Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2016, Vol. 11 Issue (4) : 363-373    https://doi.org/10.1007/s11465-016-0375-0
REVIEW ARTICLE
Review on electromagnetic welding of dissimilar materials
K. SHANTHALA(),T. N. SREENIVASA
Mechanical Department, AMC Engineering College, Bangalore, India
 Download: PDF(507 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electromagnetic welding (EMW) is a high-speed joining technique that is used to join similar or dissimilar metals, as well as metals to non-metals. This technique uses electromagnetic force to mainly join conductive materials. Unlike conventional joining processes, the weld interface does not melt, thus keeping the material properties intact. Extremely high velocity and strain rate involved in the process facilitate extending the EMW technique for joining several materials. In this paper, the research and progress in electromagnetic welding are reviewed from various perspectives to provide a basis for further research.

Keywords electromagnetic      welding      impact      dissimilar materials     
Corresponding Author(s): K. SHANTHALA   
Online First Date: 20 April 2016    Issue Date: 29 November 2016
 Cite this article:   
K. SHANTHALA,T. N. SREENIVASA. Review on electromagnetic welding of dissimilar materials[J]. Front. Mech. Eng., 2016, 11(4): 363-373.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-016-0375-0
https://academic.hep.com.cn/fme/EN/Y2016/V11/I4/363
Fig.1  Lorentz force interaction between coil and work
Fig.2  Schematic diagram of EMW process
Fig.3  Weld zone of tubular geometry [16]
Fig.4  Optical micrographs of the cross sectional view of the Al/Al lap joint. (a) Welding interface; (b) central position of the bulged region; (c) welding interface [17]
Fig.5  Magnetic pulse welding: (a) Welding set up; (b) collision and jet formation; (c) wavy interface pattern [28]
Fig.6  Interface morphology. (a) Al/Al [6]; (b) Cu/brass [4]; (c) Al/steel [4]; (d) Al/Cu [6]
Fig.7  Peeling test under different impact velocities [12] m/s: (a) 278 m/s, (b) 322 m/s, and (c) 355 m/s
Fig.8  Mechanical test on Al/steel joint. (a) Tensile test; (b) torsion test [19]
Fig.9  Effect of discharge energy on collision velocity [29]
Fig.10  Effect of standoff distance on weld quality [14]
Fig.11  Flow chart of the analytical model
Fig.12  Electromagnetic coils. (a) Single turn, axisymmetric coil [31]; (b) multi-turn coil with a field shaper [4]; (c) flat rectangular coil
Fig.13  Applications of electromagnetic welding. (a) Aircraft flight control tubes (Copyright Elmag Inc., San Diego CA 2015) [37]; (b) Al fuel filter [4]; (c) Al/steel driveshaft (Pulsar Ltd.) [4]; (d) alumina/Cu accelerator parts [36]
1 Chen S, Jiang X. Microstructure evolution during magnetic pulse welding of dissimilar aluminium and magnesium alloys. Journal of Manufacturing Processes, 2015, 19: 14–21
https://doi.org/10.1016/j.jmapro.2015.04.001
2 Schäfer R, Pasquale P. The electromagnetic pulse technology(EMPT): Forming, welding, crimping and cutting. Biuletyn Instytutu Spawalnictwa, 2014, 58(2): 50–57
3 Kore S D, Date P P, Kulkarni S V. Effect of process parameters on electromagneticimpact welding of aluminum sheets. InternationalJournal of Impact Engineering, 2007, 34(8): 1327–1341
https://doi.org/10.1016/j.ijimpeng.2006.08.006
4 Faes K. Electronic pulsetube welding. 2011.
5 Aizawa T, Kashani M. Experimental and numerical studyon magnetic pulse welding to improving the life time of one-turn flat coil. IOP Conference Series: MaterialsScience and Engineering, 2014, 61(1): 012028
https://doi.org/10.1088/1757-899X/61/1/012028
6 Raoelison R N, Racine D, Zhang Z, . Magnetic pulse welding: Interfaceof Al/Cu joint and investigation of intermetallic formation effecton the weld features. Journal of ManufacturingProcesses, 2014, 16(4): 427–434
https://doi.org/10.1016/j.jmapro.2014.05.002
7 Raoelison R N, Buiron N, Rachik M, . Efficient welding conditions inmagnetic pulse welding process. Journalof Manufacturing Processes, 2012, 14(3): 372–377
https://doi.org/10.1016/j.jmapro.2012.04.001
8 Aizawa T, Okagawa K, Kashani M. Application of magnetic pulse welding techniquefor flexible printed circuit boards (FPCB) lap joints. Journal of Materials Processing Technology, 2013, 213(7): 1095–1102
https://doi.org/10.1016/j.jmatprotec.2012.12.004
9 Watanabe M, Kumai S, Hagimoto G, Interfacial microstructure of aluminum/metallicglass lap joints fabricated by magnetic pulse welding. Materials Transactions, 2009, 50(6): 1279–1285
https://doi.org/10.2320/matertrans.ME200835
10 Shribman V. Magnetic pulse welding for dissimilar and similar material. In: Proceedings of 3rd International Conference on High Speed Forming.Dortmund, 2008, 13–22
11 Kore S D, Dhanesh P, Kulkarni S V, . Numerical modeling of electromagnetic welding. International Journal for Applied Electromagneticsand Mechanics, 2010, 32(1): 1–19
https://doi.org/10.3233/JAE-2010-1062
12 Xu Z, Cui J, Yu H, . Research on the impact velocity of magnetic impulse welding of pipe fitting. Materials & Design, 2013, 49: 736–745
https://doi.org/10.1016/j.matdes.2012.12.059
13 Zhang Y, Babu S S, Prothe C, Application of high velocity impact welding at varied different length scales. Journal of Materials Processing Technology, 2011, 211(5): 944–952
https://doi.org/10.1016/j.jmatprotec.2010.01.001
14 Kore S D, Date P P, Kulkarni S V. Electromagnetic impact welding of aluminumto stainless steel sheets. Journal of MaterialsProcessing Technology, 2008, 208(1–3): 486–493
https://doi.org/10.1016/j.jmatprotec.2008.01.039
15 Kore S D, Imbert J, Worswick M J, . Electromagnetic impact weldingof Mg to Al sheets. Science and Technologyof Welding and Joining, 2009, 14(6): 549–553
16 Faes K, Baaten T, De Waele W, . Joining of copper to brass using magnetic pulse welding. In: Proceedings of 4th International Conference on High Speed Forming. Columbus, 2010, 84–96
https://doi.org/10.17877/DE290R-8664
17 Watanabe M, Kumai S. Interfacial morphology of magneticpulse welded aluminum/aluminum and copper/copper lap joints. Journal of Japan Institute of Light Metals, 2009, 59(2): 140–147 (in Japanese)
18 Psyk V, Risch D, Kinsey B L, Electromagnetic forming—A review. Journal of Materials Processing Technology, 2011, 211(5): 787–829
https://doi.org/10.1016/j.jmatprotec.2010.12.012
19 Yu H, Xu Z, Fan Z,. Mechanical property and microstructureof aluminum alloy-steel tubes joint by magnetic pulse welding. Materials Science and Engineering A, 2013, 561: 259–265
https://doi.org/10.1016/j.msea.2012.11.015
20 Lee K J, Kumai S, Arai T, . Interfacial microstructure andstrength of steel/aluminum alloy lap joint fabricated by magneticpressure seam welding. Materials Science and Engineering A, 2007, 471(1–2): 95–101
https://doi.org/10.1016/j.msea.2007.04.033
21 Marya M, Marya S, Priem D. On the characteristicsof electromagnetic welds between aluminum and other metals and alloys. Welding in the World, 2005, 49 (5): 74–84
22 Göbel G, Kaspar J, Herrmannsdörfer T, Insights into intermetallicphases on pulse welded dissimilar metal joints. In: Proceedings of 4th International Conference on High Speed Forming. Columbus, 2010, 121–136
23 Kumar S, Kulkarni M R, Saroj P C, . Metallurgical and mechanical testing of electromagneticallywelded copper and iron sample. In: Proceedings of 13th Asia-Pacific Conference on NDT. Bombay, 2013
24 Ben-Artzy A, Stern A, Frage N, Wave formation mechanism in magnetic pulse welding. International Journal of Impact Engineering, 2010, 37(4): 397–404
https://doi.org/10.1016/j.ijimpeng.2009.07.008
25 Nassiri A, Chini G, Kinsey B. Spatial stabilityanalysis of emergent wavy interfacial patterns in magnetic pulsed welding. CIRP Annals-Manufacturing Technology, 2014, 63: 245–248
https://doi.org/10.1016/j.cirp.2014.03.023
26 Cui J, Sun G, Li G,. Specific wave interface and its formation duringmagnetic pulse welding. Applied PhysicsLetters, 2014, 105(22): 221901–221901-4
https://doi.org/10.1063/1.4903044
27 Uhlmann E, Prasol L, Ziefle A. Potentials of pulse magnetic forming andjoining. Advanced Materials Research, 2014, 907: 349–364 doi:10.4028/www.scientific.net/AMR.907.349
28 Lorenz A, Lueg-Althoff J., Göbel G,Influence of axial workpiecepositioning during magnetic pulse welding of aluminum-steel joints. In: Proceedings of 6th International Conference on High Speed Forming. 2014, 189–198 doi:10.17877/DE290R-15471
29 Aizawa T, Kashani M, Okagawa K. Application of magnetic pulse welding foraluminum alloys and SPCC steel sheet joints. Welding Journal, 2007, 86: 119s–124s
30 BroeckhoveJ, Len W. Experimental research on magnetic pulsewelding of dissimilar metals. Dissertationfor the Master’s Degree. Ghent: Ghent University, 2009–2010
31 Nassiri A, Campbell C, Chini G,. Analytical model and experimentalvalidation of single turn, axi-symmetric coil for electromagneticforming and welding. Procedia Manufacturing, 2015, 1: 814–827
https://doi.org/10.1016/j.promfg.2015.09.070
32 PROGRESS INDUSTRIAL SYSTEMS SA. Equipmentand technology for magnetic pulsed processing of metals.
33 AUTOMOTIVE DESIGN and PRODUCTION. Weldingmixed materials, multiple ways.
34 Gary F. Benedict, NontraditionalManufacturing Processes. Boca Raton: CRCPress, 1987, 103–123
35 Marré M, Brosius A, Tekkaya A E. Joining by compression and expansion of (none-) reinforced profiles. Advanced Materials Research, 2008, 43: 57–68
36 Rajawat R K, Desai S V, Kulkarni M R, . Electromagnetic forming—A technique with potential applications in accelerators. In: Proceedings of APAC 2014. Gyeongju, 2004, 187–189
37 ELMAG. EMF technology in the aerospace industry.
38 Kochan A. Magnetic pulse welding shows potential for automotive applications. Assembly Automation, 2000, 20(2): 129–132
https://doi.org/10.1108/01445150010321742
[1] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[2] Xumin GUO, Jin ZENG, Hui MA, Chenguang ZHAO, Lin QU, Bangchun WEN. Dynamic characteristics of a shrouded blade with impact and friction[J]. Front. Mech. Eng., 2020, 15(2): 209-226.
[3] Le YANG, Shuo WANG, Jianghua FENG. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems[J]. Front. Mech. Eng., 2018, 13(3): 329-353.
[4] Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed[J]. Front. Mech. Eng., 2016, 11(3): 289-298.
[5] Jorge ALENCASTRE,Carlos MAGO,Richard RIVERA. Determination of energy dissipation of a spider silk structure under impulsive loading[J]. Front. Mech. Eng., 2015, 10(3): 306-310.
[6] Jie LIU,Youmin HU,Bo WU,Kaibo ZHOU,Mingfeng GE. An adaptive sliding mode control technology for weld seam tracking[J]. Front. Mech. Eng., 2015, 10(1): 95-101.
[7] Amir M. RAHMANI,Elizabeth K. ERVIN. Parameter studies on impact in a lap joint[J]. Front. Mech. Eng., 2015, 10(1): 64-77.
[8] Lezhi YE,Guangzhao YANG,Desheng LI. Analytical model and finite element computation of braking torque in electromagnetic retarder[J]. Front. Mech. Eng., 2014, 9(4): 368-379.
[9] Tie ZHANG, Fan OUYANG. Offline motion planning and simulation of two-robot welding coordination[J]. Front Mech Eng, 2012, 7(1): 81-92.
[10] Zhaomiao LIU, Huamin LIU, Xin LIU, . Dynamical analysis of droplet impact spreading on solid substrate[J]. Front. Mech. Eng., 2010, 5(3): 308-315.
[11] Xingjun WANG, Daniel GUYOMAR, Kaori YUSE, Mickaël LALLART, Lionel PETIT, . Impact force detection using an energy flow estimator with piezoelectric sensors[J]. Front. Mech. Eng., 2010, 5(2): 194-203.
[12] Junzhi HU, Sumei WANG, Xiaoli ZHAO, Shilin ZHU, Botao YU, . Structure and performance of welding joint of Q235 steel welded by SHS welding[J]. Front. Mech. Eng., 2010, 5(2): 189-193.
[13] Zhenyang LU, Pengfei HUANG, Wenning GAO, Yan LI, Hanpeng ZHANG, Shuyan YIN. ARC welding method for bonding steel with aluminum[J]. Front Mech Eng Chin, 2009, 4(2): 134-146.
[14] LU Yanjun, HEI Di, WANG Yuan, DAI Rong, LU Yanjun, LIU Heng, YU Lie. Stability and coupling dynamic behavior of nonlinear journal active electromagnetic bearing rotor system[J]. Front. Mech. Eng., 2008, 3(2): 193-199.
[15] ZHANG Hongzhuang, ZENG Ping, HUA Shunming, CHENG Guangming, YANG Zhigang. Impact drive rotary precision actuator with piezoelectric bimorphs[J]. Front. Mech. Eng., 2008, 3(1): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed