Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 181-187    https://doi.org/10.1007/s12200-011-0162-9
RESEARCH ARTICLE
Controllable synthesis of quasi-spherelike ZnO hierarchical nanostructures and performance of their dye-sensitized solar cells
Yanhua TONG(), Feng CAO, Peisong TANG, Haifeng CHEN, Guoxiang PAN, Minhong XU
Department of Chemistry, Huzhou Teachers College, Huzhou 313000, China
 Download: PDF(489 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hierarchical zinc oxide (ZnO) quasi-spheres consisting of nanoparticles with diameter of about 20 nm were synthesized via a one-pot reaction. The size of ZnO quasi-spheres is easily tunable from 80 nm to 3 μm by varying the type of zinc source and its concentration. The three samples 1-3 with the diameter of 80-180 nm, 300-600 nm and 1.2-2.9 μm were selected for fabricating dye-sensitized solar cells (DSSCs) and their photovoltaic properties were measured. The results demonstrate that DSSCs fabricated by sample 2 with the diameter within the wavelength of visible light obtain the highest short-circuit current density and over light conversion efficiency, due to resonant scattering increasing the photon absorption.

Keywords zinc oxide      quasi-spheres      dye-sensitized solar cells      photovoltaic property     
Corresponding Author(s): TONG Yanhua,Email:tyh@hutc.zj.cn   
Issue Date: 05 June 2011
 Cite this article:   
Minhong XU,Yanhua TONG,Feng CAO, et al. Controllable synthesis of quasi-spherelike ZnO hierarchical nanostructures and performance of their dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(2): 181-187.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0162-9
https://academic.hep.com.cn/foe/EN/Y2011/V4/I2/181
Fig.1  SEM images of three typical ZnO quasi-spheres prepared by refluxing under different parameters. (a) and (b) 1 g of Zn(CHCOO)·2HO dissolved into the mixture of 110 mL ethanol and 2.5 mL DEA (sample 1); (c) and (d) 2.25 g of Zn(NO)·6HO dissolved into the mixture of 80 mL HO and 30 mL DEA (sample 2); (e) and (f) 1.5 g of Zn(NO)·6HO dissolved into the mixture of 80 mL HO and 30 mL DEA (sample 3)
Fig.1  SEM images of three typical ZnO quasi-spheres prepared by refluxing under different parameters. (a) and (b) 1 g of Zn(CHCOO)·2HO dissolved into the mixture of 110 mL ethanol and 2.5 mL DEA (sample 1); (c) and (d) 2.25 g of Zn(NO)·6HO dissolved into the mixture of 80 mL HO and 30 mL DEA (sample 2); (e) and (f) 1.5 g of Zn(NO)·6HO dissolved into the mixture of 80 mL HO and 30 mL DEA (sample 3)
Fig.2  Diameter distribution of the as-prepared ZnO quasi-spheres. (a) Sample 1; (b) sample 2; (c) sample 3
Fig.2  Diameter distribution of the as-prepared ZnO quasi-spheres. (a) Sample 1; (b) sample 2; (c) sample 3
Fig.3  FESEM images of ZnO quasi-spheres prepared via different systems. (a) Zn(NO)·6HO-HO system; (b) Zn(CHCOO)·2HO-CHOH system
Fig.3  FESEM images of ZnO quasi-spheres prepared via different systems. (a) Zn(NO)·6HO-HO system; (b) Zn(CHCOO)·2HO-CHOH system
diffraction peaksample 1sample 2sample 3
(100)22.313±0.00219.774±0.00222.372±0.002
(002)20.062±0.00220.051±0.00222.221±0.002
(101)22.581±0.00218.042±0.00222.271±0.002
average/nm21.322±0.00219.292±0.00222.291±0.002
Tab.1  Size of component nanoparticles of three samples calculated from XRD peaks
Fig.4  XRD characterization of as-prepared ZnO samples. (a) Sample 1; (b) sample 2; (c) sample 3
Fig.4  XRD characterization of as-prepared ZnO samples. (a) Sample 1; (b) sample 2; (c) sample 3
sampleBET surface area/(m2·g-1)total pore volume/(ccg-1)
112.626.07×10-2
214.883.64×10-2
32.044.23×10-3
Tab.2  BET surface areas and total pore volumes of three ZnO samples with different sizes
ZnO filmVoc/mVJsc/(mA·cm-2)Vmax/mVJmax/(mA·cm-2)FF1)/%η1)/%
sample 15849.23004.826.51.42
sample 256410.23005.830.21.74
sample 35685.83103.633.21.1
Tab.3  Photovoltaic properties of DSSCs based on different-size ZnO spheres
Fig.5  - characteristics for solar cells constructed by different-size ZnO quasi-spheres. (a) Under illumination; (b) in dark
Fig.5  - characteristics for solar cells constructed by different-size ZnO quasi-spheres. (a) Under illumination; (b) in dark
1 Matijevic E. Monodipersed colloid-art and scicence. Langmuir , 1986, 2(1): 12-20
doi: 10.1021/la00067a002
2 Matijevic E. Preparation and properties of uniform size colloids. Chemistry of Materials , 1993, 5(4): 412-426
doi: 10.1021/cm00028a004
3 Matijevic E. Uniform inorganic colloid dispersions — achievement and challenges. Langmuir , 1994, 10(1): 8-16
doi: 10.1021/la00013a003
4 Jeong U, Wang Y L, Ibisate M, Xia Y N. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Advanced Functional Materials , 2005, 15(12): 1907-1921
doi: 10.1002/adfm.200500472
5 Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Current Opinion in Colloid & Interface Science , 2000, 5(1-2): 56-63
doi: 10.1016/S1359-0294(00)00039-X
6 Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solid: materials for photonics and beyond. Current Opinion Solid State & Materials Science , 2001, 5(6): 553-564
doi: 10.1016/S1359-0286(01)00022-5
7 Polman A, Wiltzius P. Materials science aspects of photonic crystals. MRS Bulletin , 2001, 26(8): 608-610
doi: 10.1557/mrs2001.153
8 Vlasov Y A, Bo X Z, Sturm J C, Norris D J. On-chip natural assembly of silicon photonic bandgap crystals. Nature , 2001, 414(6861): 289-293
doi: 10.1038/35104529
9 Lee W M, Prunziski S A, Braun P V. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Advanced Materials , 2002, 14(4): 271-274
doi: 10.1002/1521-4095(20020219)14:4<271::AID-ADMA271>3.0.CO;2-Y
10 L?pez C. Materials aspects of photonic crystals. Advanced Materials , 2003, 15(20): 1679-1704
doi: 10.1002/adma.200300386
11 Arshady R. Suspension, emulsion, and dispersion polymerization—a methodological survey. Colloid and Polymers Science , 1992, 270(8): 717-732
doi: 10.1007/BF00776142
12 St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in micron size range. Journal of Colloid and Interface Science , 1968, 26(1): 62-69
doi: 10.1016/0021-9797(68)90272-5
13 Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angewandte Chemie — International Edition , 2003, 42(26): 3027-3030
doi: 10.1002/anie.200250695
14 Yao W T, Yu S H, Jiang J, Zhang L. Complex wurtzite ZnSe microspheres with high hierarchy and their optical properties. Chemistry — A European Journal , 2006, 12(7): 2066-2072
doi: 10.1002/chem.200500835
15 Jiang C L, Zhang W Q, Zou G F, Yu W C, Qian Y T. Synthesis and characterization of ZnSe hollow nanospheres via a hydrothermal route. Nanotechnology , 2005, 16(4): 551-554
doi: 10.1088/0957-4484/16/4/036
16 Shen G Z, Chen D, Tang K B, Qian Y T. Characterization of ZnSe spheres via a rapid polyol process. Journal of Crystal Growth , 2003, 257(3-4): 276-279
doi: 10.1016/S0022-0248(03)01451-9
17 Zhong H Z, Wei Z X, Ye M F, Yan Y, Zhou Y, Ding Y Q, Yang C H, Li Y F. Monodispersed ZnSe colloidal microspheres: preparation, characterization, and their 2D arrays. Langmuir , 2007, 23(17): 9008-9013
doi: 10.1021/la700674c
18 Murphy-Wilhelmy D, Matijevic E. Preparation and properties of monodispersed spherical-colloidal particles of zinc sulfide. Journal of the Chemical Society — Faraday Transactions . 1984, 80: 563-570
doi: 10.1039/f19848000563
19 Velikov K P, Van B A. Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica. Langmuir , 2001, 17(16): 4779-4786
doi: 10.1021/la0101548
20 Breen M L, Dinsmore A D, Pink R H, Qadri S B, Ratna B R. Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir , 2001, 17(3): 903-907
doi: 10.1021/la0011578
21 Matijevic E, Murphy-Wilhelmy D. Preparation and properties of monodispersed spherical colloidal particles of cadmium. Journal of Colloid and Interface Science , 1982, 86(2): 476-484
doi: 10.1016/0021-9797(82)90093-5
22 Jeong U, Kim J U, Xia Y N. Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals. Nano Letter , 2005, 5(5): 937-942
doi: 10.1021/nl050482i
23 Jeong U, Xia Y N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angewandte Chemie — International Edition , 2005, 44(20): 3099-3103
doi: 10.1002/anie.200462906
24 Jiang X C, Herricks T, Xia Y N. Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization. Advanced Materials , 2003, 15(14): 1205-1209
doi: 10.1002/adma.200305105
25 Zhong Z Y, Yin Y D, Gates B, Xia Y N. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Advanced Materials , 2000, 12(3): 206-209
doi: 10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
26 Yin Y D, Lu Y, Gates B, Xia Y N. Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces. Chemistry of Materials , 2001, 13(4): 1146-1148
doi: 10.1021/cm000933u
27 Jezequel D, Guenot J, Jouini N, Fievet F. Preparation and morphological characterization of fine, spherical, monodisperse particles of ZnO. Materials Science Forum , 1994, 152-153: 339-342
doi: 10.4028/www.scientific.net/MSF.152-153.339
28 Xu S, Li Z H, Wang Q, Cao L J, He T M, Zou G T. A novel one-step method to synthesize nano/micron-sized ZnO sphere. Journal of Alloys and Compounds , 2008, 465(1-2): 56-60
doi: 10.1016/j.jallcom.2007.10.095
29 Wang Y L, Cai L, Xia Y N. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Advanced Materials , 2005, 17(4): 473-477
doi: 10.1002/adma.200401416
30 Joo J, Kwon S G, Yu J H, Hyeon T. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Advanced Materials , 2005, 17(15): 1873-1877
doi: 10.1002/adma.200402109
31 Pal U, Santiago P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. Journal of Physical Chemistry B , 2005, 109(32): 15317-15321
doi: 10.1021/jp052496i
32 Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials , 2003, 15(5): 464-466
doi: 10.1002/adma.200390108
33 Zhang Q F, Chou T R, Russo B, Jenekhe S A, Cao G Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie — International Edition , 2008, 47(13): 2402-2406
doi: 10.1002/anie.200704919
34 Cullity B D. Elements of X-Ray Diffraction. 2nd ed. Massachusetts: Addison-Wesley, 1956
35 Cao G Z. Nanostructures & Nanomaterials: Synthesis, Properties, & Applications.London: Imperial College Press, 2004
36 Hulst H C. Light Scattering by Small Particles. New York: Wiley, 1957
37 Wolf P E, Maret G. Weak localization and coherent backscattering of photons in disordered media. Physical Review Letter , 1985, 55(24): 2696-2699
doi: 10.1103/PhysRevLett.55.2696
38 Kay A, Gr?tzel M. Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials , 2002, 14(7): 2930-2935
doi: 10.1021/cm0115968
39 Jiang C Y, Sun X W, Lo G Q, Kwong D L. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters , 2007, 90(26): 263501
doi: 10.1063/1.2751588
40 Pradhan B, Batabyal S K, Pal A J. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Solar Energy Materials & Solar Cells , 2007, 91(9): 769-773
doi: 10.1016/j.solmat.2007.01.006
[1] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[2] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[3] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[4] Xiaoyue LI,Sheng YIN,Dong XU. Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers[J]. Front. Optoelectron., 2015, 8(4): 445-450.
[5] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[6] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[7] Xiaoyan LI,Pei LIANG,Le WANG,Feihong YU. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
[8] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[9] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
[10] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[11] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed