44.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0700-8
https://academic.hep.com.cn/fme/EN/Y2022/V17/I4/44
Fig.1  Two shape memory modes of SMA wire during heating: (a) SMA wire contracts along the direction of the wire and (b) pre bent SMA wire recovers to its initial shape.
Fig.2  Design of finger: (a) initial state, (b) bending during heating, and (c) fixed plate of the SMA wire.
Fig.3  Fingers grasp objects of different sizes.
Fig.4  Structural design of the gripper.
Fig.5  Design of the palm and self-locking structure of gripper.
Fig.6  Stress diagram of the gripper during grasping.
Fig.7  Analysis of the bending force of the pre bent SMA wire.
Fig.8  Bending motion of the finger.
ParametersValue
Young’s modulus of martensite, EM28 GPa
Young’s modulus of austenite, EA75 GPa
Martensite start temperature, Ms42 °C
Martensite finish temperature, Mf17 °C
Austenite start temperature, As55 °C
Austenite finish temperature, Af78 °C
Diameter of SMA wire, d0.381 mm
Pre bent wire, Lp81 mm
Straight wire, Ls66 mm
Moment of inertia, I1.034 × 10?3 mm4
Tab.1  Phase transition temperature and Young’s modulus of the SMA wire
Fig.9  Effect of different pre bent angle of the SMA wire on finger bending.
Fig.10  Stress?strain relationship of the SMA spring during heating.
ParametersValue
Length32 mm
Outer diameter of SMA spring, D4.8 mm
Wire diameter of SMA spring, d0.4 mm
Weight0.002 N
Tab.2  Physical parameters for the SMA spring
Fig.11  Analysis of the finger’s bending force: (a) test platform of bending force and (b) comparison between theoretical value and experimental value of fingertip.
Fig.12  Bending ability test of the single finger: (a) initial state, (b) maximum bending angle, (c) passive recovery, and (d) active recovery.
Fig.13  Test of the surface temperature of SMA wire: (a) thermal image of Ti400 tester and (b) relationship between temperature and heating time.
Fig.14  Comparison of active recovery and passive recovery time of finger position.
Fig.15  Grasping objects of (a) a tennis ball, (b) a badminton, (c) a plastic bottle, (d) surgical masks, (e) a table tennis, (f) a bolt, (g) an iron bottle, (h) a pincer, (i) a knife, and (j) pouring water.
Fig.16  Comparison of grasping effects under three grasping modes.
Fig.17  Effect of the trapezoidal width on grasping force.
Abbreviations
DE Dielectric elastomer
HASEL Hydraulically amplified self-healing electrostatic
IPMC Ionic polymer metal composite
PLA Polylactic acid
PZT Piezoelectric materials
SMA Shape memory alloy
SMP Shape memory polymer
Variables
a Pre bent angle of the SMA wire
Af Temperature at the finish of austenite transformation
As Temperature at the start of austenite transformation
D Outer diameter of SMA spring
E Young’s modulus
E(ρ) The second type of complete elliptic integral
F Force of SMA spring
Fcr Critical load
Fe Fingertip force
I Moment of inertia
K(ρ) The first type of complete elliptic integral
kAB Slope of line AB
kCA Slope of line CA
L Length of the straight SMA wire
l Length of the pre bent SMA wire
M Torque of the elastic rod
M1 Torque of the rigid skeleton
M2 Torque of the finger
Msma1 Torque of the pre bent SMA wire
Msma2 Torque of the straight SMA wire
r Wire diameter of SMA spring
s Arc length
T Temperature
xa x axis displacement generated by the free end of the SMA wire
xe x axis displacement of the finger
yDisplacement of the elastic rod along the y axis
ya y axis displacement generated by the free end of the SMA wire
ye y axis displacement of the finger
ρ1 Bending curvature
θ Bending angle of the pre bent SMA wire
θ1 Bending angle of the finger
  
1 J Shintake , V Cacucciolo , D Floreano , H Shea . Soft robotic grippers. Advanced Materials, 2018, 30(29): 1707035
https://doi.org/10.1002/adma.201707035
2 E Brown , N Rodenberg , J Amend , A Mozeika , E Steltz , M R Zakin , H Lipson , H M Jaeger . Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 18809–18814
https://doi.org/10.1073/pnas.1003250107
3 G P Jung , J S Koh , K J Cho . Underactuated adaptive gripper using flexural buckling. IEEE Transactions on Robotics, 2013, 29(6): 1396–1407
https://doi.org/10.1109/TRO.2013.2273842
4 X J Qian , Q M Chen , Y Yang , Y S Xu , Z Li , Z H Wang , Y H Wu , Y Wei , Y Ji . Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Advanced Materials, 2018, 30(29): 1801103
https://doi.org/10.1002/adma.201801103
5 C Laschi , M Cianchetti , B Mazzolai , L Margheri , M Follador , P Dario . Soft robot arm inspired by the octopus. Advanced Robotics, 2012, 26(7): 709–727
https://doi.org/10.1163/156855312X626343
6 Z X Xie , A G Domel , N An , C Green , Z Y Gong , T M Wang , E M Knubben , J C Weaver , K Bertoldi , L Wen . Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robotics, 2020, 7(5): 639–648
https://doi.org/10.1089/soro.2019.0082
7 P Glick , S A Suresh , D Ruffatto , M Cutkosky , M T Tolley , A Parness . A soft robotic gripper with gecko-inspired adhesive. IEEE Robotics and Automation Letters, 2018, 3(2): 903–910
https://doi.org/10.1109/LRA.2018.2792688
8 F Ilievski , A D Mazzeo , R F Shepherd , X Chen , G M Whitesides . Soft robotics for chemists. Angewandte Chemie International Edition, 2011, 50(8): 1890–1895
https://doi.org/10.1002/anie.201006464
9 M Manti , T Hassan , G Passetti , N D’Elia , C Laschi , M Cianchetti . A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robotics, 2015, 2(3): 107–116
https://doi.org/10.1089/soro.2015.0009
10 E T Roche , R Wohlfarth , J T B Overvelde , N V Vasilyev , F A Pigula , D J Mooney , K Bertoldi , C J Walsh . A bioinspired soft actuated material. Advanced Materials, 2014, 26(8): 1200–1206
https://doi.org/10.1002/adma.201304018
11 S G Li , D M Vogt , D Rus , R J Wood . Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13132–13137
https://doi.org/10.1073/pnas.1713450114
12 M Martens , I Boblan . Modeling the static force of a festo pneumatic muscle actuator: a new approach and a comparison to existing models. Actuators, 2017, 6(4): 33
https://doi.org/10.3390/act6040033
13 G Y Gu , J Zou , R K Zhao , X H Zhao , X Y Zhu . Soft wall-climbing robots. Science Robotics, 2018, 3(25): eaat2874
https://doi.org/10.1126/scirobotics.aat2874
14 R K Jain , S Datta , S Majumder . Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics, 2013, 23(3): 381–394
https://doi.org/10.1016/j.mechatronics.2013.02.008
15 Q M Sun , J Z Han , H Li , S Liu , S N Shen , Y F Zhang , J Z Sheng . A miniature robotic turtle with target tracking and wireless charging systems based on IPMCs. IEEE Access, 2020, 8: 187156–187164
https://doi.org/10.1109/ACCESS.2020.3026333
16 Y Z Wang , U Gupta , N Parulekar , J Zhu . A soft gripper of fast speed and low energy consumption. Science China Technological Sciences, 2019, 62(1): 31–38
https://doi.org/10.1007/s11431-018-9358-2
17 G R Li , X P Chen , F H Zhou , Y M Liang , Y H Xiao , X N Cao , Z Zhang , M Q Zhang , B S Wu , S Y Yin , Y Xu , H B Fan , Z Chen , W Song , W J Yang , B B Pan , J Y Hou , W F Zou , S P He , X X Yang , G Y Mao , Z Jia , H F Zhou , T F Li , S X Qu , Z B Xu , Z L Huang , Y W Luo , T Xie , J Gu , S Q Zhu , W Yang . Self-powered soft robot in the Mariana Trench. Nature, 2021, 591(7878): 66–71
https://doi.org/10.1038/s41586-020-03153-z
18 N Kellaris , V Gopaluni Venkata , G M Smith , S K Mitchell , C Keplinger . Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, 2018, 3(14): eaar3276
https://doi.org/10.1126/scirobotics.aar3276
19 F Gao , Z L Wang , Y K Wang , Y W Wang , J Li . A prototype of a biomimetic mantle jet propeller inspired by cuttlefish actuated by SMA wires and a theoretical model for its jet thrust. Journal of Bionics Engineering, 2014, 11(3): 412–422
https://doi.org/10.1016/S1672-6529(14)60054-8
20 A Firouzeh , M Salerno , J Paik . Stiffness control with shape memory polymer in underactuated robotic origamis. IEEE Transactions on Robotics, 2017, 33(4): 765–777
https://doi.org/10.1109/TRO.2017.2692266
21 H Jin , E B Dong , M Xu , C S Liu , G Alici , Y Jie . Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots. Smart Materials and Structures, 2016, 25(8): 085026
https://doi.org/10.1088/0964-1726/25/8/085026
22 C H Linghu , S Zhang , C J Wang , K X Yu , C L Li , Y J Zeng , H D Zhu , X H Jin , Z Y You , J Z Song . Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects. Science Advances, 2020, 6(7): eaay5120
https://doi.org/10.1126/sciadv.aay5120
23 S Y Zhuo , Z G Zhao , Z X Xie , Y F Hao , Y C Xu , T Y Zhao , H J Li , E M Knubben , L Wen , L Jiang , M J Liu . Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Science Advances, 2020, 6(5): eaax1464
https://doi.org/10.1126/sciadv.aax1464
24 S Zhang , X X Ke , Q Jiang , H Ding , Z G Wu . Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Science Robotics, 2021, 6(53): eabd6107
https://doi.org/10.1126/scirobotics.abd6107
25 H Z Wang , S Chen , H W Li , X Z Chen , J S Cheng , Y L Shao , C L Zhang , J Zhang , L L Fan , H Chang , R Guo , X L Wang , N Li , L Hu , Y Wei , J Liu . A liquid gripper based on phase transitional metallic ferrofluid. Advanced Functional Materials, 2021, 31(32): 2100274
https://doi.org/10.1002/adfm.202100274
26 S K Nah , Z W Zhong . A microgripper using piezoelectric actuation for micro-object manipulation. Sensors and Actuators A: Physical, 2007, 133(1): 218–224
https://doi.org/10.1016/j.sna.2006.03.014
27 J Kim , J W Kim , H C Kim , L D Zhai , H U Ko , R M Muthoka . Review of soft actuator materials. International Journal of Precision Engineering and Manufacturing, 2019, 20(12): 2221–2241
https://doi.org/10.1007/s12541-019-00255-1
28 M F Wang , X Dong , W M Ba , A Mohammad , D Axinte , A Norton . Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102054
https://doi.org/10.1016/j.rcim.2020.102054
29 C H Yang , S N Geng , I Walker , D T Branson , J G Liu , J S Dai , R J Kang . Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. The International Journal of Robotics Research, 2020, 39(14): 1620–1634
https://doi.org/10.1177/0278364920913929
30 Y F Lu , Z J Xie , J Wang , H B Yue , M Wu , Y W Liu . A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. International Journal of Mechanical Sciences, 2019, 159: 74–80
https://doi.org/10.1016/j.ijmecsci.2019.05.041
31 W Wang , S H Ahn . Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robotics, 2017, 4(4): 379–389
https://doi.org/10.1089/soro.2016.0081
32 H B Yin , C Kong , J F Li , G L Yang . Modeling of grasping force for a soft robotic gripper with variable stiffness. Mechanism and Machine Theory, 2018, 128: 254–274
https://doi.org/10.1016/j.mechmachtheory.2018.05.005
33 J H Lee , Y S Chung , H Rodrigue . Application of SMA spring tendons for improved grasping performance. Smart Materials and Structures, 2019, 28(3): 035006
https://doi.org/10.1088/1361-665X/aaf5f4
34 Z Y Shi , J Pan , J W Tian , H Huang , Y R Jiang , S Zeng . An inchworm-inspired crawling robot. Journal of Bionics Engineering, 2019, 16(4): 582–592
https://doi.org/10.1007/s42235-019-0047-y
35 J Pan , Z Y Shi , T M Wang . Variable-model SMA-driven spherical robot. Science China Technological Sciences, 2019, 62(8): 1401–1411
https://doi.org/10.1007/s11431-018-9408-3
36 DYNALLOY. Introduction to FLEXINOL® Actuator Wire. Available from DYNALLOY website, 2022
37 J G Murphy . The stability of thin, stretched and twisted elastic rods. International Journal of Non-Linear Mechanics, 2015, 68: 96–100
https://doi.org/10.1016/j.ijnonlinmec.2014.05.018
38 R S Manning , K A Hoffman . Stability of n-covered circles for elastic rods with constant planar intrinsic curvature. Journal of Elasticity and the Physical Science of Solids, 2001, 62(1): 1–23
https://doi.org/10.1023/A:1010905411426
[1] Puyi WANG, Yingchun BAI, Chuanliang FU, Cheng LIN. Lightweight design of an electric bus body structure with analytical target cascading[J]. Front. Mech. Eng., 2023, 18(1): 2-.
[2] Bin WANG, Tao ZHANG, Jiazhen CHEN, Wang XU, Hongyu WEI, Yaowei SONG, Yisheng GUAN. A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables[J]. Front. Mech. Eng., 2023, 18(1): 6-.
[3] Kun XU, Peijin ZI, Xilun DING. Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics[J]. Front. Mech. Eng., 2022, 17(3): 43-.
[4] Lin WANG, Yuefa FANG, Luquan LI. Design and analysis of the gripper mechanism based on generalized parallel mechanisms with configurable moving platform[J]. Front. Mech. Eng., 2021, 16(4): 765-781.
[5] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[6] Lei DONG, Li-Feng WANG, Qing-An HUANG. Effects of environmental media on the transmission of an inductive link in wireless microsystems[J]. Front. Mech. Eng., 2017, 12(4): 554-556.
[7] Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method[J]. Front. Mech. Eng., 2016, 11(3): 242-249.
[8] Rupesh CHALISGAONKAR, Jatinder KUMAR. Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept[J]. Front Mech Eng, 2013, 8(2): 201-214.
[9] Kamal JANGRA, Sandeep GROVER, Aman AGGARWAL. Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method[J]. Front Mech Eng, 2012, 7(3): 288-299.
[10] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
[11] Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO, . IPMC gripper static analysis based on finite element analysis[J]. Front. Mech. Eng., 2010, 5(2): 204-211.
[12] Kaori YUSE, Michael LALLART, Lionel PETIT, Claude RICHARD, Thomas MONNIER, Daniel GUYOMAR, . Self-powered structural health monitoring with nonlinear energy harvesting system[J]. Front. Mech. Eng., 2010, 5(1): 61-66.
[13] Lidong ZHAO, Pia KUTSCHMANN, Binyou FU, Dingyong HE. Development of a new wear resistant coating by arc spraying of a steel-based cored wire[J]. Front Mech Eng Chin, 2009, 4(1): 1-4.
[14] WANG Zhenmin, XUE Jiaxiang, WANG Fuguang, HUANG Shisheng. A novel soft-switching twin arc pulse MAG welding inverter[J]. Front. Mech. Eng., 2007, 2(2): 224-227.
[15] LIANG Xinhua, ZHU Ping, LIN Zhongqin, ZHANG Yan. Acoustic analysis of lightweight auto-body based on finite element method and boundary element method[J]. Front. Mech. Eng., 2007, 2(1): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed